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Supplementary Figure S2. Overview of cell populations in the merged PBMC data. t-SNE plot
showing the similarities in gene expression profiles between cells in the two PBMC CITE-seq data
sets merged. The color of points denotes cell type.



Supplementary Figure S3. Comparison PGF approach with FW-approximation for five
simulations and � = � components. The likelihood is evaluated by probability generation function
(PGF; red) approach and Fenton-Wilkinson approximation (FW; green) at � = ��/2 (top row), � =
�� (middle), and � = 2�� (bottom), with �� is expected value of � . Monte-Carlo evaluation (MC;
black) serves as the baseline.

Supplementary Figure S4. Improvement of the computation time by Numba. Computation time
(y-axis) of the objective function (left) and gradient (right) used in L-BFGS algorithm of BLADE with
(orange) and without (blue) Numba compilation. The data used for evaluation has five cell types, 200
genes, and 50 samples.



Supplementary Figure S5. Overview of the performance of BLADE and baseline methods in
simulation datasets. Performances (Pearson correlation coefficient; y-axis) of BLADE (orange),
CIBERSORTx (blue), and NNLS (dark red) in predicting cellular fraction of simulation data with
diverse variability levels (standard deviation of 0.1-1.5; x-axis), number of cells (2-20 cell types; rows),
and number of genes (100-1000 genes; columns). Each boxplot shows the performance from 5
independent data sets for the corresponding number of cell types (i.e., n=5 times the number of cell
types defined in the row). The standard boxplot notation was used (lower/upper hinges - first/third
quartiles; whiskers extend from the top/bottom hinges to the largest/lowest values no further than 1.5
* inter-quartile ranges).

Variability level (noise)



Supplementary Figure S6. Overview of the performance in Spearman’s rank correlation of
BLADE and baseline methods in simulation datasets. Performances (Spearman’s rank correlation
coefficient; y-axis) of BLADE (orange), CIBERSORTx (blue), and NNLS (dark red) in predicting
cellular fraction of simulation data with diverse variability levels (standard deviation of 0.1-1.5; x-axis),
number of cells (2-20 cell types; rows; 10 cell type dataset highlighted on the right), and number of
genes (100-1000 genes; columns; 1000 genes dataset highlighted on the right). Each boxplot shows
the performance from 5 independent data sets for the corresponding number of cell types (i.e., n=5
times the number of cell types defined in the row). The standard boxplot notation was used
(lower/upper hinges - first/third quartiles; whiskers extend from the top/bottom hinges to the
largest/lowest values no further than 1.5 * inter-quartile ranges).

Variability level (noise)



Supplementary Figure S7. Overview of the performance in root mean square error (RMSE) of
BLADE and baseline methods in simulation datasets. Performances (root mean square error;
RMSE; y-axis) of BLADE (orange), CIBERSORTx (blue), and NNLS (dark red) in predicting cellular
fraction of simulation data with diverse variability levels (standard deviation of 0.1-1.5; x-axis), number
of cells (2-20 cell types; rows; 10 cell type dataset highlighted on the right), and number of genes
(100-1000 genes; columns; 1000 genes dataset highlighted on the right). Each boxplot shows the
performance from 5 independent data sets for the corresponding number of cell types (i.e., n=5 times
the number of cell types defined in the row). The standard boxplot notation was used (lower/upper
hinges - first/third quartiles; whiskers extend from the top/bottom hinges to the largest/lowest values
no further than 1.5 * inter-quartile ranges). Note that RMSE is not meant to be compared between
data set with the different number of cell types, as it depends a lot on the abundance of cell types.
(according to RMSE, the performance gets better with the higher number of cell types, which is
misleading).



Supplementary Figure S8. Overview of the performance in group mode purification of BLADE
and CIBERSORTx in simulation datasets. Performances (Pearson correlation coefficient; y-axis) of
BLADE (orange) and CIBERSORTx (blue) in predicting gene expression profiles per cell type (group
mode) of simulation data with diverse variability levels (standard deviation of 0.1-1.5; x-axis), number
of cells (2-20 cell types; rows), number of genes (100-1000 genes; columns), and number of samples
(5-100 samples; denoted by the type of line). Each point in line plots shows the average and standard
deviation of the Pearson correlation coefficient of all cell types (n=2-20) in the corresponding data set.



Supplementary Figure S9. Overview of the performance in high-resolution mode purification of
BLADE and CIBERSORTx in simulation datasets. Performances (Pearson correlation coefficient;
y-axis) of BLADE (orange) and CIBERSORTx (blue) in predicting gene expression profiles per cell
type per sample (high-resolution mode) of simulation data with diverse variability levels (standard
deviation of 0.1-1.5; x-axis), number of cells (2-20 cell types; rows), number of genes (100-1000
genes; columns), and number of samples (5-100 samples; denoted by the type of line). Each point in
line plots shows the average and standard deviation of the Pearson correlation coefficient of all pairs
(n=10-200) of cell types (n=2-20) and samples (n=5-100) in the corresponding data set.



Supplementary Figure S10. Overview of missing values in group mode purification of
CIBERSORTx in simulation datasets. Missing values of CIBERSORTx in group mode purification
for simulation data with diverse settings (number of genes: rows; variability levels: columns; number
of cell types: x-axis; number of samples: y-axis).



Supplementary Figure S11. Overview of missing values in high-resolution mode purification of
CIBERSORTx in simulation datasets. Missing values of CIBERSORTx in high-resolution mode
purification for simulation data with diverse settings (number of genes: rows; variability levels:
columns; number of cell types: x-axis; number of samples: y-axis).



Supplementary Figure S12. Overview of variability in cell-type-specific gene expression
profiles of simulated and real PBMC data. Scatter plots show the variability of 1,007 genes in
PBMC simulation data (y-axis) in the 15 cell types (grids) recapitulates the one observed in real data
(x-axis).



Supplementary Figure S13. Fraction of cell types in the four different levels of PBMC
simulation data. The fraction (y-axis) of cell types (x-axis) in 20 simulated PBMC datasets in levels 1-
4 (each panel). The standard boxplot notation was used (lower/upper hinges - first/third quartiles;
whiskers extend from the top/bottom hinges to the largest/lowest values no further than 1.5 * inter-
quartile ranges).



Level 1 Level 2

Level 3 Level 4

Supplementary Figure S14. The number of unique differentially expressed genes per cell type
in the four different levels of PBMC data. The number of unique differentially expressed genes
(DEGs; y-axis) in the PBMC cell types (x-axis), classified by four different levels.



Supplementary Figure S15. Performance of BLADE in alternative metrics compared to baseline
methods in fraction estimation of simulated PBMC data. Spearman’s rank correlation coefficient
(y-axis; top) and RMSE (y-axis; bottom) compared between BLADE (orange) and baseline methods
(CIBERSORTx (blue), MuSiC (light yellow), and NNLS (dark red)) for level 1-4 PBMC data (x-axis).
Note that RMSE is not meant to be compared between data set with the different number of cell types,
as it depends a lot on the abundance of cell types. (according to RMSE, the performance gets better
with the higher number of cell types, which is misleading). The standard boxplot notation was used
(lower/upper hinges - first/third quartiles; whiskers extend from the top/bottom hinges to the
largest/lowest values no further than 1.5 * inter-quartile ranges).



Supplementary Figure S16. Performance of BLADE compared to baseline methods in levels 1-
3 PBMC simulation data. Pearson Correlation coefficient compared between BLADE (y-axis) and
baseline methods (CIBERSORTx(left), NNLS (middle), and MuSiC (right)) for level 1-3 PBMC dataset
(top-bottom rows). Pearson correlation coefficient and two-tailed test P-values are indicated at the top
left in each panel.



Level 1 Level 2

Level 3

Supplementary Figure S17. Association between BLADE performance, the abundance of cell
types, and the number of unique DEGs. Average fraction (y-axis) and the number of unique
deferentially expressed genes (x-axis) of each cell type in levels 1-3 of PBMC data (levels 1-3 at the
top, right, and bottom). The color of dots denotes the performance of BLADE measured by the
Pearson correlation coefficient.



Level 1 Level 2

Level 3

Supplementary Figure S18. Comparison between BLADE and CIBERSORTx for group mode
purification in PBMC simulation dataset. Pearson correlation coefficient of BLADE (y-axis) and
CIBERSORTx (x-axis) in estimating cell type-specific gene expression profiles (group-mode
purification) in level 1-3 PBMC simulation data (left, right, and bottom panel).



Level 1 Level 2

Level 3 Level 4

Supplementary Figure S19. Fraction of genes purified by CIBERSORTx in PBMC simulation
data. Radar plots represent the gene fraction with estimated cell-type-specific gene expression
profiles for each cell type in group mode (blue) and high-resolution mode (red) in level 1-4 PBMC
simulation data.



Level1 Level2 Level3

Supplementary Figure S20. Performance of BLADE in high-resolution mode purification for
simulated PBMC bulk RNA-seq data. Performance (Pearson correlation coefficient; y-axis) of
BLADE (orange) and CIBERSORTx (blue) in estimating gene expression profiles per cell type (x-axis)
and per sample in levels 1-3 (n=20 samples per cell type).



Supplementary Figure S21. Alternative performance metrics for deconvolution of bulk RNA-
seq data of PBMC immune cell mixtures. Performances in Spearman correlation (y-axis; top) and
root mean squared error (RMSE; y-axis; bottom) of BLADE (orange), CIBERSORTx (blue), MuSiC
(light yellow), and NNLS (dark red) in estimating the cell fractions in all samples of each cell type (x-
axis) determined by flow cytometry.



Supplementary Figure S22. Overview of cells in PDAC single-cell RNAseq data. T-sne plot
represents the similarity in gene expression profiles among cells in the PDAC scRNA-seq data. The
color indicates normal pancreas (N1-N11) and PDAC samples (T1-T24).



Supplementary Figure S23. Overview of cells in PDAC single-cell RNAseq data. T-sne plot
represents the similarity in gene expression profiles among cells in the PDAC scRNA-seq data. The
color indicates auxiliary (n=6; blue) and main (n=29; red) samples.

Auxiliary
Main



Supplementary Figure S24. Alternative performance metrics for deconvolution of PDAC RNA-
seq data. Performances (Spearman’s rank correlation coefficient (left) and RMSE (right); y-axis) of
BLADE (orange), CIBERSORTx (blue), MuSiC (light yellow), and NNLS (dark red) in predicting
cellular fractions of the PDAC bulk RNA-seq data. The standard boxplot notation was used
(lower/upper hinges - first/third quartiles; whiskers extend from the top/bottom hinges to the
largest/lowest values no further than 1.5 * inter-quartile ranges).



Supplmenetary Note 1: Generic deconvolution method with
known cellular compositions

1.1 Formulation and Notation

We denote:

• i = 1, . . . , n: index for sample i.

• j = 1, . . . , p: index for gene

• t = 1, . . . , T : index for cell type.

• yij : Bulk RNA expression for individual i and gene j

• xtij : latent gene expression for individual i, gene j and cell type t

• f ti : given fraction of cells of type t.

And thus yij is a (weighted) convolution:

yij =

T∑
t=1

f ti x
t
ij , (1)

which implies, with x̂tij = f ti x
t
ij ,

gyij (y) =

∫ y

u1=0

. . .

∫ y−
∑T−1

i=1 ui

uT=0

gx̂1
ij

(u1) · · · gx̂T−1
ij

(uT−1)gx̂T
ij

(y −
T−1∑
i=1

ui)du1 . . . duT . (2)

If we assume xtij ∼ LN(µtj , (σ
t
j)

2) then x̂tij = f ti x
t
ij ∼ LN(log(f ti ) + µtj , (σj

t)2). Therefore, yij is a
convolution of T log-normal random variables.

1.2 Approximation of Log-Normal (LN)/Negative Binomial (NB) con-
volution using Probabilistic Generative Function (PGF)

Note that evaluation of gyij (y) needs to be extremely efficient, because for numerical maximum
likelihood estimation gyij (y) is evaluated many times, depending on the number of parameters (I
times J times T ). While numerical evaluation of (2) may still be efficient for T = 2[1], the extension
to T > 2 is not straightforward to a T − 1 dimensional integral. To this end, the log-normal density
gt = gx̂t

ij
is approximated by a probability generating function (PGF).

Specifically, we used an equi-spaced grid that ranges from 0 to y = yij (i.e., observed convoluted
gene expression level of sample i and gene j) in which the bins represent integer fractions of y,
centered around those fractions. For instance, for y = 100, there are 101 bins representing 0, . . . , 100,
with bin i : [i − 0.5, i + 0.5]. For each bin i : [ai, ai+1] a total density of pi = Gt(ai+1) − Gt(ai)
is assigned, where Gt is the cumulative distribution of x̂ij

t. Then, the PGF of the associated
approximation density ĝt is:

Gĝt(x) =

B∑
k=0

pkx
k (3)

By assuming that y is an integer and the bins represent 0, . . . , y we have

Gĝ(x) =

T∏
t=1

Gĝt(x) (4)

Hence,
gyij (y) = Gĝ(x)[xy], (5)
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which is simply the coefficient of xy in the product (4). Thanks to the equi-spaced grid, Gĝt(x) is
a polynomial, for which repeated multiplication is very efficient. In fact, since there is xy term
at the end (because this represents observation y), a higher order can be discarded for the multi-
plications in (4). Therefore, when using (4) computation grows only linearly with T , as opposed
to (naive) evaluation of (2). The R package pracma was used for efficient polynomial multiplication.

For discrete distributions such as the negative binomial, (4) is exact when the number of
bins equals the total count plus one. PGF requires to evaluate probabilities for bins [ai, ai+1].
Cumulative distribution Gt is calculated as follows:

Gt(x) = P (x̂tij ≤ x) = P (xtijf
t
i ≤ x) = P (xtij ≤ x/f ti ) = GNB(x/f ti ) (6)

where GNB denotes the cumulative distribution function of the negative binomial with parameters
(µtj , σ

t
j). With given fractions f ti and convolution gyij , the log-likelihood for gene j equals:

L(Y.j ; θj) =

I∑
i=1

log gyij (yij ; θj) (7)

where θj contains all 2T parameters of the convolution components and evaluated by (5). The
MLE estimate of θj is obtained by maximizing L(Y.j ; θj) using the numerical optimizer Rsolnp.
The numerical optimizer requires several thousands of evaluations of (2) per gene, which limits the
scalability of the method.

1.3 Evaluation of the PGF approximation of LN convolution model

Unlike NB distribution for which PGF approximation is exact, LN distribution is a continuous
distribution and thus PGF is not exact. Therefore, we evaluated the accuracy of PGF approximation
for LN, taking an alternative approximation method, Fenton-Wilkinson (FW) approximation[2],
for a comparison. FW approximates gy = gyij (y) by a log-normal density, thanks to which FW
is free of numerical integration and thus computationally very efficient. As a reference, we also
implemented Monte-Carlo (MC) evaluation of (2), which is computationally intense (M = 106

sampling) but accurate. Afterwards, the likelihood of PGF and FW approximation were evaluated
based on the a simulation data with three cell types (T = 3) using the following steps:

• Means and standard deviations of 3 cell types are sampled from the uniform distribution:
µt ∼ U [0, 3], σt ∼ U [0.5, 2].

• Simulation bulk gene expression data is sampled as follows: Y = Z1 + Z2 + Z3, where
Zt ∼ LN(µt, (σt)2).

• Evaluate the likelihood for 3 realizations of Y = y: y = µY /2, µY , and 2µY , where µY is the
expectation of Y : µY = exp(µ1 + (σ1)2/2) + exp(µ2 + (σ2)2/2) + exp(µ3 + (σ3)2/2).

The approximated likelihoods by PGF and FW are compared to the reference likelihood
calculated by MC, in which we found a superior concordance of PGF with MC (see Supplementary
Figure S3).
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Supplmenetary Note 2: Detailed derivation of BLADE

In this section, we will provide a detailed derivation of Bayesian-lognormal deconvolution with a
collapsed variational inference.

2.1 Notation

We assume there are expression levels of J genes obtaind from I samples. The bulk gene expression
data is contributed by T cell types. We will define the following variables:

• yij : log-transformed bulk expression levels of gene j for sample i.

• xtij : log-transformed expression level of gene j in cell type t in sample i.

• f ti : Fraction of cell type t in sample i. (where
∑
t f

t
i = 1 and f ti ≥ 0),

where yij is observed variable, while xtij and f ti are hidden variables. Then, we will assume the
following deconvolution problem.

yij = log

(∑
t

f ti exp(xtij)

)
+ ε (8)

Note that we assume yij and xtij to be log-transformed data for the convenience to use Gaussian
distribution instead of the log-normal distribution. In the linear scale, exp(yij) and exp(xtij), these
variables follows log-normal distribution and actual deconvolution is done on linear-scale.

2.2 Probabilistic assumptions

For the three random variables, we assume the following underlining probability distributions.

P (xtij |µtj , λtj) = N

(
xtij |µtj ,

1

λtj

)
(9)

P (f1i , ..., f
T
i |α1

i , ..., α
T
i ) = D

(
f1i , ..., f

T
i |α1

i , ..., α
T
i

)
(10)

P (yij |xtij , f1i , ..., fTi , λij) = N

(
yij | log

(∑
t

exp(xtij)f
t
i

)
,

1

λij

)
(11)

Note that λ in N (x|µ, 1
λ ) is a precision, inverse of which is the variance. To incorporate the

prior knowledge of gene expression profiles per cell type, we take a Bayesian framework for the xtij ,
endowing conjugate prior distribution for the parameters, µtj and λtj , as the follows:

P (µtj , λ
t
j |µt0j , κt0j , αt0j , βt0j) = N

(
µtj |µt0j ,

1

κt0jλ
t
j

)
G(λtj |αt0j , βt0j) (12)

The hyperparameters are chosen based on the observed expression levels and standard deviation
of each gene and each cell type, derived from the single-cell RNA-seq data (see Online Methods).

2.3 Optimization - collapsed variational inference

We take a collapsed variational inference for the optimization of the model [3]. Denote the hidden
variables in our model by Z, and the observed one as Y . The standard approach is to maximize
the evidence lower-bound (ELBO):

logP (Y ) ≥
∫
Q(Z) log

(
P (Y,Z|θ)
Q(Z)

)
dZ (13)
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where Q(Z) is the variational distribution which approximates the intractable posterior probability
of hidden variables given observed variables (i.e., P (Z|Y )). Then maximization of 13 w.r.t. the
variational parameters of Q(Z) is equivalent to minimization of the Kullback-Leibler divergence
between P (Z|Y ) and Q(Z) [4], which should render Q(Z) to be an accurate approximation of
P (Z|Y ). Before discussion the specific variational distributions for X (all latent gene expressions)
and F (all latent cell type fractions), a subset of hidden variables are integrated out in advance to
reduce the complexity.

2.3.1 Collapsing conjugate priors

We first integrate out the variables with conjugate prior distribution (i.e., collapsing the variables).
This allows us to account for the entire distribution of the variables in a fully Bayesian manner,
instead of finding maximum a posteriori solution. In our model, µtj and λtj endowed with a
conjugate prior, which can be integrated out as follows:

∏
∀i

P (xtij |µt0j , κt0j , αt0j , βt0j) =

∫ ∏
∀i

P (xtij |µtj , λtj)P (µtj , λ
t
j |µt0j , κt0j , αt0j , βt0j)dµtjdλtj

=
Γ(αtnj)β

t
0j
αt

0j

Γ(αt0j)β
t
nj
αt

nj

(
κt0j
κtnj

) 1
2

(2π)−1/2 (14)

where

• αtnj = αt0j + I
2

• κtnj = κt0j + I

• βtnj = βt0j + 1
2

∑I
i=1(xtij − x̂tj)2 +

κt
0jI(x̂

t
j−µ

t
0j)

2

2(κt
0j+I)

• x̂tj = 1
I

∑I
i=1 x

t
ij

By replacing P (xtij |µtj , λtj)P (µtj , λ
t
j |µt0j , κt0j , αt0j , βt0j) with the marginal distribution P (xtij |µt0j , κt0j , αt0j , βt0j),

we eliminate the parameters µtj and λtj from the model.

2.3.2 Variational distribution

After collapsing µtj and λtj , we assume the following variational distributions for the remaining
hidden variables:

Q(xtij |νtij , ωtj) = N (xtij |νtij , ωtj) (15)

Q(f1i , ..., f
T
i |β1

i , ..., β
T
i ) = D

(
f1i , ..., f

T
i |β1

i , ..., β
T
i

)
(16)

νtij , ω
t
j and βti (∀t = 1, . . . , T ; ∀i = 1, . . . , I; ∀j = 1, . . . , J) are the variational parameters to

be optimized in our model.

2.4 Optimization of variational parameters: Evidence lower-bound (ELBO)

Given the variational distribution Q(·), the ELBO 13 is optimized with respect to the variational
parameters. To achieve this, we take a line-search approach using Limited-memory Broyden-
Fletcher-Goldfarb-Shannon (L-BFGS) algorithm. For efficient optimization, both the objective
function and gradients of the parameters to be optimized are analytically calculated.

The ELBO 13 can be analytically calculated as follows:
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∫
Q(X,F ) log

(
P (Y,X, F |θ)
Q(X,F )

)
dZ =

∫
Q(X)Q(F ) log

(
P (Y |X,F )P (X)P (F )

Q(X)Q(F )

)
dZ

= EQ[log(P (X|µ0, κ0, α0, β0))]︸ ︷︷ ︸
1

+EQ[log(P (Y |X,F, σ)]︸ ︷︷ ︸
2

+EQ[log(P (F |α))]︸ ︷︷ ︸
3

− EQ[log(Q(X|ν, ω))]︸ ︷︷ ︸
4

−EQ[log(Q(F |β))]︸ ︷︷ ︸
5

(17)

See appendix for the calculation of the five components in (17) and its derivaties with respect
to the variational parameters.

2.5 Empirical Bayes approach for selection of hyperparameters

BLADE has the following hyperparameters, among which a subset is determined automatically.

• f ti : P (f1i , . . . , f
T
i |α1

i , . . . , α
T
i )

– αti: Parameters for Dirichlet distribution (αti ≥ 0).

• xtij : P (xtij |µt0j , κt0j , αt0j , βt0j)

– µt0j : Expected expression level of gene j in cell type t in log-scale (i.e., E[xtj ]). This is
estimated using scRNA-seq data.

– κt0j : A scaling factgor for precision of µtj .

– αt0j : A shape parameter for Gamma distribution.

– βt0j : A rate paramter, which we set βt0j = αt0jV[xtj ], where V[xtj ] is the sample variance
of gene j in cell type t measured in scRNA-seq data. This is based on the fact that
the precision of gene j (i.e., inverse of variance; λtj = 1

V[xt
j ]

) follows G(αt0j , β
t
0j) and its

expectation is
αt

0j

βt
0j

(i.e., 1
V[xt

j ]
=

αt
0j

βt
0j

). This allows us to incorporate gene expression

variability observed in scRNA-seq data.

• yij : P
(
yij | log

(∑
t f

t
i exp(xtij)

)
, 1
τj

)
– τj : Precision per gene. We chose τj = 1

sV[yj ] , where s is the user-defined scaling facor

and V[yj ] is observed variance (i.e., inverse of precision) for gene j.

Among the hyperparameters, αti, κ
t
0j , α

t
0j , and s is chosen by the users. To systematically

identify the optimial parameters, we employed an Empirical Bayes approach to select the best set of
parameters. For each configuration of parameters, we obtained maximum likelihood estimates using
only a subset of samples. We only used a subset of samples, not only to gain computational efficiency
but also to avoid overfitting. Then, the hyper-parameter configuration with the highest likelihood,
maximized w.r.t. the model parameters, is selected, followed by performing deconvolution using
the entire data set. Throughout the manuscript, we considered a total of 90 different parameter
configurations that cover all possible combinations of: αti ∈ {1, 10}, αt0j ∈ {0.1, 0.5, 1, 5, 10},
κt0j ∈ {1, 0.5, 0.1}, and s ∈ {1, 0.3, 0.5}.
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Appendix

A.1 Derivation of the ELBO function

Each of the five components in (17) can be analytically calculated as below:

1 : EQ[log(P (X|µ0, κ0, α0, β0))]

= −
∑
∀j,t

αtnjEQ

[
log

(
βt0j +

1

2

I∑
i=1

(xtij − x̂tj)
2 +

κt0jI(x̂tj − µt0j)2

2(κt0j + I)

)]
+ const

≥ −
∑
∀j,t

αtnj log

(
βt0j +

(I − 1)

2
(ωtj)

2 +
1

2

I∑
i=1

(
νtij − ν̂tj

)2
+

κt0jI

2(κt0j + I)

(
1

I
(ωtj)

2 + (ν̂tj − µ
t
0j)

2

))
+const

(18)

where

ν̂tj =
1

I

∑
i

νtij (19)

The inequality is introduced by Jensen’s inequality, by making use of the convex property of
the function f(x) = − log(x).

2 : EQ[log(P (Y |X,F, σ)] =
∑
∀(i,j)

− 1

2σ2
ij

VQ[log(
∑
t

exp(xtij)f
t
i )]︸ ︷︷ ︸

a

+EQ[yij − log(
∑
t

exp(xtij)f
t
i )]

2

︸ ︷︷ ︸
b


 ,

(20)

a : VQ[log(
∑
t

exp(xtij)f
t
i )]

≈

(
1

EQ[
∑
t exp(xtij)f

t
i ]

)2

VQ

[∑
t

exp(xtij)f
t
i

]
=

VQ
[∑

t exp(xtij)f
t
i

]
EQ[

∑
t exp(xtij)f

t
i ]

2
, (21)

b : EQ[yij − log(
∑
t

exp(xtij)f
t
i )]

2

≈

((
yij − log(EQ[

∑
t

exp(xtij)f
t
i )])

)
−

VQ[
∑
t exp(xtij)f

t
i )]

2EQ[
∑
t exp(xtij)f

t
i )]

2

)2

(22)

which is based on the laplace apporixmation: f(x) ≈ f(x0)− 1
2 |f
′′(x0)|(x−x0)2. The expectation

and variance terms can be calculated as below:

EQ

[∑
t

exp(xtij)f
t
i

]
=
∑
t

exp

(
νtij +

(ωtj)
2

2

)
βti∑
k β

k
i

(23)
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VQ

[∑
t

exp(xtij)f
t
i

]
=
∑
t

VQ[exp(xtij)f
t
i ] +

∑
∀(l,k)l 6=k

EQ[exp(xlij) exp(xkij)]CQ[f li , f
k
i ]

=
∑
t

(
exp

(
2νtij + 2(ωtj)

2
)( β̃ti (1− β̃ti )

βi0 + 1
+ β̃ti

2

)
− exp

(
2νtij + (ωtj)

2
)
β̃ti

2

)

+
∑

∀(l,k)l 6=k

exp

(
νkij + νlij +

(ωkj )2 + (ωlj)
2

2

)
−β̃ki β̃li
βi0 + 1

(24)

3 : EQ[log(P (F |α))] =
∑
i

(
− log

(∏
t Γ(αti)

Γ(
∑
t α

t
i)

)
+
∑
t

(αti − 1)

(
φ(βti )− φ(

∑
t

βti )

))
(25)

4 : EQ[log(Q(X|ν, ω))] = −1

2

∑
∀(i,j,t)

(
log(2π(ωtj)

2)− 1
)

(26)

5 : EQ[log(Q(F |β))] =
∑
i

(
− logB(βi) + (βti − 1)

(
φ(βti )− φ(

∑
t

βti )

))
(27)

A.2 Gradient of νtij

The gradient of νtij is calculated for each of the 5 components in 17.

∂

∂νtij
1

=
∂

∂νtij

−∑
∀j,t

αtnj log

(
βt0j +

I(I + 3)

2
(ωtj)

2 +
1

2

I∑
i=1

(
νtij − ν̂tj

)2
+

κt0jI

2(κt0j + I)

(
1

I
(ωtj)

2 + (ν̂tj − µ
t
0j)

2

))
= −αtnj

νtij − ν̂tj − 1
T

∑
k(νtkj − ν̂tj) +

κt
0j

(κt
0j+I)

(
ν̂tj − µt0j

)
(
βt0j + (I−1)

2 (ωtj)
2 + 1

2

∑I
i=1

(
νtij − ν̂tj

)2
+

κt
0jI

2(κt
0j+I)

(
1
I (ωtj)

2 + (ν̂tj − µt0j)2
)) (28)

∂

∂νtij
2 =

− 1

2σ2
ij

(
∂

∂νtij

VQ
[∑

t exp(xtij)f
t
i

]
EQ[

∑
t exp(xtij)f

t
i ]

2︸ ︷︷ ︸
a

+
∂

∂νtij

((
yij − log(EQ[

∑
t

exp(xtij)f
t
i )])

)
−

VQ[
∑
t exp(xtij)f

t
i )]

2EQ[
∑
t exp(xtij)f

t
i )]

2

)2

︸ ︷︷ ︸
b

)

(29)

a :
∂

∂νtij

VQ
[∑

t exp(xtij)f
t
i

]
EQ[

∑
t exp(xtij)f

t
i ]

2
=
∂(VQ[·])EQ[·]− 2∂(EQ[·])VQ[·]

EQ[·]3
(30)
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b :
∂

∂νtij

((
yij − log(EQ[

∑
t

exp(xtij)f
t
i )])

)
−

VQ[
∑
t exp(xtij)f

t
i )]

2EQ[
∑
t exp(xtij)f

t
i )]

2

)2

= −
(

(yij − log(EQ[·]))− VQ[·]
2EQ[·]2

)2
∂(EQ[·])
EQ[·]

+ ∂

(
VQ[·]
EQ[·]2

)
︸ ︷︷ ︸

a

 (31)

∂(EQ[·]) =
∂

∂νtij

(∑
t

exp

(
νtij +

(ωtj)
2

2

)
βti∑
k β

k
i

)
= exp

(
νtij +

(ωtj)
2

2

)
βti∑
k β

k
i

(32)

∂(VQ[·]) =
∂

∂νtij

(∑
t

(
exp

(
2νtij + 2(ωtj)

2
)( β̃ti (1− β̃ti )

βi0 + 1
+ β̃ti

2

)
− exp

(
2νtij + (ωtj)

2
)
β̃ti

2

)

+
∑

∀(l,k)l 6=k

exp

(
νkij + νlij +

(ωkj )2 + (ωlj)
2

2

)
−β̃ki β̃li
βi0 + 1

)

= 2 exp
(
2νtij + 2(ωtj)

2
)( β̃ti (1− β̃ti )

βi0 + 1
+ β̃ti

2

)
− 2 exp

(
2νtij + (ωtj)

2
)
β̃ti

2

+
∑
k 6=t

exp

(
νtij + νkij +

(ωtj)
2 + (ωlk)2

2

)
−β̃ti β̃ki
βi0 + 1

(33)

The other components in 17 does not involve νtij , therefore

∂

∂νtij
3 =

∂

∂νtij
4 =

∂

∂νtij
5 = 0. (34)

A.3 Gradient of ωt
j

∂

∂ωtj
1 =

∂

∂ωtj

−∑
∀j,t

αtnj log

(
βt0j +

I(I + 3)

2
(ωtj)

2 +
1

2

I∑
i=1

(
νtij − ν̂tj

)2
+

κt0jI

2(κt0j + I)

(
1

I
(ωtj)

2 + (ν̂tj − µ
t
0j)

2

))
= −αtnj

(I − 1)ωtj +
κt
0j

(κt
0j+I)

ωtj(
βt0j + (I−1)

2 (ωtj)
2 + 1

2

∑I
i=1

(
νtij − ν̂tj

)2
+

κt
0jI

2(κt
0j+I)

(
1
I (ωtj)

2 + (ν̂tj − µt0j)2
)) (35)

∂

∂ωtj
2 = −

∑
∀i

1

2σ2
ij

(
∂

∂ωtj

VQ
[∑

t exp(xtij)f
t
i

]
EQ[

∑
t exp(xtij)f

t
i ]

2︸ ︷︷ ︸
a

+

∂

∂ωtj

((
yij − log(EQ[

∑
t

exp(xtij)f
t
i )])

)
−

VQ[
∑
t exp(xtij)f

t
i )]

2EQ[
∑
t exp(xtij)f

t
i )]

2

)2

︸ ︷︷ ︸
b

)
(36)
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a :
∂

∂ωtj

VQ
[∑

t exp(xtij)f
t
i

]
EQ[

∑
t exp(xtij)f

t
i ]

2
=
∂(VQ[·])EQ[·]− 2∂(EQ[·])VQ[·]

EQ[·]3
(37)

b :
∂

∂ωtj

((
yij − log(EQ[

∑
t

exp(xtij)f
t
i )])

)
−

VQ[
∑
t exp(xtij)f

t
i )]

2EQ[
∑
t exp(xtij)f

t
i )]

2

)2

= −
(

(yij − log(EQ[·]))− VQ[·]
2EQ[·]2

)2
∂(EQ[·])
EQ[·]

+ ∂

(
VQ[·]
EQ[·]2

)
︸ ︷︷ ︸

a

 (38)

∂(EQ[·]) =
∂

∂ωtj

(∑
t

exp

(
νtij +

(ωtj)
2

2

)
βti∑
k β

k
i

)
= exp

(
νtij +

(ωtj)
2

2

)
βti∑
k β

k
i

ωtj (39)

∂(VQ[·]) =
∂

∂ωtj

(∑
t

(
exp

(
2νtij + 2(ωtj)

2
)( β̃ti (1− β̃ti )

βi0 + 1
+ β̃ti

2

)
− exp

(
2νtij + (ωtj)

2
)
β̃ti

2

)

+
∑

∀(l,k)l 6=k

exp

(
νkij + νlij +

(ωkj )2 + (ωlj)
2

2

)
−β̃ki β̃li
βi0 + 1

)

= 4ωtj exp
(
2νtij + 2(ωtj)

2
)( β̃ti (1− β̃ti )

βi0 + 1
+ β̃ti

2

)
− 2ωtj exp

(
2νtij + (ωtj)

2
)
β̃ti

2

+
∑
k 6=t

exp

(
νtij + νkij +

(ωtj)
2 + (ωlk)2

2

)
−β̃ti β̃ki
βi0 + 1

ωtj (40)

∂

∂ωtj
4 =

∂

∂ωtj

−1

2

∑
∀(i,j,t)

(
log(2π(ωtj)

2) + 1
) = − I

ωtj
(41)

The other components in 17 does not involve ωtj , therefore

∂

∂ωtj
3 =

∂

∂ωtj
5 = 0. (42)

A.4 Gradient of βt
i

∂

∂βti
2 =

− 1

2σ2
ij

(
∂

∂βti

VQ
[∑

t exp(xtj)f
t
i

]
EQ[

∑
t exp(xtj)f

t
i ]

2︸ ︷︷ ︸
a

+
∂

∂βti

((
yij − log(EQ[

∑
t

exp(xtj)f
t
i )])

)
−

VQ[
∑
t exp(xtj)f

t
i )]

2EQ[
∑
t exp(xtj)f

t
i )]

2

)2

︸ ︷︷ ︸
b

)

(43)

a :
∂

∂βti

VQ
[∑

t exp(xtj)f
t
i

]
EQ[

∑
t exp(xtj)f

t
i ]

2
=
∂(VQ[·])EQ[·]− 2∂(EQ[·])VQ[·]

EQ[·]3
(44)
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b :
∂

∂βti

((
yij − log(EQ[

∑
t

exp(xtj)f
t
i )])

)
−

VQ[
∑
t exp(xtj)f

t
i )]

2EQ[
∑
t exp(xtj)f

t
i )]

2

)2

= −
(

(yij − log(EQ[·]))− VQ[·]
2EQ[·]2

)2
∂(EQ[·])
EQ[·]

+ ∂

(
VQ[·]
EQ[·]2

)
︸ ︷︷ ︸

a

 (45)

∂(EQ[·]) =
∂

∂βti

(∑
t

exp

(
νtj +

(ωtj)
2

2

)
βti∑
k β

k
i

)

= exp

(
νtj +

(ωtj)
2

2

)
1∑
k β

k
i

−
∑
l

exp

(
νlj +

(ωlj)
2

2

)
βlj

(
∑
k β

k
i )2

(46)

∂(VQ[·]) =
∂

∂βti

(∑
t

(
exp

(
2νtj + 2(ωtj)

2
)( β̃ti (1− β̃ti )

βi0 + 1
+ β̃ti

2

)
− exp

(
2νtj + (ωtj)

2
)
β̃ti

2

)

+
∑

∀(l,k)l 6=k

exp

(
νkj + νlj +

(ωkj )2 + (ωlj)
2

2

)
−β̃ki β̃li
βi0 + 1

)

= exp
(
2νtj + 2(ωtj)

2
)( (βi0(βi0 + 1))(βi0 − 2βti )

(βi0)3(βi0 + 1)2
+ 2

(
βtiβi0
β3
i0

))
− exp

(
2νtj + (ωtj)

2
)

2

(
βtiβi0
β3
i0

)
+
∑
k

(
exp

(
2νkj + 2(ωkj )2

)(βi0(βi0 + 1)βki − (3βi0 + 2)βki (βi0 − βki )

(βi0)3(βi0 + 1)2
− 2

(
(βki )2

β3
i0

))

+ exp
(
2νkj + (ωkj )2

)
2

(
(βki )2

β3
i0

))

+
∑

∀(l,k)l 6=k

exp

(
νkj + νlj +

(ωkj )2 + (ωlj)
2

2

)
βki β

l
i(3βi0 + 2)

(βi0)3(βi0 + 1)2

−
∑
∀(k)k 6=t

exp

(
νtj + νkj +

(ωtj)
2 + (ωkj )2

2

)
βki βi0(βi0 + 1)

(βi0)3(βi0 + 1)2
(47)

∂

∂βti
3 =

∂

∂βti

(∑
i

(
− log

(∏
t Γ(αti)

Γ(
∑
t α

t
i)

)
+
∑
t

(αti − 1)

(
φ(βti )− φ(

∑
t

βti )

)))

= (αti − 1)φ′(βti )−
∑
k

(αki − 1)φ′

(∑
k

βki

)
(48)

∂

∂βti
5 =

∂

∂βti

(∑
i

(
− logB(βi) +

∑
t

(βti − 1)

(
φ(βti )− φ(

∑
t

βti )

)))
= (βti − 1)φ′(βti )−

∑
t

(βti − 1)φ′(
∑
t

βti ) (49)

The other components in 17 does not involve βti , therefore

∂

∂βti
1 =

∂

∂βti
4 = 0. (50)
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