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Methods 

While many studies carried out similar analyses of the ecological effects of community 
presence, we sought to expand these findings by carrying out additional analyses for three 
recent papers. We acquired the data [1–3], used dplyr [4] and tidyr [5] for cleaning and 
manipulation, and used ggplot2 for plotting [6]. We then carried out standard frequentist 
statistical analyses, as well as evaluating the utility of alternative comparisons in a Bayesian 
framework. 

For the frequentist analyses, we were fundamentally interested in how community context 
alters the density of focal bacterial and phage populations. Specifically, we carried out a linear 
model in R using lm for each study [7]. In each linear model, the response of log-transformed 
density data was assessed for each focal host genotype-community presence-phage presence 
combination. When time series data were available, the fit involved both an intercept and a 
slope term for all density data after T0. All data and analyses are available at 
https://github.com/mikeblazanin/phage-community-review 

For the alternative comparisons (Box 1), we were interested in how changes in density 
following the addition of other community members compared to predictions for how density 
might have changed. To assess this idea, we fit Bayesian models to log-transformed density 
data as the response variable. Such models assumed that all data points from each focal host 
genotype-community presence-phage presence combination arose from a Normal distribution 
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with a unique mean, but with equal variance across all treatments. The priors were chosen to 
be uninformative: the shared standard deviation was a uniform distribution between 0 and 100, 
and the means were a normal distribution with mean 0 and precision (τ) 0.001. Using the rjags 
interface [8] for JAGS [9], after 1,000 adaptation steps and 1,000 burn-in steps, 50,000 samples 
were collected using default settings. Then, the mean values for different treatments were 
contrasted in a paired manner (i.e., the first sampled mean of community absent vs the first 
sampled mean of community present, and so forth for each of the 50,000 samples). For the 
plain community-absent contrast no modification was done, but for the alternative prediction 
(of equal competition among bacterial species) the community-absent mean was divided by the 
number of species in co-culture then subtracted from the mean of co-culture.  When time-
series data were available, all density data after T0 were used and an intercept and slope were 
fitted, both with priors of a normal distribution with mean 0 and precision (τ) 0.001. Reported 
in Box 1 and Tables S2 and S3 are contrasts between intercept values. All data and analyses are 
available at https://github.com/mikeblazanin/phage-community-review 

Figures 

 

Figure S1. Density dynamics of wastewater community, related to Table 1 and Box 1. Data 
taken from [1]. Community treatments along the top denote which species were included in 
treatment (K is Klebsiella, P is Pseudomonas, and S is Staphylococcus). Presence versus absence 
of the Klebsiella-specific phage in treatments is indicated on the right-hand side. Small filled 
circles denote the density of individual populations, while large filled circles and lines denote 
mean densities (in log-space).  
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Figure S2. Density dynamics of model three-species wound community, related to Table 1 and 
Box 1. Data taken from [2], where the focal host genotype of P. aeruginosa was either wildtype 
PAO1 or a quorum sensing-deficient mutant lasR. Community treatments differed by inclusion 
of bacterial species (Pa is P. aeruginosa, Sa is S. aureus, Sm is S. maltophilia), and by 
presence/absence of P. aeruginosa-specific phage PT7. Small filled circles denote the density of 
individual populations, while large filled circles and lines denote mean densities (in log-space). 
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Figure S3. Density dynamics of model four-species wound community, related to Table 1 and 
Box 1. Data taken from [3], where treatments containing P. aeruginosa (PA) and a PA-specific 
phage were manipulated for community presence of other species (AB is A. baumannii, BC is 
Burkholderia cenocepacia, and SA is S. aureus), and a de novo surface mutant of PA. Small filled 
circles denote the density of individual populations, while large filled circles and lines denote 
mean densities (in log-space). 
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Figure S4. Citation network of papers reviewed in this article reveals minimal connectedness. 
Directed graph shows how the nine papers reviewed in this article cite each other, with arrows 
emanating from citing articles to cited articles. 
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Tables 

Table S1. Non-exhaustive list of papers related to multispecies bacteria-phage communities 
but not reviewed here. These papers were assessed for inclusion in this review but excluded as 
outside our scope and instead falling into the categories listed. This is not an exhaustive listing 
of all published papers falling into each category. Note that some papers fall into multiple 
categories. 

Category References 
Communities with microbial eukaryotes, bacteria, and phages [10–17] 

Related review(s): [18, 19] 
Communities with one phage, one phage-host bacterial species, and one non-
phage-host bacterial species 

[15, 20–24] 
 

Related review(s): [25] 
Communities with two phages and two bacterial species [13, 20, 26–31] 
Communities with one bacterial host and multiple phages cocultured [27, 32, 33] 
Communities with one bacterial host cocultured with multiple phages singly or in 
combinations 

[13, 34–40] 

Communities with one phage and two bacterial hosts [41, 42] 
Related review(s): [25] 

Bacteria-phage communities with non-microbial eukaryotes [43] 
Related review(s): [44] 

Addition of a defined phage or phage mixture to a complex microbial community [45–49] 
Addition or depletion of an undefined phage mixture to/from a complex microbial 
community 

[50–58] 

Communities where bacterial community context is manipulated to observed 
effects on focal bacterial evolution 

[59–68] 

Related review(s): [69–71] 
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Table S2. Analysis of alternative ecological hypotheses for bacterial density, related to Box 1. 
A Markov chain Monte Carlo approach was used to generate posterior likelihood distributions 
for the density of the focal bacterial population in each treatment. The density of the focal 
bacterial population in co-culture with other competitors was then contrasted with: the density 
in the community-absent treatment, and the predicted co-culture density (by dividing 
community-absent density by the total number of bacterial species). Shown are the likelihoods 
that co-culture density is less than community-absent density or the predicted density. Bolded 
values are those with >90% likelihood for an effect in either direction. For [1], P is 
Pseudomonas, and S is Staphylococcus; for [2], Sa is S. aureus, Sm is S. maltophilia. 

Reference Host 
Genotype 

Phage 
Presence 

Competitor L(comm-present < 
comm-absent) 

L(comm-present < 
prediction) 

[1]  - P+S 0.97 0.94 
 + P+S 0.83 0.67 

[2] PAO1 - Sa 0.94 0.89 
PAO1 - Sm 1.00 0.99 

 PAO1 - Sa+Sm 0.99 0.97 
 PAO1 + Sa 1.00 1.00 
 PAO1 + Sm 1.00 1.00 
 PAO1 + Sa+Sm 1.00 0.98 
 lasR - Sa 0.76 0.64 
 lasR - Sm 0.91 0.84 
 lasR - Sa+Sm 0.82 0.64 
 lasR + Sa 0.97 0.94 
 lasR + Sm 0.58 0.44 
 lasR + Sa+Sm 0.74 0.54 
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Table S3. Analysis of alternative ecological hypotheses for phage density, related to Box 1. A 
Markov chain Monte Carlo approach was used to generate posterior likelihood distributions for 
the density of the focal phage population in each treatment. The density of the focal phage 
population in co-culture with the focal host and other bacterial species was then contrasted 
with: the density in the community-absent treatment, and the predicted co-culture density (by 
dividing community-absent density by the total number of bacterial species). Shown are the 
likelihoods that co-culture density is less than community-absent density or the predicted 
density. Bolded values are those with >90% likelihood for an effect in either direction. For [3], 
AB is A. baumannii, BC is Burkholderia cenocepacia, and SA is S. aureus; for [1], P is 
Pseudomonas, and S is Staphylococcus; for [2], Sa is S. aureus, Sm is S. maltophilia. 

Reference Host 
Genotype 

Phage 
Presence 

Competitor L(comm-present < 
comm-absent) 

L(comm-present 
< prediction) 

[3]  + AB 0.67 0.46 
 + BC 0.22 0.09 

  + SA 0.59 0.36 
  + AB+BC+SA 0.77 0.35 
[1]  + P+S 0.01 <0.01 
[2] PAO1 + Sa 0.97 0.94 

PAO1 + Sm 0.47 0.32 
PAO1 + Sa+Sm 0.48 0.26 

 lasR + Sa 0.35 0.22 
 lasR + Sm 0.68 0.53 
 lasR + Sa+Sm 0.88 0.72 
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