
E
Z

H
2 

m
R

N
A

F
o

ld
C

h
an

g
e

Glucose(24h)

LoVoRKO

Glucose(0mM)

E
Z

H
2 

m
R

N
A

 
F

o
ld

C
h

an
g

e

LoVoRKO

A B

C

HCT116 SW480 RKO
0.0

0.5

1.0

1.5

2.0

EED

F
o

ld
 c

h
an

g
e 0X

0.2X

0.5X

0.8X

1X

2X

HCT116 SW480 RKO
0.0

0.5

1.0

1.5

SUZ12

F
o

ld
 c

h
an

g
e 0X

0.2X

0.5X

0.8X

1X

2X

D E

Supplementary Figure. 1 The effects of glucose deprivation on the expression of 
PRC2 complex genes.

A. Table illustrating sgRNA targeting PRC2 complex genes enriched in group R (Resistance) and S (Sensitive). 

B-C. RT-qPCR of EED (B) or SUZ12 (C) levels in HCT116, SW480, and RKO cells treated with different doses of 

glucose as indicated. D-E. RT-qPCR of EZH2 levels in RKO and LoVo cells under glucose deprivation for 

indicated time (D) or treated with indicated doses of glucose for 24 h (E). 1×glucose, 25 mM.
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A. Images (left) and immunoblotting for EZH2 expression (right) in RKO EV and EZH2OE cells under glucose 

deprivation for 16 h. B. Immunoblotting for EZH2 and GLS expression in RKO NC and shEZH2 cells under 

glucose deprivation for indicated time. Actin is used as a loading control. C. qPCR of GLS levels in HCT116 and 

SW480 cells treated with or without 5 μM GSK126. D. qPCR of GLS levels in HCT116 pretreated with or without 5 

μM GSK126, followed by glucose deprivation. E. Schematic representation the binding of EZH2 on the GLS gene 

locus in HCT116 cells with the ENCODE project.

Supplementary Figure. 2 EZH2 deletion promotes GLS expression and inhibits 
glucose-induced downregulation of GLS in HCT116 cells, but not in RKO cells. 
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E. Kaplan–Meier plots of colorectal cancer patients stratified by EZH2 expression. F. Boxplot of EZH2 expression 

levels in healthy controls (grey) and colorectal cancer patients (Red), TCGA. G-H. Colony formation of HCT116 or 

RKO NC and shEZH2 cells (g) or HCT116 or RKO cells treated with or without 4 μM GSK126 (h).
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Supplementary Figure. 3 EZH2 promotes tumorigenesis in the colon. 
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D-E. FACS analysis of glucose uptake in HCT116 (d) or RKO (e) NC and shEZH2 cells treated with 2-NBDG for 6 
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Supplementary Figure. 4  The effects of EZH2 knockdown on the expression of 
glycolysis related genes and glucose uptake
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Supplementary Figure. 5 EZH2 regulation of glucose vulnerability is not mediated 
through Hippo-Yap pathway. 
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Supplementary Figure. 6  EZH2 inhibitor and mTOR inhibitor synergistically inhibit 
CRC cell growth. 
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Supplementary Figure. 7  The working model depicting how EZH2 regulates GLS-
GSH and glucose-deprivation-induced cell death.

EZH2 deficiency causes high GLS expression, thereby facilitating GSH synthesis and attenuating glucose-

deprivation-induced ROS accumulation and cell death.
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