Supplementary Figure. 1 The effects of glucose deprivation on the expression of PRC2 complex genes.

Group Group sgRNA Target R/S S R S_1244 EZH2 1.849057 159 294 S_1245 EZH2 4170 6530 1 565947 S_1242 EZH2 722 1243 1.721607 S_1243 EZH2 127 257 2.023622 S_1311 SUZ12 12130 18370 1.514427 S_1313 SUZ12 6087 8500 1.396419 SUZ12 S_1310 573 758 1.322862 S_1312 SUZ12 3437 2554 0.74309 S_2379 EED 14387 13406 0.931813 S 2380 EED 436 306 0.701835 S_2381 EED 834 576 0.690647 S_1226 PHF19 755 1409 1.866225 S_1225 PHF19 1550 2111 1.361935 S_1227 PHF19 2232 2024 0.90681 S_1228 PHF19 9114 6288 0.689928

Α

A. Table illustrating sgRNA targeting PRC2 complex genes enriched in group R (Resistance) and S (Sensitive).
B-C. RT-qPCR of EED (B) or SUZ12 (C) levels in HCT116, SW480, and RKO cells treated with different doses of glucose as indicated. D-E. RT-qPCR of EZH2 levels in RKO and LoVo cells under glucose deprivation for indicated time (D) or treated with indicated doses of glucose for 24 h (E). 1×glucose, 25 mM.

Supplementary Figure. 2 EZH2 deletion promotes GLS expression and inhibits glucose-induced downregulation of GLS in HCT116 cells, but not in RKO cells.

A. Images (left) and immunoblotting for EZH2 expression (right) in RKO EV and EZH2^{OE} cells under glucose deprivation for 16 h. **B.** Immunoblotting for EZH2 and GLS expression in RKO NC and shEZH2 cells under glucose deprivation for indicated time. Actin is used as a loading control. **C.** qPCR of GLS levels in HCT116 and SW480 cells treated with or without 5 μ M GSK126. **D.** qPCR of GLS levels in HCT116 pretreated with or without 5 μ M GSK126, followed by glucose deprivation. **E.** Schematic representation the binding of EZH2 on the *GLS* gene locus in HCT116 cells with the ENCODE project.

A. Tumor number and tumor load in intestine (left) and colon (right) from APC^{min/+}; EZH2^{F/F} and APC^{min/+}; Villin-Cre; EZH2^{F/F} mice that were 4 months old. **B.** Survival of APC^{min/+}EZH2^{F/F} (n=10) and APC^{min/+}; Villin-Cre; EZH2^{F/F} (n=10) mice. **C.** H&E staining of tumor counts in intestinal sections from AOM/DSS treated EZH2^{F/F} and Villin-Cre; EZH2^{F/F} mice . **D.** Images of tumor counts in the colons of APC^{min/+}; EZH2^{F/F} and APC^{min/+}; Villin-Cre; EZH2^{F/F} mice. **E.** Kaplan–Meier plots of colorectal cancer patients stratified by EZH2 expression. **F.** Boxplot of EZH2 expression levels in healthy controls (grey) and colorectal cancer patients (Red), TCGA. **G-H.** Colony formation of HCT116 or RKO NC and shEZH2 cells (g) or HCT116 or RKO cells treated with or without 4 μM GSK126 (h).

Supplementary Figure. 4 The effects of EZH2 knockdown on the expression of glycolysis related genes and glucose uptake

A. qPCR of glycolysis related genes and EZH2 levels in HCT116 (up) or RKO (down) NC and shEZH2 cells. **B-C.** RNA-Seq analysis of glycolysis related genes and EZH2 levels in HCT116 (b) or RKO (c) NC and shEZH2 cells. **D-E.** FACS analysis of glucose uptake in HCT116 (d) or RKO (e) NC and shEZH2 cells treated with 2-NBDG for 6 h. **F-G.** Images of glucose uptake using 2-NBDG for indicated time in RKO NC and shEZH2 cells (f) or HCT116 cells pretreated with or without 4 μM GSK126 (g).

Supplementary Figure. 5 EZH2 regulation of glucose vulnerability is not mediated through Hippo-Yap pathway.

A. Venn diagram showing the overlap between genes upregulated by EZH2 knockdown in HCT116 and RKO cells, and genes upregulated by EZH2 knockdown in SW480 sequencing dataset GSE118593. **B-C.** Immunoblotting for cleaved-PARP expression in HCT116 (b) or SW480 (c) cells seeded at the indicated density under glucose deprivation for 16 h. **D.** Immunoblotting for cleaved-PARP expression in HCT116 NC and shYap cells under glucose deprivation for 16 h. Actin is used as a loading control.

Supplementary Figure. 6 EZH2 inhibitor and mTOR inhibitor synergistically inhibit CRC cell growth.

A. Schematic diagram showing mTOR inhibitor rapamycin could inhibit GLS activity. **B.** Growth curves of HCT116 cells in presence of 2 μM GSK126 or/and 2 μM rapamycin. **C-D.** Colony formation of HCT116 (d) or SW480 (e) cells in presence of 2 μM GSK126 or/and 2 μM rapamycin. **E.** Synergistic treatment of EZH2 inhibitor and GLS inhibitor significantly reduce the colony formation of CRC cells in soft agar.

Supplementary Figure. 7 The working model depicting how EZH2 regulates GLS-GSH and glucose-deprivation-induced cell death.

EZH2 deficiency causes high GLS expression, thereby facilitating GSH synthesis and attenuating glucosedeprivation-induced ROS accumulation and cell death.

Figure 1A

Figure 2F

S	W480		HCT116 LoVo
EZH2		EZH2 Acin	
EZH2		EZH2	
		EZH2 Acin	

Figure 2C

Figure 2E

C-PARP
Actin
EZH2

Figure 2D

Figure 2F

C-PARP

Acin

H3K27me3

HCT116

C-PARP

Acin

H3K27me3

SW480

Figure 2H

Figure 3D

GLS

Actin

		Figure 3E
HCT116	SW480	
EZH2	GLS	HCT116
H3K27me3	Actin	H3K27me3
ure 3E sw480	H3K27me3	

Figure

GLS
Actin H3K27me3

Figure 3F

Figure 3J

Figure 3K

HCT116

H3K27me3

-

-

GLS Actin H3K27me3

SW480

Figure 4I

HCT116

Figure 6A

Figure 6C

HCT116

н	ICT116
C-PARP	the second se
EZH2	
GLS	10-10 areas
Actin	

Figure 6B

Figure 6D

Figure 7A

Supplymentary Figure 2B

Supplymentary Figure 5B

Supplymentary Figure 5C

C-DARD	 C-PARP
	 Actin
Actin	

Supplymentary Figure 5D

