
Supplementary Material 1

Let Y denote the binary outcome for a given patient, p = Pr(Y = 1) the outcome prevalence and n the total
number of subjects in the validation dataset. The linear predictor, i.e. the predicted log-odds, is denoted by
η. Let G0 denote the group of n0 subjects with Y = 0 (controls) and G1 the group of n1 subjects with Y = 1
(cases). In this supplement we provide proofs for the formulae for the variances of the estimated C-statistic,
the calibration slope and calibration in the large.

1 Proof of the formulae for the variance of the estimated C-statistic

Let η
(1)
i , i = 1, . . . , n0, and η

(0)
j , j = 1, . . . , n1 denote the linear predictor for the ith case and jth control,

respectively. Also, η(0) =
(
η
(0)
1 , ..., η(0)n0

)T
, η(1) =

(
η
(1)
1 , ..., η(1)n1

)T
and η =

(
η(0)T ,η(1)T

)T
.

The Mann-Whitney estimator of C, the probability that a randomly selected observation from the sam-
ple represented by G0 will be less than or equal to a randomly selected observation from the population
represented by G1, is:

Ĉ =
1

n0n1

n0∑
i

n1∑
j

I(η
(1)
i , η

(0)
j ) (1)

We de�ne for each case, i, and each control, j, the quantities

V10(η
(1)
i ) = V10,i =

1

n0

n0∑
j=1

I(η
(1)
i , η

(0)
j ) and

V01(η
(0)
j ) = V01,j =

1

n1

n1∑
i=1

I(η
(1)
i , η

(0)
j )

Therefore equation (1) can also be written as

n1∑
i=1

V10,i/n1 or

n0∑
j=1

V01,j/n0.

The DeLong's estimator for the variance of Ĉ is:

v̂ar(Ĉ) =
S10

n1
+
S01

n0
+

S11

n1n0
, (2)

where

S10 =
1

n1 − 1

∑
i

(
V10,i − Ĉ

)2
(3)

S01 =
1

n0 − 1

∑
j

(
V01,j − Ĉ

)2
(4)

S11 =
∑
i

∑
j

(
I(η

(1)
i , η

(0)
j )− Ĉ

)2
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As Delong (1988) and Cleve (2012) do, we subsequently omit the third term on the right-hand side of equation
(2) as it is negligible when n0 and n1 are large. We �rst obtain an expression for the variance of the C-statistic
that is based on the asymptotic variance based on DeLong's expression. Subsequently we aim to obtain a
closed-form expression for the variance of the estimated C-statistic that is free from patient-level information.
To achieve this we make the assumption that the distribution of the linear predictor is conditionally Normal
given the binary outcome.

Taking the expectation of (2) we have,

E(v̂ar(Ĉ)) =
E(S10)

n1
+
E(S01)

n0
(5)

Replacing n1 − 1 and n0 − 1 by n1 and n0 when they are relatively large, in (3) and (4), respectively

E(S10)

n1
=

1

n21
· E

∑
i

(∑
j I(η

(1)
i , η

(0)
j )

n0
− Ĉ

)2


=
1

n21
E

∑
i

(∑
j I(η

(1)
i , η

(0)
j )

n0

)2
− 2

C

n1
E

[∑
i

∑
j I(η

(1)
i , η

(0)
j )

n0n1

]
+
n1C

2

n21

=
1

n21
E

∑
i

(∑
j I(η

(1)
i , η

(0)
j )

n0

)2
− 2C2

n1
+
C2

n1

=
1

n21
E

∑
i

(∑
j I(η

(1)
i , η

(0)
j )

n0

)2
− C2

n1

Similarly,

E(S01)

n0
≈ 1

n20
E

∑
j

(∑
i I(η

(0)
j , η

(1)
i )

n1

)2
− C2

n0

(6)

Therefore, equation (5) becomes,
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E(v̂ar(Ĉ)) =
1

n21
· E

∑
i

(∑
j I(η

(1)
i , η

(0)
j )

n0

)2
+

1

n20
· E

∑
j

(∑
i I(η

(0)
j , η

(1)
i )

n1

)2
− C2

(
1

n0
+

1

n1

)
(7)

=
1

n21
·

E
(∑j I(η

(1)
1 , η

(0)
j )

n0

)2
+ . . .+ E

(∑j I(η
(1)
n1 , η

(0)
j )

n0

)2
+

1

n20
·

E
(∑i I(η

(0)
1 , η

(1)
i )

n1

)2
+ . . .+ E

(∑i I(η
(0)
n0 , η

(1)
i )

n1

)2
− C2

(
1

n0
+

1

n1

)
(8)

=
1

n21
·
(
E

[
Eη(0)

(
I(η

(1)
1 , η(0))

)2]
+ . . .+ E

[
Eη(0)

(
I(η(1)n1

, η(0))
)2])

+

1

n20
·
(
E

[
Eη(1)

(
I(η

(0)
1 , η(1))

)2]
+ . . .+ E

[
Eη(1)

(
I(η(0)n0

, η(1))
)2])

− C2

(
1

n0
+

1

n1

)
(9)

=
1

n21
·
(
E

[
P
(
η(0) < η

(1)
1

)2]
+ . . .+ E

[
P
(
η(0) < η(1)n1

)2])
+

1

n20
·
(
E

[
P
(
η(1) > η

(0)
1

)2]
+ . . .+ E

[
P
(
η(1) > η(0)n0

)2])
− C2

(
1

n0
+

1

n1

)
(10)

=
1

n21
·
(
Eη(0)

[
K2(η

(1)
1 )
]

+ . . .+ Eη(0)
[
K2(η(1)n1

)
])

+

1

n20
·
(
Eη(1)

[(
(1−G(η

(0)
1 )
)2]

+ . . .+ Eη(1)
[
(1−G(η(0)n0

))2
])
− C2

(
1

n0
+

1

n1

)
(11)

=
1

n1
Eη(1)

(
K2(η(1)

)
+

1

n0
Eη(0)

(
1−G(η(0))

)2
− C2

(
1

n0
+

1

n1

)
(12)

=
1

np
Eη(1)

(
K2(η(1)

)
+

1

n− np
Eη(0)

((
1−G(η(0)

)2)
− C2

(
1

n− np
+

1

np

)

E(v̂ar(Ĉ)) =
1

n
×

(1− p)Eη(1)
(
K2(η(1)

)
+ pEη(0)

(
1−G(η(0))

)2 − C2

p(1− p)
(13)

where G and K are the cumulative distribution functions of the linear predictor for the cases and controls,
respectively. So, G(η(0)) = P (η(1) < η(0)) and K(η(1)) = P (η(0) < η(1)). Then (13) is the asymptotic
variance of the C-statistic.

Given an arbitrary (marginal) distribution F of the linear predictor with density funciton f , the distribution
of the linear predictor for cases and controls, respectively, has been given by Gail and Pfei�er (2005):

G(x) =P (η(1) ≤ x) =

∫ x
−∞ π(η)f(η)dη∫∞
−∞ π(η)f(η)dη

(14)

K(x) =P (η(0) ≤ x) =

∫ x
−∞(1− π(η))f(η)dη∫∞
−∞(1− π(η))f(η)dη

. (15)
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These probability distributions can be obtained using numerical integration, after assuming a functional form
for the probability density function of η. Having obtained these probability distributions, the expectations
in (13) can also be computed using numerical integration.

In practice, risk models most often include a number of continuous and categorical predictors, and, unless
this number is very small or there are only binary predictors with extreme prevalences, the distribution of η
is likely to be approximately marginally Normal.

Assumption 1: Marginal normality of the linear predictor

η ∼ N(µ, σ2)

In applying equation (13) under the assumption of marginal normality, values for the parameters of µ and
σ2 need to be chosen to match the anticipated values of the outcome prevalence and C-statistic. To avoid
the use of simulation in choosing suitable values for µ and σ2, we obtain in the next subsection the following
expressions for µ and σ2

µ ≈σ
2
c

2
(2p− 1) + log

(
p

1− p

)
, (16)

and

σ2 ≈p2σ2
c + (1− p)2σ2

c . (17)

that correspond approximately to the required anticipated values of C and p. We also show that the ap-
proximation works very well for a wide range of values of C and p (within 1.5% of the required anticipated
values in all scenarios). More information for cross-checking that these values are adequate is given in the
Supplementary Material 3.

To obtain a simpler estimator of the variance of Ĉ that does not depend on patient-level data and involves
less computation, we alternatively assume that the linear predictor is Normally distributed conditionalal on Y.

Assumption 2: Conditional Normality of the linear predictor

η
(0)
j ∼ N(µ0, σ

2
0)

η
(1)
i ∼ N(µ1, σ

2
1)

Under Assumption 1, the assumption of conditional normality for the distribution of the linear predictor, a
simple expression in closed form can be conveniently obtained for the variance of the estimated C-statistic,
by substituting K and G in (13) by the cumulative probability function of the Normal distribution.

E(v̂ar(Ĉ) =
1

n
×

(1− p)Eη(1)
(

Φ
(
η(1)−µ0

σ0

)2)
+ pEη(0)

((
1− Φ

(
η(0)−µ1

σ1

))2)
− C2

p(1− p)
(18)
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where Φ is the standard Normal CDF. Eη(1)

[
Φ

(
η(1) − µ0

σ0

)2
]
can be evaluated by

Eη(1)

[
Φ

(
η(1) − µ0

σ0

)2
]

=

∫ ∞
−∞

Φ

(
η(1) − µ0

σ0

)2

φ(η(1))dη(1) = Φ

(
µ1 − µ0√
σ2
1 + σ2

0

)
− 2T

(
µ1 − µ0√
σ2
1 + σ2

0

,
1√
3

)
(19)

where T is Owen's T function. Similarly,

Eη(0)

[(
1− Φ

(
η(0) − µ1

σ1

))2
]

= 1− Φ

(
µ0 − µ1√
σ2
1 + σ2

0

)
− 2T

(
µ0 − µ1√
σ2
1 + σ2

0

,
1√
3

)
(20)

Substituting equation (19) and (20) into equation (18) we obtain

E(v̂ar(Ĉ)) =
1

np

(
Φ

(
µ1 − µ0√
σ2
1 + σ2

0

)
− 2T

(
µ1 − µ0√
σ2
1 + σ2

0

,
1√
3

))

+
1

n(1− p)

(
1− Φ

(
µ0 − µ1√
σ2
1 + σ2

0

)
− 2T

(
µ0 − µ1√
σ2
1 + σ2

0

,
1√
3

))
− C2

n(p− p2)
. (21)

Under Assumption 2, the C−statistic can be approximated by C = Φ

(
µ1 − µ0√
σ2
1 + σ2

0

)
(Zhou (2002)).

Hence, from equation(21) the variance estimator under Assumption 1 is:

v̂arapp(Ĉ) =
1

np

(
C − 2T

(
Φ−1(C),

1√
3

))
+

1

n(1− p)

(
1− C − 2T

(
Φ−1(C),

1√
3

))
− C2

n(p− p2)

v̂arapp(Ĉ) =
1

n
×
C − 2T (Φ−1(C), 1√

3
)− C2

p− p2
. (22)

As we demonstrate later, conditional normality of the linear predictor also correponds to marginal normality
of the linear predictor for values of the C-statistic approximately up to 0.9. As we show in simulations in the
main paper, our derived formula performs very well when the linear predictor is normally distributed, which
is a realistic assumption that is likely to hold in practice.

Proof of the formulae for the values of µ and σ2 under marginal normality

Assuming that the distribution of the linear predictor is Normal with parameters µ and σ2, in applying (13)
values for these parameters can be chosen by simulation to correspond to the anticipated p and C.

However, we note that when the conditional distribution of the linear predictor (given the outcome) is Normal
with common variance in the cases and controls groups, then the marginal distribution of the linear predictor
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is also approximately Normal when C is not too large (<0.9). This can be seen in the Figure (1) below for
p=0.1 and values of C between 0.64-0.98. Hence, for values of C < 0.9, the marginal linear predictor can
be reasonably approximated as the mixture of two conditionally Normal (on the outcome) distributions with
common variance.

Figure 1: Marginal distribution of the linear predictor when the conditional distribution of the linear predictor given
the outcome is Normal with equal variance in the cases and controls groups.

Letting η(1) ∼ N(µ1, σ
2
c ) and η(0) ∼ N(µ0, σ

2
c ) denote the conditional distribution of the linear predictor

in the cases and control groups, respectively, the marginal distribution of the linear predictor, η, can be
approximated by

η ≈ p η(1) + (1− p)η(0). (23)

We �rst note that C ≈ Φ

(
µ1 − µ0

σ
√

2

)
. Using the relationship between the parameters in a logistic regression
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model for the calibration parameters in the model

logit(πi) = logit(P (Yi = 1|ηi) = α+ βηi, (24)

and the corresponding LDA model (e.g. Efron (1975)), the parameters in model (24) can be expressed as

α = −log(n1/n0) +
µ2
1 − µ2

0

2σ2
and β =

µ1 − µ0

σ2
(25)

Assuming a well-calibrated model with α = 0 and β = 1 in model (24), then

µ1 =
σ2
c

2
+ log

(
n1
n0

)
, (26)

µ0 =µ1 − σ2
c and (27)

σc =
√

2Φ−1(C) (28)

Using (23) we can approximate the mean and the variance of the marginally normally distributed linear
predictor, given p and C:

µ =E(η) ≈ pE(η(1)) + (1− p)E(η(0))

=p

(
σ2
c

2
+ log

(
n1
n0

))
+ (1− p)

(
σ2
c

2
+ log

(
n1
n0

)
− σ2

c

)
⇒

µ ≈σ
2
c

2
(2p− 1) + log

(
p

1− p

)
, (29)

and

σ2 =var(η) ≈ p2var(η(1)) + (1− p)2var(η(0))⇒
σ2 ≈p2σ2

c + (1− p)2σ2
c . (30)

In practice, the selected values of µ and σ2, should correspond to the anticipated C and p. For given values
of µ and σ2, the actual p and C can be computed using simulation and the following steps:

1. Set the anticipated p and C. These are the input values in the step below.

2. Compute µ and σ2 using (29) and (30) or any other way

3. Generate M samples from the distribution of the linear predictor η ∼ N(µ, σ2) where M is large (e.g.
M = 1× 106)

4. Generate M binary responses, Y | η ∼ Bernoulli(logit(−1)(η)),

5. Using the the M realisations of η and Y calculate the actual, true prevalence and C-statistic that
correspond to the chosen values of µ and σ2, and compare with the desired, anticipated ones.
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To check the quality of the chosen values for µ and σ2 using (29) and (30) we apply steps (1)-(5) above for
a range of values for the anticpiated, input values of C and p. The results presented in Table (1) show that
the actual p and C for the chosen values of µ and σ2 are very close to the anticipated, input C-statistic
and prevalence. Hence, for the purposes of sample size calculations, (29) and (30) can be reliably used to
detect the values of µ and σ2 that correspond to the desired C and p, avoiding the need for trial and error.
Speci�cally, the agreement is remarkably good for values of C up 0.8 (within 0.5 % of the true value), while
for a C >= 0.85, the disagreement increases slightly (up to 1.5 % of the true value when C = 0.9). Should
it be required, this minor disagreement for high values of C can be resolved by slightly in�ating σc in (28)
by a factor fc. In�ating by a factor of 1.02-1.03 when C=0.85 and 1.03-1.05 when C=0.9, will provide actual
values that are closer to the required anticipated values. More details, and the code to perform these checks
are given in Supplementary material 3.

Anticipated p Anticipated C µ σ Actual p Actual c

0.05 0.64 -3.06 0.51 0.050 0.640
0.05 0.72 -3.25 0.84 0.050 0.719
0.05 0.80 -3.58 1.23 0.050 0.797
0.05 0.85 -3.91 1.54 0.049 0.844
0.05 0.90 -4.42 1.95 0.048 0.889
0.10 0.64 -2.30 0.51 0.100 0.640
0.10 0.72 -2.47 0.85 0.100 0.719
0.10 0.80 -2.76 1.26 0.100 0.796
0.10 0.85 -3.06 1.60 0.099 0.843
0.10 0.90 -3.51 2.06 0.098 0.888
0.30 0.64 -0.90 0.52 0.300 0.640
0.30 0.72 -0.98 0.88 0.300 0.720
0.30 0.80 -1.13 1.36 0.301 0.797
0.30 0.85 -1.28 1.77 0.301 0.845
0.30 0.90 -1.50 2.36 0.303 0.891
0.40 0.64 -0.43 0.52 0.400 0.639
0.40 0.72 -0.47 0.89 0.400 0.719
0.40 0.80 -0.55 1.38 0.401 0.798
0.40 0.85 -0.62 1.80 0.402 0.845
0.40 0.90 -0.73 2.42 0.403 0.892
0.50 0.64 0.00 0.52 0.500 0.640
0.50 0.72 0.00 0.89 0.500 0.720
0.50 0.80 0.00 1.38 0.500 0.799
0.50 0.85 0.00 1.82 0.500 0.846
0.50 0.90 0.00 2.45 0.499 0.892

Table 1: Calculation of actual values of p and C when µ and σ2 were chosen using (29) and (30). The actual p and
C, for the purposes of sample size calculations are su�ciently close to the required anticipated values.
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2 Proof of the closed-form formula for the variance of the estimated

calibration in the large

The calibration in the large is the intercept term in the following logistic regression model:

logit(πi) = logit(P (Yi = 1|ηi) = αCL + ηi, (31)

which is equivalent to model (36), with the coe�cient of the calibration slope set to 1 (i.e. the estimated
linear predictor is included as an o�set term).

The variance of the estimated calibration in the large can be obtained as the asymptotic approximation to
the inverse of Fisher's information in model (31)

v̂arMC(α̂CL) =
1

nE(W )
, (32)

where W = π(1− π), π = (1 + exp(−η))−1, and η is assumed to follow a distribution F with parameters θ.

An estimator of α̂CL is

v̂ar(α̂CL) =
1∑n
i=1 wi

(33)

where wi = πi(1− πi) and πi = (1 + exp(−ηi))−1 and n is the sample size.

Assuming that the distribution of η is Normal with mean µ and variance σ2 (Assumption 1)we use Taylor
approximations to obtain a closed for expression for E(W ), in terms of µ and σ2 only.

The Taylor expansion of w = g(η) = p(1− p) around η = µ is

g(η) ≈ g(µ) + g′(µ)(η − µ) +
1

2
g′′(µ)(η − µ)2 +

1

6
g′′′(µ)(η − µ)3 + ...

Taking the expectation of the expression above, the odd central moments of η are zero, hence the expectation
of the Taylor expansion up to order 3 is:

E(W ) = E(g(η)) ≈ g(µ) +
1

2
g′′(µ)E(η − µ)2 = g(µ) + g′′(µ)σ2. (34)

We note that equation (34) is also true for any distribution for the linear predictor with mean µ and variance
σ2, assuming that the terms above order 2 in the Taylor approximation are zero.

Applying the chain rule for
dg

dη
where

∂π

∂η
=
∂
(

exp(η)
1+exp(η)

)
∂η

=
exp(η)

1 + exp(η)

1

1 + exp(η)
= π(1− π) = π − π2 we

obtain
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dg

dη
=
∂g

∂π

∂π

∂η
= (1− 2π)(π − π2) = −3π2 + 2π3 + π, and

d2g

dη2
=
∂2g

∂π2

∂π

∂η
= (−6π + 6π2 + 1)(π − π2)

Hence,

E(W ) ≈ π̃(1− π̃)

(
(1 +

1

2
(1− 6π̃ + 6π̃2)σ2

)
(35)

where π̃ = (1 + exp(µ))−1.

Substituting (35) in (32) we obtain an expression for the variance of the estimated calibration in the large
that only depends on the sample size, µ and σ2.
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3 Proof of the closed-form formula for the variance of the estimated

calibration slope

The calibration slope is the coe�cient of the linear predictor in the following logistic regression model:

logit(P (Yi = 1|ηi) = α+ βcsηi. (36)

We aim to obtain an estimator for variance of the estimated calibration slope that is free from patient-level
information. To achieve this we start by assuming that the distribution of the linear predictor is conditionally
Normal given the binary outcome and that the corresponding variances are equal.

Assumption 3:

η
(1)
i ∼ N(µ1, σ

2)

η
(0)
j ∼ N(µ0, σ

2)

where η
(1)
i andη

(0)
j are de�ned as above.

Assumption 3 corresponds to the data-generating mechanism from a Linear Discriminant Analysis (LDA)
model. We also note that Assumption 3 is very similar to Assumption 2, only additionally requiring that
σ2
0 = σ2

1 . Using the relationship the parameters of an LDA model and a logistic regression model (e.g. Efron
(1975)), calibration slope can be estimated by

β̂LDAcs =
η̄1 − η̄0
σ̂2

(37)

where η̄0 =
1

n0

n0∑
i

η
(0)
i and η̄1 =

1

n1

n1∑
j

η
(1)
j .

The variance of the estimated calibration slope can be estimated from (37)

v̂ar(β̂LDAcs ) = var

(
η̄1 − η̄0
σ̂2

)
(38)

≈ (η̄1 − η̄0)2

(σ2)2

[
var(η̄1 − η̄0)

(η̄1 − η̄0)2
+

var(σ̂2)

(σ2)2

]
(39)

≈ (η̄1 − η̄0)2

σ4

[
σ2(1/n1 + 1/n0)

(η̄1 − η̄0)2
+

2σ4

(n− 2)σ4

]
(40)

We obtained (39) from (38) using the following relationship for the variance of the quotient of two random vari-

ables A and B (obtained using the �rst order Taylor expansion): var

(
A

B

)
≈ µ2

A

µ2
B

[
σ2
A

µ2
B

− 2
Cov(A,B)

µAµB
+
σ2
B

µ2
B

]
.

Subsequently, using that var(η̄1 − η̄0) = σ2(1/n1 + 1/n0) and var(σ2) = 2σ4/(n − 2) we obtained (40) from

(39). Finally, since Ĉ = Φ

(
µ1 − µ0√

2σ2

)
and β̂cs =

η̄1 − η̄0
σ2

, it follows that βcs =

√
2Φ−1(C)

σ
and
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σ =

√
2Φ−1(C)

βcs
. (41)

Substituting (41) into (40) we obtain

v̂ar(β̂LDAcs ) ≈ 1

n
× β2

cs

2p(1− p)Φ−1(C)2
+

2β2
cs

n− 2
. (42)

This formula for calculating the variance of β̂logiscs is valid as long as the variance of β̂LDAcs is the same as the

variance of the estimated calibration slope, β̂logiscs , obtained from the �t of model (36). As logistic regression
models P (Y |η) while LDA models P (η|Y ) and P (Y ), hence using more information than logistic regression,

v̂ar(β̂LDAcs ) will, at least asymptotically, be smaller than v̂ar(β̂logiscs ). As noted by Efron(1975) the e�ciency
of LDA is higher than logistic regression for higher values of C, while the e�ciency of the two methods will
be similar for values of C up to 0.8-0.85 and prevalence close to 0.5. This is con�rmed by a simulation in
section 5 to compare the e�ciency of the two methods when data are generated under model Assumption 3
(DGM1 of Section 5) and are presented in Figure (2) below. Therefore our variance formula above is expected
to work well for this range of values. For very high values of the C-statistic, the variance of the estimated
calibration slope obtained from �tting model (36)will tend to be underestimated by equation (42).
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Figure 2: Standard errors for the estimated calibration slope from LDA and logistic regression.
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