Supplemental information

Miscell: An efficient self-supervised learning

approach for dissecting single-cell transcriptome

Hongru Shen, Yang Li, Mengyao Feng, Xilin Shen, Dan Wu, Chao Zhang, Yichen Yang, Meng Yang, Jiani Hu, Jilei Liu, Wei Wang, Qiang Zhang, Fangfang Song, Jilong Yang, Kexin Chen, and Xiangchun Li

SUPPLEMENTARY MATERIALS

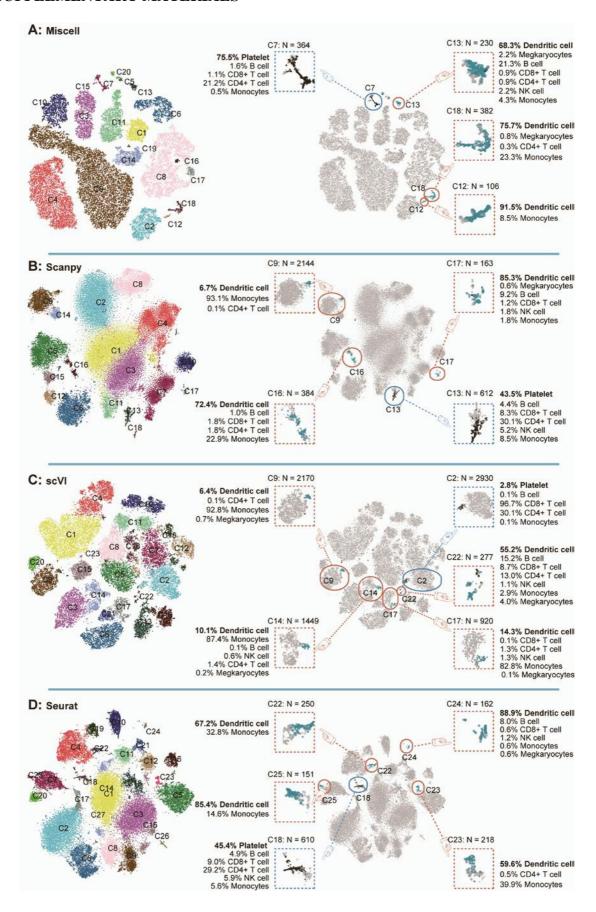
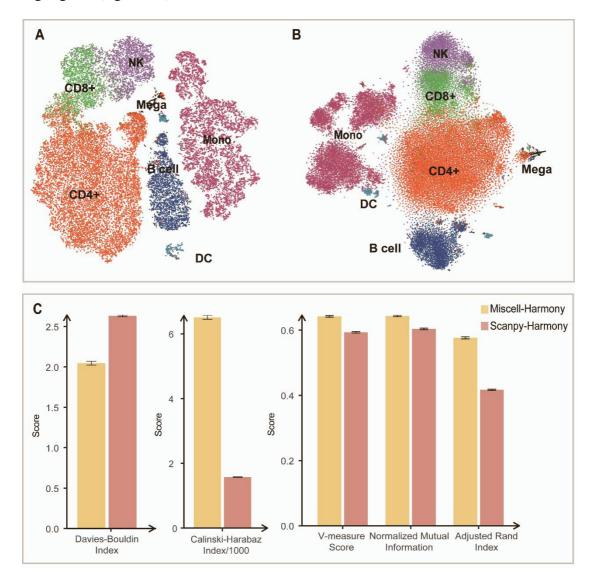



Figure S1. Identification of cell types with small numbers such as platelet and dendritic cell by (A) Miscell, (B) Scanpy, (C) scVI and (D) Seurat, related to Figure 2. All cell clusters (left-side) detected by different methods and cell clusters with small numbers are highlighted (right-side).

Figure S2. The clustering performances of Miscell versus Scanpy on batch-corrected *PBMC* dataset, related to Figure 2. (A) The t-SNE visualization for Miscell; (B) The t-SNE visualization for Scanpy; (C) The clustering metrics of Miscell versus Scanpy.

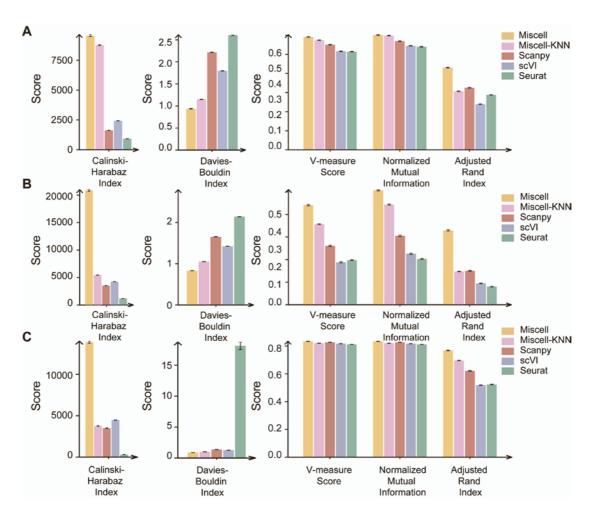


Figure S3. Clustering performance of Miscell, Scanpy-KNN, Scanpy, scVI and Seurat in (A) the *PBMC*, (B) *Smart-seq* and (C) *Muris* dataset, related to Figure 2. Scanpy-KNN indicates replacement of principal component analysis results with latent features of Miscell.

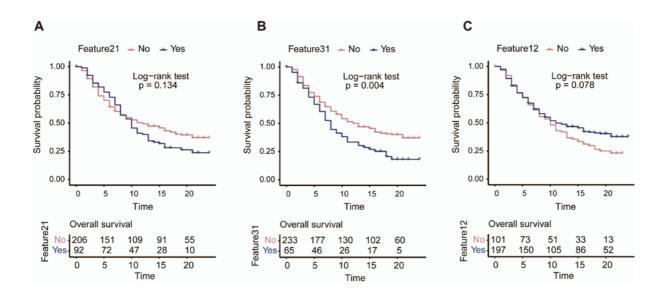


Figure S4. The association between ICB therapy response related latent features extracted by Miscell and overall survival in urothelial carcinoma clinical trials, related to Figure 4.

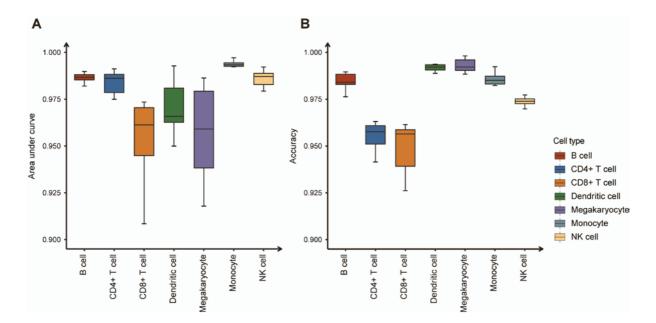


Figure S5. The performance of cell type identification in Miscell, related to Figure 1. (A)

Area under the receiver operating curve and (B) accuracy from 10-fold cross-validation were shown.

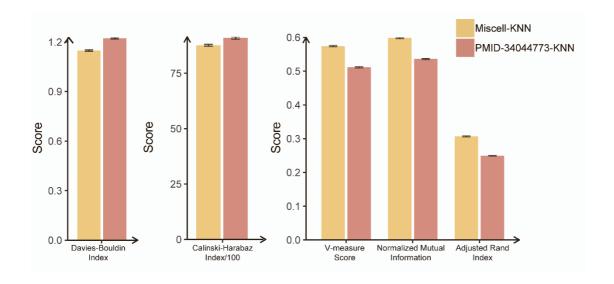


Figure S6. The clustering performances of Miscell-KNN versus the tool proposed in PMID-34044773 on *PBMC* dataset with the same hyper-parameters in KNN clustering, related to Figure 2.

Table S1. Data source information of collected single cell, related to STAR Methods.

GEO accession	Samples	Tumor type	Citation	Accession URL
GSE103322	5902	HNSC	Puram SV, Tirosh I, Parikh AS, Patel AP et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell 2017 Dec 14;171(7):1611-1624.e24.	https://www.ncb i.nlm.nih.gov/ge o/download/?ac c=GSE103322& format=file&file =GSE103322% 5FHNSCC%5Fa 1l%5Fdata%2Et xt%2Egz
GSE89567	6341	Astrocytoma	Venteicher AS, Tirosh I, Hebert C, Yizhak K et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 2017 Mar 31;355(6332).	https://www.ncb i.nlm.nih.gov/ge o/download/?ac c=GSE89567&f ormat=file&file =GSE89567%5 FIDH%5FA%5 Fprocessed%5F data%2Etxt%2E
GSE108989	11138	COAD	Zhang L, Yu X, Zheng L, Zhang Y et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 2018 Dec;564(7735):268-272.	gz https://www.ncb i.nlm.nih.gov/ge o/query/acc.cgi? acc=GSE10898
GSE98638	5063	LIHC	Zheng C, Zheng L, Yoo JK, Guo H et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell 2017 Jun 15;169(7):1342-1356.e16.	https://www.ncb i.nlm.nih.gov/ge o/query/acc.cgi? acc=GSE98638
GSE102130	4058	GBMLGG	Filbin MG, Tirosh I, Hovestadt V, Shaw ML et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 2018 Apr 20;360(6386):331-335.	https://www.ncb i.nlm.nih.gov/ge o/download/?ac c=GSE102130& format=file&file =GSE102130% 5FK27Mprojec

GSE146771	10468	COAD	Zhang L, Li Z, Skrzypczynska KM, Fang Q et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer. Cell 2020 Apr 16;181(2):442-459.e29.	https://www.ncb i.nlm.nih.gov/ge o/query/acc.cgi? acc=GSE14677
GSE99254	12346	LCA	Guo X, Zhang Y, Zheng L, Zheng C et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med 2018 Jul;24(7):978-985.	https://www.ncb i.nlm.nih.gov/ge o/query/acc.cgi? acc=GSE99254
GSE72056	4645	SKCM	Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016 Apr 8;352(6282):189-96.	https://www.ncb i.nlm.nih.gov/ge o/download/?ac c=GSE72056&f ormat=file&file =GSE72056%5 Fmelanoma%5F single%5Fcell% 5Frevised%5Fv 2%2Etxt%2Egz
GSE115978	7186	SKCM	Jerby-Arnon L, Shah P, Cuoco MS, Rodman C et al. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell 2018 Nov 1;175(4):984-997.e24.	https://www.ncb i.nlm.nih.gov/ge o/query/acc.cgi? acc=GSE11597 8
GSE70630	4347	GBMLGG	Tirosh I, Venteicher AS, Hebert C, Escalante LE et al. Singlecell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 2016 Nov 10;539(7628):309-313.	https://www.ncb i.nlm.nih.gov/ge o/download/?ac c=GSE70630&f ormat=file&file =GSE70630%5 FOG%5Fproces sed%5Fdata%5 Fv2%2Etxt%2E gz

Table S2. The clustering performance of Miscell with different parameter on the *Smart-seq* dataset, related to STAR Methods.

Queue size (q)	Momentum coefficient (θ)	Davies- Bouldin Index	Calinski- Harabaz Index	V_measure Score	Normalized Mutual Information	Adjusted Rand Index
1024	0.99	0.74	30550.34	0.43	0.43	0.28
1024	0.999	0.83	20843.48	0.44	0.51	0.33
1024	0.9999	1.04	11990.71	0.40	0.40	0.55
2048	0.999	0.78	27186.49	0.42	0.42	0.25
4096	0.999	0.78	27186.49	0.42	0.42	0.25

 $Table \ S3. \ Clustering \ metrics \ of \ different \ methods \ on \ the \ \textit{PBMC} \ dataset, \ related \ to \ Figure$

2.

A	M-41 1	N	Standard	95% confidence
Assessment	Method	Mean	deviation	interval
	Miscell	0.431	0.002	(0.43,0.431)
ال مدودة	Miscell-KNN	0.307	0.002	(0.306, 0.307)
Adjusted Rand Index	Scanpy	0.325	0.001	(0.325, 0.325)
Kana maex	scVI	0.239	0.001	(0.239, 0.239)
	Seurat	0.288	0.001	(0.288, 0.288)
	Miscell	0.601	0.002	(0.601, 0.602)
Normalized	Miscell-KNN	0.598	0.002	(0.598, 0.598)
Mutual	Scanpy	0.569	0.002	(0.569, 0.569)
Information	scVI	0.545	0.002	(0.545, 0.545)
	Seurat	0.540	0.002	(0.54, 0.54)
	Miscell	0.591	0.002	(0.591, 0.591)
V	Miscell-KNN	0.574	0.002	(0.574, 0.574)
V-measure	Scanpy	0.551	0.002	(0.55, 0.551)
Score	scVI	0.516	0.002	(0.516, 0.516)
	Seurat	0.514	0.002	(0.514, 0.514)
	Miscell	9564.303	87.846	(9558.852,9569.755)
Calinski-	Miscell-KNN	8762.874	40.394	(8760.367,8765.381)
Harabaz	Scanpy	1627.366	9.561	(1626.773, 1627.959)
Index	scVI	2430.310	13.418	(2429.477, 2431.142)
	Seurat	927.235	5.023	(926.923,927.547)
	Miscell	0.936	0.007	(0.936, 0.937)
Davies-	Miscell-KNN	1.148	0.004	(1.148, 1.149)
Bouldin	Scanpy	2.217	0.007	(2.216, 2.217)
Index	scVI	1.797	0.007	(1.796, 1.797)
	Seurat	2.607	0.009	(2.607, 2.608)

Table S4. Clustering metrics of different methods on the *Smart-seq* dataset, related to Figure 2.

Assessment index	Method	Mean	Standard deviation	95% confidence interval
Adjusted Rand	Miscell	0.330	0.003	(0.33,0.33)

Index	Miscell-KNN	0.147	0.001	(0.147,0.148)
	Scanpy	0.150	0.002	(0.15, 0.15)
	scVI	0.094	0.001	(0.094, 0.095)
	Seurat	0.080	0.002	(0.08, 0.08)
	Miscell	0.508	0.003	
Normalinad Matual				(0.508, 0.508)
Normalized Mutual	Miscell-KNN	0.444	0.002	(0.444, 0.444)
Information	Scanpy	0.306	0.003	(0.305, 0.306)
	scVI	0.226	0.003	(0.226, 0.226)
	Seurat	0.203	0.002	(0.203, 0.203)
	Miscell	0.442	0.003	(0.442,0.442)
	Miscell-KNN	0.358	0.002	(0.357, 0.358)
V-measure Score	Scanpy	0.261	0.003	(0.261, 0.261)
	scVI	0.188	0.003	(0.188, 0.188)
	Seurat	0.198	0.002	(0.198, 0.198)
	Miscell	20843.479	148.891	(20834.24,20852.71)
Calinski-Harabaz	Miscell-KNN	5487.240	24.157	(5485.741,5488.74)
Index	Scanpy	3591.719	18.161	(3590.592,3592.846)
moon	scVI	4288.770	18.434	(4287.626,4289.913)
	Seurat	1259.716	7.894	(1259.226,1260.206)
	Miscell	0.825	0.003	(0.825, 0.825)
Davies-Bouldin	Miscell-KNN	1.045	0.003	(1.045, 1.045)
Index	Scanpy	1.645	0.006	(1.644, 1.645)
	scVI	1.416	0.004	(1.415, 1.416)
	Seurat	2.134	0.008	(2.134, 2.135)

Table S5. Cell types in the Tabula Muris dataset, related to Figure 2.

	Leukocyte	Immature T cell	Dendritic cell	Early pro-B cell	
	B cell	Fibroblast	Monocyte	DN1 thymic pro-T cell	
Cell		Luminal epithelial			
	T cell	cell of mammary	Lung endothelial cell	Kidney cell	
type		gland			
	Bladder	Skeletal muscle	T	Endothelial cell of	
Urothelial cell	satellite cell	Immature B cell	hepatic sinusoid		

Stromal cell	Endothelial cell	Kidney capillary Endothelial cell	Duct epithelial cell
Hematopoietic Precursor cell	Late pro-B cell	Kidney loop of Henle Ascending limb Epithelial cell	Ciliated columnar cell of Tracheobronchial tree
Mesenchymal cell	Granulocytopoietic cell	Cardiac muscle cell	Mast cell
Keratinocyte	Macrophage	Kidney collecting duct epithelial cell	Basophil
Proerythroblast	Granulocyte	Erythroblast	Mesangial cell
Bladder cell	Neuroendocrine cell	Endocardial cell	Mesenchymal stem cell
Basal cell of epidermis	Natural killer cell	Type II pneumocyte	Epithelial cell
Blood cell	kidney proximal straight tubule epithelial cell	Promonocyte	Langerhans cell
Fraction A pre-	Non-classical monocyte	Classical monocyte	Myeloid cell
Hepatocyte	Basal cell	Alveolar macrophage	

 $Table \ S6. \ Clustering \ metrics \ of \ different \ methods \ on \ the \ \textit{Muris} \ dataset, \ related \ to \ Figure$

2.

Assessment index	Method	Mean	Standard	95%
Assessment index	Method	Mean	deviation	confidence interval

	Miscell	0.769	0.003	(0.769,0.769)
	Miscell-KNN	0.696	0.002	(0.696, 0.696)
Adjusted Rand Index	Scanpy	0.621	0.003	(0.621, 0.621)
	scVI	0.519	0.002	(0.519, 0.519)
	Seurat	0.524	0.002	(0.524, 0.524)
				(0.834, 0.834)
	Miscell	0.834	0.001	
Normalized Mutual	Miscell-KNN	0.821	0.001	(0.821, 0.821)
Information	Scanpy	0.827	0.001	(0.827, 0.827)
	scVI	0.817	0.001	(0.817, 0.817)
	Seurat	0.812	0.001	(0.812, 0.812)
	Miscell	0.834	0.001	(0.834,0.834)
	Miscell-KNN	0.821	0.001	(0.821, 0.821)
V-measure Score	Scanpy	0.827	0.001	(0.827, 0.827)
	scVI	0.817	0.001	(0.817, 0.817)
	Seurat	0.812	0.001	(0.812, 0.812)
	Miscell	13886.872	119.332	(13879.467,138 94.277)
	Miscell-KNN	3767.196	20.558	(3765.92,3768. 471)
Calinski-Harabaz Index	Scanpy	3498.473	17.984	(3497.357,3499 .589)
	scVI	4479.667	20.561	(4478.391,4480 .943)
	Seurat	305.999	4.129	(305.743,306.2 55)
	Miscell	0.867	0.003	(0.866, 0.867)
D D 111 T	Miscell-KNN	1.011	0.003	(1.01, 1.011)
Davies-Bouldin Index	Scanpy	1.373	0.005	(1.373, 1.374)
	scVI	1.260	0.004	(1.26, 1.261)
	Seurat	18.136	0.615	(18.097,18.174)

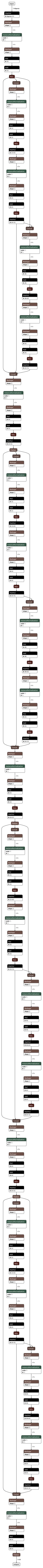
Table S7. The association between the latent features learned by Miscell and prognosis after controlling for Age, Sex and TNM stage in the *Smart-seq* dataset, related to Figure 4.

	coef	exp(coef)	se(coef)	Z	Pr(> z)	q.value
Feature30	-0.377	0.686	0.091	-4.129	0.000	0.002
Feature54	0.175	1.192	0.049	3.589	0.000	0.011
Feature6	0.189	1.208	0.056	3.372	0.001	0.014
Feature27	-0.175	0.839	0.053	-3.322	0.001	0.014
Feature7	-0.228	0.796	0.075	-3.026	0.002	0.023
Feature10	-0.164	0.849	0.054	-3.045	0.002	0.023

Feature12	0.199	1.221	0.064	3.108	0.002	0.023
Feature20	-0.154	0.857	0.053	-2.904	0.004	0.030
Feature21	-0.182	0.834	0.064	-2.839	0.005	0.032
Feature4	-0.135	0.874	0.053	-2.534	0.011	0.066
Feature26	-0.349	0.706	0.136	-2.565	0.010	0.066
Feature1	-0.121	0.886	0.051	-2.357	0.018	0.080
Feature3	0.114	1.121	0.049	2.348	0.019	0.080
Feature9	-0.134	0.875	0.056	-2.384	0.017	0.080
Feature28	-0.158	0.854	0.068	-2.327	0.020	0.080
Feature49	-0.132	0.876	0.055	-2.409	0.016	0.080
Feature29	0.123	1.131	0.054	2.299	0.021	0.081
Feature19	0.120	1.127	0.055	2.179	0.029	0.104
Feature25	0.090	1.094	0.050	1.798	0.072	0.243
Feature22	0.083	1.086	0.051	1.634	0.102	0.327
Feature15	0.249	1.283	0.173	1.441	0.150	0.427
Feature16	0.073	1.076	0.051	1.427	0.154	0.427
Feature23	0.072	1.074	0.049	1.447	0.148	0.427
Feature17	0.065	1.067	0.054	1.210	0.226	0.537
Feature33	0.551	1.735	0.450	1.224	0.221	0.537
Feature36	0.551	1.735	0.450	1.224	0.221	0.537
Feature41	0.551	1.735	0.450	1.224	0.221	0.537
Feature18	0.066	1.068	0.056	1.174	0.241	0.550
Feature13	-0.052	0.949	0.053	-0.990	0.322	0.624
Feature32	0.055	1.057	0.052	1.049	0.294	0.624
Feature35	0.392	1.480	0.411	0.952	0.341	0.624
Feature38	0.392	1.480	0.411	0.952	0.341	0.624
Feature40	0.056	1.057	0.053	1.057	0.291	0.624
Feature43	0.392	1.480	0.411	0.952	0.341	0.624
Feature47	0.392	1.480	0.411	0.952	0.341	0.624
Feature44	0.179	1.196	0.210	0.851	0.395	0.701
Feature5	0.043	1.044	0.055	0.782	0.434	0.751
Feature8	-0.034	0.967	0.057	-0.593	0.553	0.885
Feature11	-0.035	0.966	0.058	-0.602	0.547	0.885
Feature52	-0.031	0.969	0.052	-0.607	0.544	0.885
Feature2	0.031	1.031	0.055	0.561	0.575	0.897
Feature24	0.012	1.013	0.051	0.246	0.806	0.901
Feature31	0.029	1.029	0.058	0.501	0.617	0.901
Feature34	0.138	1.148	0.357	0.386	0.700	0.901
Feature37	0.138	1.148	0.357	0.386	0.700	0.901
Feature39	0.138	1.148	0.357	0.386	0.700	0.901
Feature42	0.138	1.148	0.357	0.386	0.700	0.901

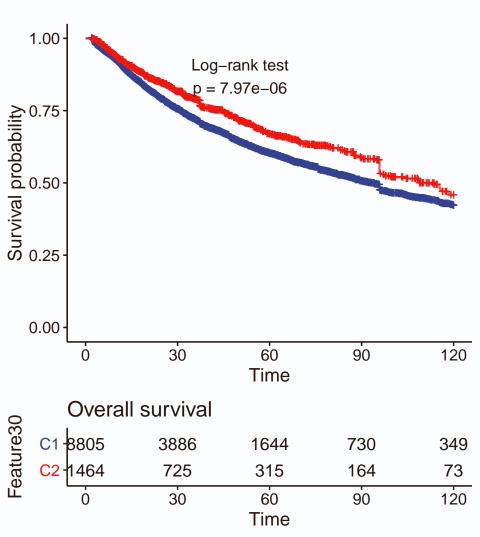
Feature45	-0.105	0.900	0.306	-0.345	0.730	0.901
Feature46	0.138	1.148	0.357	0.386	0.700	0.901
Feature48	0.138	1.148	0.357	0.386	0.700	0.901
Feature51	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature53	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature55	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature 56	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature 57	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature58	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature59	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature60	-0.021	0.979	0.051	-0.407	0.684	0.901
Feature61	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature62	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature63	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature64	-0.024	0.976	0.151	-0.160	0.873	0.901
Feature14	0.003	1.003	0.054	0.063	0.950	0.952
Feature50	0.003	1.003	0.051	0.061	0.952	0.952

Table S8. Top-15 marker genes of CD4+ T cell and CD8+ T cell clusters identified by three methods, related to Figure 3.

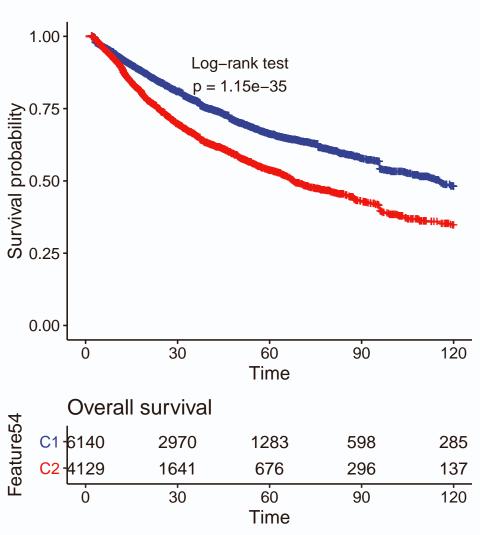

CD4+ T cell			CD8+ T cell		
Miscell	Scanpy	Seurat	Miscell	Scanpy	Seurat
CD4	CD4	TNFRSF4	CD8A	CD8A	KLRK1
CD40LG	LTB	CD4	KLRK1	KLRK	CD8A
FBLN7	IL2RA	IL2RA	CD8B	CD8B	KLRC4-KLRK1
TNFRSF25	TNFRSF4	CD40LG	KLRD1	NKG7	NKG7
TBC1D4	TNFRSF25	LTB	KLRC4	CCL5	CCL5
SLAMF1	PIM2	FOXP3	KLRC3	KLRD1	CTSW
<i>TMEM173</i>	TBC1D4	CD28	KLRC2	CTSW	CD8B
KLRB1	ICOS	FBLN7	KLRC1	GZMA	GZMB
ICOS	CD40LG	TNFRSF25	CTSW	SLAMF7	GZMH
CCR4	<i>GPR183</i>	CORO1B	AOAH	CCL4	CCL4
FOXP3	CTLA4	TBC1D4	ABCB1	AOAH	KLRD1
ICA1	FOXP3	CTSB	CCL5	GZMH	GZMA
TBXAS1	<i>TMEM173</i>	PIM2	XCL1	PRF1	KLRC2

PIK3IP1	SELL	IL6R	CD160	KLRC4	TARP
FAAH2	SLAMF1	CTLA4	CD55	CST7	KLRC3

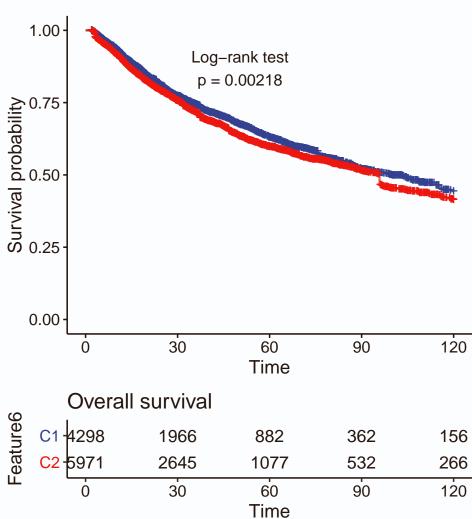
Table S9. Features and capabilities for the methods, related to STAR Methods, related to STAR Methods.

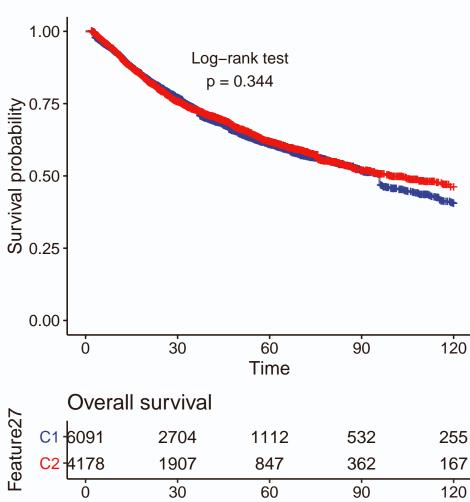

	Miscell	Scanpy	scVI	Seurat
Core procedure	Self- supervised learning	PCA	Deep generative model	PCA
Cluster delineation	DBSCAN	KNN	KNN	SNN
Marker gene detection strategy	Integrated gradient	t-test/ Wilcoxon test	-	MAST/ t-test/ Wilcoxon test

Data S1. The feature encoder used in the self-supervised learning framework is a DenseNet with 21 layers, related to STAR Methods.

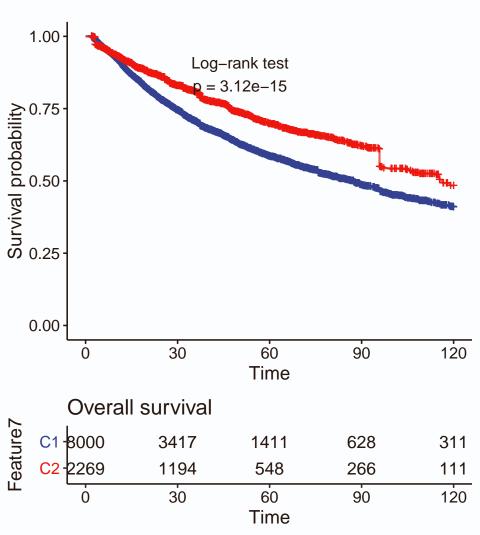


Extended Data2. The association between the latent features learned by Miscell and prognosis in the *Smart-seq* dataset, related to Figure 4.

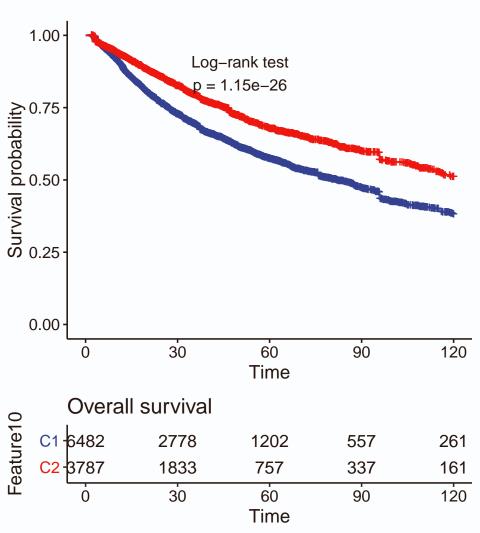

Feature30 + C1 + C2


Feature54 + C1 + C2

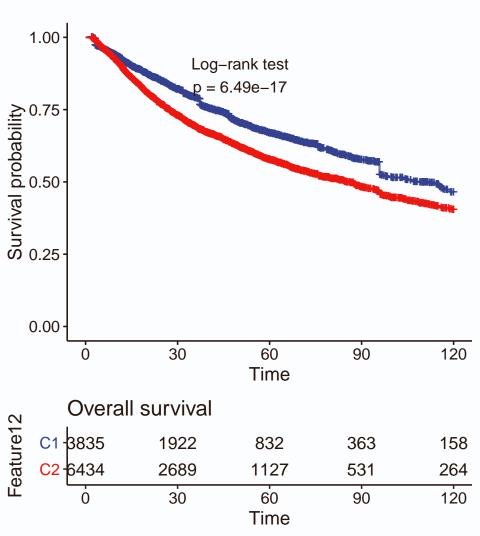
Feature6 + C1 + C2

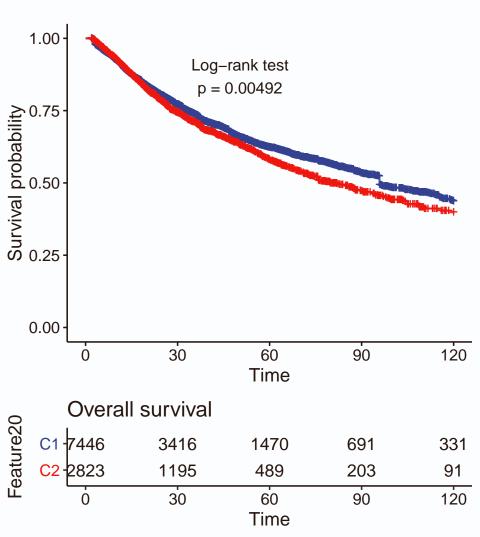


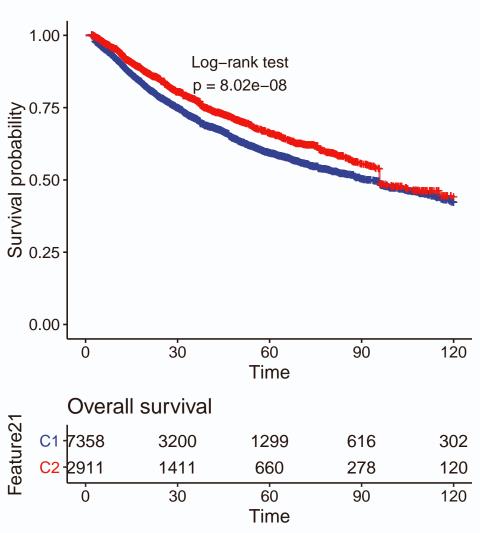
Feature27 + C1 + C2

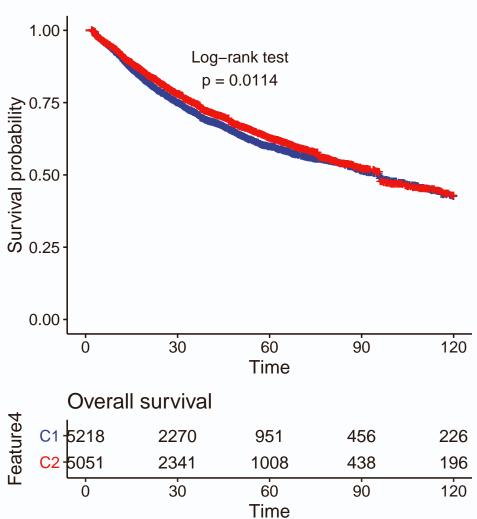


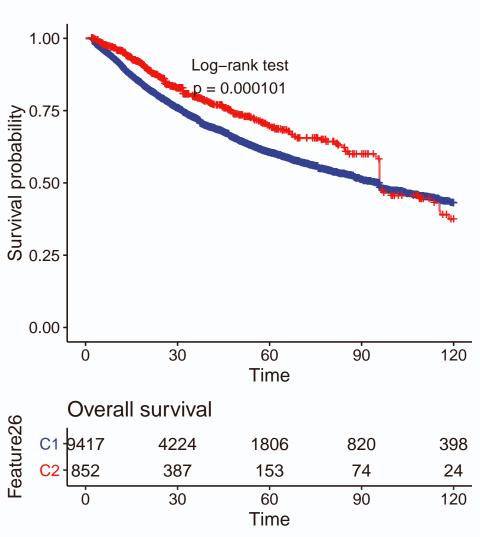
Time

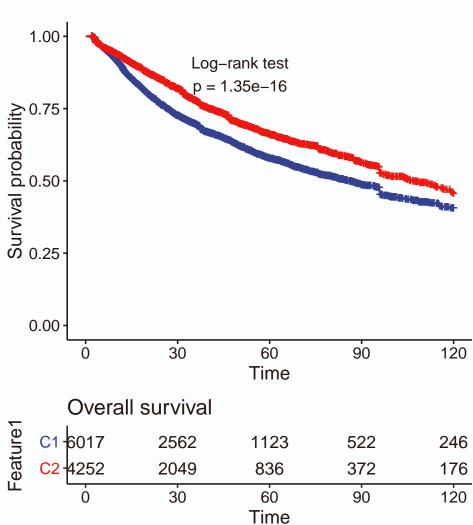

Feature7 + C1 + C2

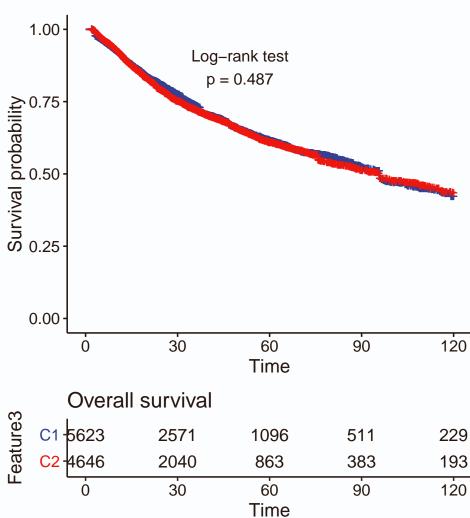

Feature10 + C1 + C2

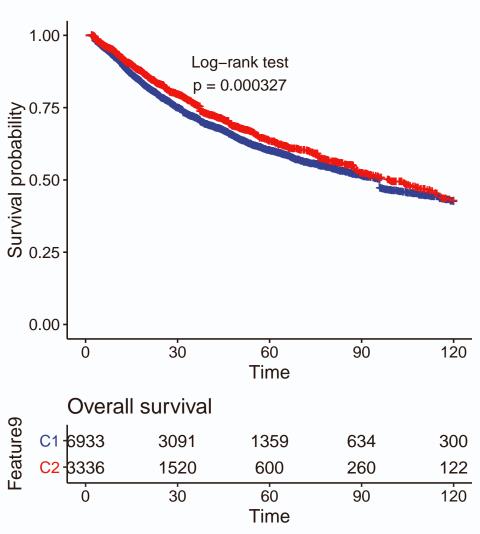

Feature12 + C1 + C2

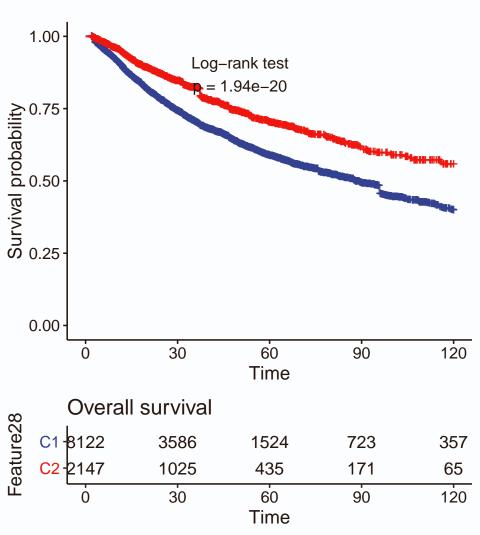

Feature20 + C1 + C2

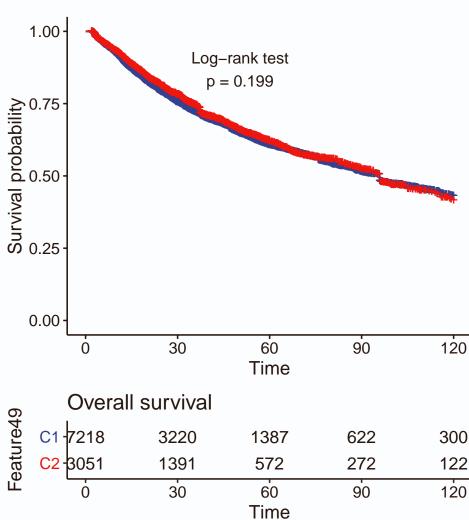

Feature21 + C1 + C2

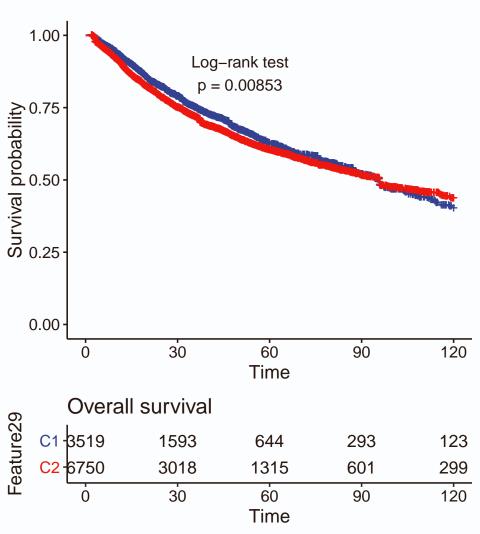

Feature4 + C1 + C2


Feature26 + C1 + C2


Feature1 + C1 + C2


Feature3 + C1 + C2


Feature9 + C1 + C2


Feature28 + C1 + C2

Feature49 + C1 + C2

Feature29 + C1 + C2

