Cr(VI) mediated homogeneous Fenton oxidation for decolorization of Methylene Blue dye: sludge free and pertinent to wide pH range

Varuna S. Watwe¹, Sunil D. Kulkarni², Preeti S. Kulkarni^{1*}

^{1#}Post-graduate and Research Centre, Department of Chemistry, MES Abasaheb Garware College, Pune, India.

^{2#}Post-graduate and Research Centre, Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Tilak Road, Pune, India

*Affiliated to Savitribai Phule Pune University (Formerly University of Pune), Pune.

*Corresponding Author:

Phone: (O) +9120 41038200.

Email: psk.agc@mespune.in

SUPPORTING INFORMATION

Table of Content (Supporting Information)

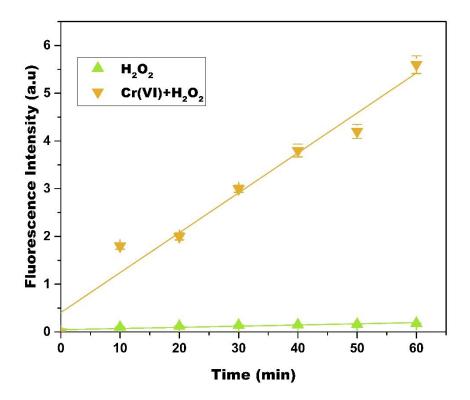

 Table ST1: Time required for complete MB decolorization at different MB concentrations.

Figure S1: Fluorescence plot of 7-hydroxycoumarin.

Table S1: Time required for complete MB decolorization at different MB concentrations.

Concentration of Methylene blue (μM)	Time taken for Complete decolorization (min)
7.8	20±2
15.7	30±2
23.5	45±3
31.4	70±2
39.2	120±3

Figure S1: Fluorescence intensity of 7 hydroxycouarin in $Cr(VI)/H_2O_2$ and H_2O_2 system. Reaction conditions: [Coumarin] = 0.1mM, [Cr(VI)]=3mM, [H₂O₂]=19.4 mM, temperature=298K and pH =6.

