1	Supplementary information to
2 3	Hydroxyl radical production by air pollutants in epithelial lining fluid governed by interconversion and scavenging of reactive oxygen species
4	
5	Steven Lelieveld ¹ , Jake Wilson ¹ , Eleni Dovrou ¹ , Ashmi Mishra ¹ , Pascale S. J. Lakey ² , Manabu Shiraiwa ² ,
6	Ulrich Pöschl ¹ , Thomas Berkemeier ^{1*}
7	
8	[1] Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
9	[2] Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA
10	
11	*Correspondence to: Thomas Berkemeier (t.berkemeier@mpic.de)

12	Contents of Supporting Information
13	
14	Additional information
15	S1. ELF antioxidant concentrations
16	S2. ELF enzymatic reactions
17	S3. OH reactions with unspecified organic matter and estimated OH lifetime in the ELF
18	S4. Particulate pollutant concentrations in the ELF
19	S5 . Gas-phase pollutant concentrations in the ELF
20	S6. Acid dissociation
21	S7. pH of the ELF
22	
23	Tables
24	Table S1. Chemical reactions
25	Table S2. Input parameters to the KM-SUB-ELF model
26	Table S3. List of symbols and definitions
27	Table S4. Mathematical formulas used to calculate ROS metrics
28	Table S5. PM2.5 and transition metal mass fractions
29	Table S6. PM2.5 and Secondary Organic Aerosol (SOA) mass fractions
30	Table S7. PM2.5 and quinone mass fractions
31	
32	Figures
33	Figure S1. Mass fractions of all redox-active PM2.5 constituents quantified in field data.
34 35	Figure S2. Endpoint, and average ROS concentration, $C_{\Sigma ROS}$, in the ELF as a function of PM2.5 concentration.
36 37	Figure S3. ROS concentration, $C_{\Sigma ROS}$, and antioxidant consumption rate as a function of pollutant concentration.
38 39	Figure S4. Gross chemical production of individual ROS in the ELF as a function of the concentration of three distinct pollutants.
40 41	Figure S5. O_3 and NO_2 concentration and saturation point in the ELF as a function of ambient pollutant concentration.
42	Figure S6. pH 4 sensitivity study.

44 S1. ELF antioxidant concentrations

45 Four low molecular weight antioxidants are included in this study, ascorbate (AscH), glutathione (GSH), 46 uric acid (UA) and α -tocopherol (α -Toc).¹ The concentrations of AscH, GSH, and UA in the ELF are 40 μ M, 47 108 μ M, and 200 μ M, respectively.^{2,3} The total α -Toc concentration in the ELF is reported as 0.7 μ M,³ however, in the presented study α-Toc is assumed to reside in the surfactant layer of the ELF with a 48 49 concentration of 200 μ M. It is found that pollutant exposure can lead to a spike in C_{EROS} at pollutant 50 concentrations above 100 µg m⁻³ in the model (Fig. S3a) due to NO₂-driven depletion of ELF antioxidants 51 within the two hours simulation time (Fig. S3b). The reaction mechanism of ROS formation by NO₂ involves 52 formation of GS (R84-85, Tab. S1) and reaction to GSSG⁻ (R89), leading to O₂⁻ production (R91).^{4,5} In the 53 presence of physiological concentrations of UA and AscH, GS is efficiently recycled to GSH (R96, R100) and GSSG⁻ formation a minor reaction pathway. However, at low levels of UA and AscH, this O₂⁻ formation 54 55 pathway becomes increasingly important.

56

57 Although earlier studies have shown that antioxidants can be consumed in bronchoalveolar lavage fluid 58 after pollutant exposure,⁶ a study using healthy volunteers suggested that the ELF antioxidants may not be 59 fully depleted,⁷ even after exposure to high pollutant concentrations. Kelly et al. found antioxidant 60 concentrations to be non-zero 1.5 hours after exposure to 2 ppm NO₂ stopped, and in some cases 61 exceeded the initial antioxidant concentration several hours after exposure due to antioxidant 62 replenishment.⁷ We are not aware of kinetic data that details the replenishment rates of antioxidants in ELF, 63 but we can assume that they are likely fast enough to prevent full depletion of antioxidants in our two-hour 64 simulations, preventing a spike in $C_{\Sigma ROS}$ (Fig. S3a). Thus, for simplicity, antioxidant and surfactant 65 concentrations are assumed to stay constant in this study.

66

In Fig. S3b, antioxidant consumption rates are shown as a function of NO₂, PM2.5 and O₃ concentration. The dashed line represents the antioxidant consumption rate above which the initial concentration of low molecular mass antioxidants depletes within two hours of pollutant exposure. Note that, without consideration of enzymatic reactions and antioxidant replenishment, it represents a lower limit for healthy individuals.

72

73 S2. ELF enzymatic reactions

Reactions of the enzymes superoxide dismutase (SOD) and catalase are included in the chemical mechanism (R124, R125, Tab. S1). In our previous work, the SOD-catalyzed reaction of two O_2^{-} forming H₂O₂ and O₂ was described as a second-order reaction with respect to O_2^{-} and a rate coefficient of 2.70 × 10⁻¹² cm⁻³ s⁻¹.^{1,8} Dismutation of O₂⁻ by SOD is a multi-step process, in which one O₂⁻ is oxidized to O₂, another reduced to H₂O₂, and operates close to the diffusion limit.⁹ Because SOD activity is often reported in terms of a single rate and turnover number, we combine both steps into one effective reaction of SOD and O_2^- yielding 0.5 H₂O₂ and 0.5 O₂ (R124, Tab. S1). Note that this reaction is first order with respect to both, O_2^- and enzyme.

Cantin et al. (1990) showed experimentally that catalase is the most important molecule in H_2O_2 defense of the ELF, exceeding the glutathione peroxidase concentration by nearly two orders of magnitude.¹⁰ The reaction between catalase and H_2O_2 is a two-step reaction in which a molecule of H_2O_2 reacts with catalase to form an enzyme-substrate complex, which then further reacts with another molecule of H_2O_2 to release H_2O and O_2 . Because catalase activity is often reported in terms of a single rate and turnover number, we combine both steps into one effective reaction of catalase and H_2O_2 , yielding 0.5 H_2O and 0.5 O_2 (R125, Tab. S1).¹¹

The catalytic activity of a particular enzyme in biological samples is often reported using the enzyme unit (U) per sample volume or mass. One U is defined as the amount of enzyme needed to catalyze one micromole of substrate per minute. The catalytic activity of a biological sample is generally determined by monitoring substrate decomposition in excess of substrate. Under these conditions, catalytic activity is maximal and a first order dependence exists between the velocity of the enzymatic reaction (v_{max} , in U mL⁻ 1) and the enzyme concentration (Eq. S1).¹² The proportionality factor is the turnover number k_{cat} , sometimes referred to as catalytic constant, and can be used to infer enzyme concentrations.¹³

$$[\text{Enzyme}] = \frac{v_{max}}{k_{cat}}$$
(Eq. S1)

96

For SOD, k_{cat} is reported to range between $10^5 - 10^6 \text{ s}^{-1.9,14}$ The activity of SOD in ELF was measured as 36.8 ± 2.0 *U* mL^{-1,10} which translates to an enzyme concentration of SOD of 0.58 - 6.5 nM using Eq. S1. Note that, the enzymatic reactions in this study do not occur in excess of substrate. Thus, a second-order rate coefficient for the reaction of SOD with O₂⁻ of 2.65 × 10⁻¹² cm⁻³ s⁻¹ is used in the chemical mechanism (k_{R124} , Tab. S1).^{15,16}

102 Catalase activity in ELF has been estimated to be 3.7 ± 0.6 U mL⁻¹ and for k_{cat} , values in the range of 3×10^{6} and 4×10^{7} s⁻¹ can be found.^{10,13} From these numbers, we derive a concentration of catalase of 1.3 - 24 pM. Second-order rate coefficients for catalase have been measured in the range of $1.6 \times 10^{-14} - 1.6 \times 10^{-13}$ cm⁻³ s⁻¹. For this study, we use a rate coefficient of 3.2×10^{-14} cm⁻³ s⁻¹ (k_{R125} , Tab. S1).^{11,17}

Given the broad reported ranges of v_{max} and k_{cat} , and the difficulty of sampling ELF, we acknowledge that there is large uncertainty associated with the concentrations of SOD and catalase in the ELF. Therefore, we restrict the determination of enzyme concentration to order of magnitude estimations and use 1 nM for

109 SOD and 5 pM for catalase in this study.

110 Note that the presence of PM may decrease the activity of antioxidant enzymes, as shown for SOD 111 previously.¹⁸ At the high PM concentrations for which these effects were observed, however, antioxidant

- enzymes contribute only marginally to overall ROS scavenging and interconversion in the model (Figs.
 4b,d). Thus, enzyme inhibition by PM2.5 requires further investigation in future experimental and modelling
 studies to clarify whether enzyme inhibition promotes the shift to the PM2.5-dominated kinetic regime of
 ROS conversion.
- 116

117 S3. Unspecific reaction of OH radicals with organic matter and estimated OH lifetime in the

118 <u>ELF</u>

119 OH reacts with nearly all matter present in the ELF with a rate coefficient approaching diffusion limitation.¹⁹ 120 Because of this unspecific reactivity, effective scavenging of OH radicals, e.g. through lung antioxidants, is not possible.^{19,20} As an estimate, we assume that the amount of protein in the ELF corresponds to the total 121 122 amount of dissolved organic matter. The protein mass in the ELF amounts to approximately 10 mg per mL 123 lung fluid.³ Using an average molecular weight of ~125 g mole⁻¹ of a single amino acid, the total amino acid 124 concentration in the ELF can be estimated to ~80 mmol L⁻¹. A second-order reaction of amino acids with OH is included, using a reaction rate coefficient on the order of 1.66 x 10⁻¹² cm⁻³ s⁻¹ (R122, Tab. S1).²¹ 125 Because proteins are folded, not all amino acids will be surface exposed, and thus accessible reaction 126 127 partners for OH. In general, spherical proteins have fewer surface exposed amino acids due to a smaller 128 surface-to-volume ratio, while elongated, cuboid or conical proteins have more surface exposed amino acids. Furthermore, the surface exposure of amino acids depends on the physical properties, e.g. the 129 130 polarity of the respective amino acid.²² Therefore, as an order of magnitude estimation, we assume that 50% of all amino acids are surface exposed in the ELF, yielding an effective amino acid concentration of 131 132 ~40 mmol L⁻¹ and, in turn, a lifetime of OH with respect to reaction with dissolved organic matter of $2.5 \times$ 133 10⁻⁸ s.

134

Pryor estimated the lifetime of OH in a cell to 10^{-9} s, assuming a rate coefficient of 1×10^{9} M⁻¹ s⁻¹ (equivalent to 1.66×10^{-12} cm⁻³ s⁻¹) and an effective organic matter concentration of 1 mol L⁻¹.²¹ From comparing the ELF protein mass of ~10 mg mL⁻¹ to the cellular protein mass of ~250 mg mL⁻¹, we infer that the ELF must be about ~25 times more dilute compared to a cell with respect to dissolved organic matter.^{2,23,24} Multiplying Pryor's OH lifetime in cells with this dilution factor yields an estimate for the OH lifetime in ELF of ~2.5 × 10^{-8} s, which is identical to the estimate above and consolidates our description of OH reactivity.

141

We find that inclusion of this second-order loss reaction of OH results in a decrease of momentary OH concentrations by one order of magnitude compared to our earlier calculations (Fig. 2a).¹ This finding suggests that OH will react unspecifically with organic matter and only secondarily with antioxidants (7%) in the ELF. Due to the fast reaction of OH, spatial gradients of reactants could play a role in OH fate, e.g. through local depletion of antioxidants around a dissolving particle or inhomogeneous distribution of organic matter and PM2.5 constituents in the ELF. However, for the calculations in this study, starting concentrations of antioxidants and organic matter were homogeneous across the bulk ELF.

150 **S4. Particulate pollutant concentrations in the ELF**

151 The ELF concentrations of redox-active PM2.5 constituents, $C_{ELF,Y}$, with Y standing for copper, iron, SOA, 152 or quinones, are calculated using Eq. S2.¹

153

$$C_Y = \frac{C_{gas,PM2.5} \times VR \times t_{acc} \times d_{PM2.5} \times MF_Y \times SF_Y}{M_Y \times V_{ELF}}$$
(Eq. S2)

154

Inhaled particles can reside in the ELF for several hours.²⁵ For this study, we assume a residence time of 155 156 PM2.5 of 2 hours and use this as accumulation time of inhaled particles (t_{acc}) and simulation time (t_{sim}) to 157 mimic a pseudo steady-state of ROS concentrations that would be achieved through continuous inhalation, 158 in line with our previous studies.¹ It should be noted that there is some uncertainty regarding the residence 159 time of PM2.5 in the ELF, with estimates on PM2.5 clearance also exceeding 2 hours.²⁶ As lung ventilation 160 rate, VR, 1.5 m³ h⁻¹ is used, and the PM2.5 deposition fraction in the ELF, *d*_{PM2.5}, is assumed to be 0.45.^{1,27} 161 The total ELF volume, V_{ELF}, is set to 20 mL.^{1,28} This study only includes copper and iron as transition metals, 162 because these are the only two that have been shown to significantly produce ROS in surrogate ELF 163 (sELF).^{29,30} The fractional solubilities, SF_{Y} , of copper and iron ions were discussed and tested extensively 164 in our previous study, including the effects of varying trace metal solubilities.¹ In line with the main results 165 of our previous study, the fractional solubilities of copper and iron ions are set to 0.4, 0.1, respectively.¹ 166 Due to the relatively small concentration of iron ions and the large concentration of potential organic ligands, iron ions are expected not to precipitate in the ELF.³¹ For the organic fraction in PM2.5, full solubility is 167 168 assumed. Mass fractions (MF) of redox-active PM2.5 constituents are derived from field observations and 169 tabulated in Tables S4-S6. Not all references in Tables S4 and S6 include PM2.5 concentrations. In such 170 cases, PM2.5 concentrations are estimated based on similar geographical locations and indicated with an 171 asterisk. Additionally, secondary organic aerosol (SOA) forms ROS and is included in the model.³²⁻³⁴ 172 However, because the exact mechanism of ROS formation by SOA in the ELF, first order formation rates of H₂O₂ and OH by SOA were parameterized based on experimental observations.^{1,32,33} Quinones in PM2.5 173 174 are included in this study as previously described.¹ Three guinones are included that were shown to form 175 ROS in sELF, phenanthrenequinone (PQN), 1,2-naphthoguinone (1,2-NQN), and 1,4-naphthoguinone (1,4-176 NQN) in a molar ratio of 2:1:1.29

177

178 S5. Gas-phase pollutant concentrations in the ELF

Exposure to gas-phase oxidants, O₃ and NO₂ is quantified in the model using a simplified breathing mechanism. In our previous study, it was assumed that the concentrations of these gas-phase oxidants in the lung were equal to their respective ambient concentrations. However, because of the reactivity of these oxidants, we find that lung gas-phase concentrations of these oxidants are depressed and limited by supply from inhalation of ambient air. In order to get accurate estimates for the amount of gas-phase oxidants

- transferred to the surfactant layer and ELF, an average lung volume of four L, an average breath volume of 1.5 L and an average duration of a breath of 3.6 s are used to compute mass fluxes into and out of the lung (Table S2). Application of this simplified breathing mechanism results in a significant decrease in the amount of gaseous oxidants in the surfactant layer and ELF. Therefore, neither O₃, nor NO₂ are saturated
- in ELF with respect to their ambient concentrations in this study (Fig. S5).
- 189

190 S6. Acid dissociation

In this study, corresponding acid/base-pairs are treated as a single species in the numerical computation of ordinary differential equations (ODE). This effectively reduces the stiffness of the ODE system and applies to glutathione (GSH/GS⁻), superoxide radicals (HO_2/O_2^{-}) and peroxynitrous acid (ONOOH/ONOO⁻). Instead of treating each species explicitly with separate differential equations and explicit protonation and deprotonation reactions, the pKa of these species was used to calculate the acid/base-ratio at the pH of the ELF (Table S2). Then, if a reaction requires only one of the two species to react, the rate of that reaction was multiplied with the inferred fraction of the reacting species.

198

199 S7. pH of the ELF

200 Following estimations by Holma (1985, 1989), the pH of the ELF was assumed to stay constant upon air pollutant exposure.^{35,36} In diseased individuals such as asthmatics³⁷, chronic obstructive pulmonary 201 202 disease,³⁸ or cystic fibrosis patients³⁹ the pH of the ELF may be decreased. Figure S6 shows the ROS 203 concentration, production, interconversion and transition metal valence state at pH 7 and pH 4 as a function 204 of PM2.5 concentration. Panel a shows that $C_{\Sigma ROS}$ displays a very similar behavior at pH 4 and pH 7. C_{O2} and C_{HO2} are slightly increased at low PM2.5 concentrations, but depressed at elevated PM2.5 205 206 concentrations (panel b). This reduction is due to a higher rate of Fe^{2+} -mediated interconversion of HO_2 207 and O_2^- to H_2O_2 (Table S1, R38 and R39), which in turn is due to a higher Fe^{2+}/Fe^{3+} ratio (panel c). The 208 Cu⁺/Cu²⁺ ratio shows the opposite trend at reduced pH (panel j).

209 Panel e shows that at pH 4, N_{EROS} is marginally reduced compared to pH 7. In panel f, N_{EROS} is broken

down to its components. P_{O2-} is slightly reduced due to decreased Cu⁺-dependent O₂⁻ formation (Table S1,

- 211 R54). P_{OH} is slightly increased due to the higher Fe²⁺/Fe³⁺ ratio and the according increase in the Fenton
- reaction (Table S1, R40).
- 213 Panel g shows that *CF*_{02-→H202} is slightly decreased at low PM2.5 concentration and slightly increased at
- higher PM2.5 concentrations compared to pH 7. Panel h shows that $CF_{H2O2 \rightarrow OH}$ is mostly unaffected by a change in pH. The reduction in $N_{\Sigma ROS}$ (panel e) paired with the increase in P_{OH} (panel f) at higher PM2.5
- concentrations results in a larger OH fraction (panel i) and a larger increase in OH dose (panel j) at pH 4.
- Reduced pH in the ELF may additionally lead to a reduction in antioxidant enzyme activity,¹⁷ increased
 transition metal solubility,⁴⁰ and increased OH yield from the Fenton reaction.^{41,42} These effects are not
- 219 included in the presented study, and are expected to all reduce ROS buffering and promote the PM2.5-

- 220 controlled OH radical production regime, which may exacerbate oxidative stress. Furthermore, in the
- 221 presented study SOA produces H_2O_2 and OH,^{32,33} which at lower pH may increasingly shift towards only
- H₂O₂ production, without OH getting formed.^{43,44} However, a thorough investigation of pH effects is beyond
- the scope of the presented study and warrants future investigations.

224 References

- Lakey, P. S. J.; Berkemeier, T.; Tong, H.; Arangio, A. M.; Lucas, K.; Pöschl, U.; Shiraiwa, M.
 Chemical Exposure-Response Relationship between Air Pollutants and Reactive Oxygen Species
 in the Human Respiratory Tract. *Sci. Rep.* 2016, *6* (1), 32916.
- 228 https://doi.org/10.1038/srep32916.
- 229 (2) Mudway, I. S.; Kelly, F. J. Ozone and the Lung: A Sensitive Issue. *Mol. Aspects Med.* 2000, *21* (1–230 2), 1–48. https://doi.org/10.1016/S0098-2997(00)00003-0.
- (3) van der Vliet, A.; O'Neill, C. A.; Cross, C. E.; Koostra, J. M.; Volz, W. G.; Halliwell, B.; Louie, S.
 Determination of Low-Molecular-Mass Antioxidant Concentrations in Human Respiratory Tract
 Lining Fluids. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1999, 276 (2), L289–L296.
 https://doi.org/10.1152/ajplung.1999.276.2.L289.
- (4) Kirsch, M.; Lehnig, M.; Korth, H.-G.; Sustmann, R.; de Groot, H. Inhibition of PeroxynitriteInduced Nitration of Tyrosine by Glutathione in the Presence of Carbon Dioxide through Both
 Radical Repair and Peroxynitrate Formation. *Chem. Eur. J.* 2001, 7 (15), 3313–3320.
- 238 https://doi.org/10.1002/1521-3765(20010803)7:15<3313::aid-chem3313>3.0.co;2-7.
- Wardman, P.; Sonntag, C. [3] Kinetic factors that control the fate of thiyl radicals in cells. In
 Methods in Enzymology; Elsevier: gr, 1995; Vol. 251, pp 31–45. https://doi.org/10.1016/0076 6879(95)51108-3.
- (6) Kelly, F. J.; Tetley, T. D. Nitrogen Dioxide Depletes Uric Acid and Ascorbic Acid but Not
 Glutathione from Lung Lining Fluid. *Biochem. J.* **1997**, *325* (1), 95–99.
 https://doi.org/10.1042/bj3250095.
- (7) Kelly, F. J.; Blomberg, A.; Frew, A.; Holgate, S. T.; Sandstrom, T. Antioxidant Kinetics in Lung
 Lavage Fluid Following Exposure of Humans to Nitrogen Dioxide. *Am. J. Respir. Crit. Care Med.*1996, 154 (6), 1700–1705. https://doi.org/10.1164/ajrccm.154.6.8970358.
- (8) Kohen, R.; Nyska, A. Invited Review: Oxidation of Biological Systems: Oxidative Stress
 Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. *Toxicol. Pathol.* 2002, *30* (6), 620–650. https://doi.org/10.1080/01926230290166724.
- (9) Fee, J. A.; Bull, C. Steady-State Kinetic Studies of Superoxide Dismutases. Saturative Behavior of
 the Copper- and Zinc-Containing Protein. J. Biol. Chem. 1986, 261 (28), 13000–13005.
 https://doi.org/10.1016/S0021-9258(18)69261-0.
- (10) Cantin, A. M.; Fells, G. A.; Hubbard, R. C.; Crystal, R. G. Antioxidant Macromolecules in the
 Epithelial Lining Fluid of the Normal Human Lower Respiratory Tract. *J. Clin. Invest.* 1990, *86* (3),
 962–971. https://doi.org/10.1172/JCl114798.
- 257 (11) Aebi, H. [13] Catalase in Vitro. *Methods Enzymol.* **1984**, *105*, 121–126.
- 258 (12) Bisswanger, H. *Practical Enzymology*; John Wiley & Sons, 2019.
- (13) Smejkal, G. B.; Kakumanu, S. Enzymes and Their Turnover Numbers. *Expert Rev. Proteomics* **2019**, *16* (7), 543–544. https://doi.org/10.1080/14789450.2019.1630275.
- (14) Bar-Even, A.; Noor, E.; Savir, Y.; Liebermeister, W.; Davidi, D.; Tawfik, D. S.; Milo, R. The
 Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme
 Parameters. *Biochemistry* 2011, *50* (21), 4402–4410. https://doi.org/10.1021/bi2002289.
- Parameters. *Biochemistry* 2011, *50* (21), 4402–4410. https://doi.org/10.1021/bi2002289.
 (15) Forman, H. J.; Fridovich, I. Superoxide Dismutase: A Comparison of Rate Constants. *Arch.*
- 265 Biochem. Biophys. **1973**, *158* (1), 396–400. https://doi.org/10.1016/0003-9861(73)90636-X.
- 266 (16) Fridovich, I. Superoxide Dismutases. Annu. Rev. Biochem. **1975**, 44 (1), 147–159.
- 267 (17) Jones, P.; Suggett, A. The Catalase–Hydrogen Peroxide System. Kinetics of Catalatic Action at
 268 High Substrate Concentrations. *Biochem. J.* **1968**, *110* (4), 617–620.
- 269 https://doi.org/10.1042/bj1100617.

270 (18) Hatzis, C.; Godleski, J. J.; González-Flecha, B.; Wolfson, J. M.; Koutrakis, P. Ambient Particulate 271 Matter Exhibits Direct Inhibitory Effects on Oxidative Stress Enzymes. Environ. Sci. Technol. 272 **2006**, 40 (8), 2805–2811. https://doi.org/10.1021/es0518732. 273 (19) Forman, H. J.; Davies, K. J. A.; Ursini, F. How Do Nutritional Antioxidants Really Work: 274 Nucleophilic Tone and Para-Hormesis versus Free Radical Scavenging in Vivo. Free Radic. Biol. 275 Med. 2014, 66, 24–35. https://doi.org/10.1016/j.freeradbiomed.2013.05.045. 276 (20) Sies, H.; Berndt, C.; Jones, D. P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. 277 https://doi.org/10.1146/annurev-biochem-061516-045037. 278 (21) Pryor, W. A. Oxy-Radicals and Related Species: Their Formation, Lifetimes, and Reactions. Annu. 279 *Rev. Physiol.* **1986**, 48 (1), 657–667. 280 (22) Holbrook, S. R.; Muskal, S. M.; Kim, S.-H. Predicting Surface Exposure of Amino Acids from 281 Protein Sequence. Protein Eng. Des. Sel. 1990, 3 (8), 659-665. 282 https://doi.org/10.1093/protein/3.8.659. 283 (23) Milo, R. What Is the Total Number of Protein Molecules per Cell Volume? A Call to Rethink Some 284 Published Values. BioEssays 2013, 35 (12), 1050–1055. 285 https://doi.org/10.1002/bies.201300066. 286 (24) Brown, G. C. Total Cell Protein Concentration as an Evolutionary Constraint on the Metabolic 287 Control Distribution in Cells. J. Theor. Biol. 1991, 153 (2), 195-203. 288 https://doi.org/10.1016/S0022-5193(05)80422-9. (25) 289 Ghio, A. J.; Richards, J. H.; Dittrich, K. L.; Samet, J. M. Metal Storage and Transport Proteins 290 Increase After Exposure of the Rat Lung to an Air Pollution Particle. Toxicol. Pathol. 1998, 26 (3), 291 388–394. https://doi.org/10.1177/019262339802600313. 292 (26) Lippmann, M.; Yeates, D. B.; Albert, R. E. Deposition, Retention, and Clearance of Inhaled Particles. Occup. Environ. Med. 1980, 37 (4), 337–362. https://doi.org/10.1136/oem.37.4.337. 293 294 (27) Sarangapani, R. The Role of Dispersion in Particle Deposition in Human Airways. Toxicol. Sci. 295 **2000**, 54 (1), 229–236. https://doi.org/10.1093/toxsci/54.1.229. 296 (28) Walters, D. V. Lung Lining Liquid – The Hidden Depths. *Neonatology* **2002**, *81* (1), 2–5. 297 https://doi.org/10.1159/000056764. Charrier, J. G.; McFall, A. S.; Richards-Henderson, N. K.; Anastasio, C. Hydrogen Peroxide 298 (29) 299 Formation in a Surrogate Lung Fluid by Transition Metals and Quinones Present in Particulate 300 Matter. Environ. Sci. Technol. 2014, 48 (12), 7010–7017. https://doi.org/10.1021/es501011w. 301 (30) Charrier, J. G.; Anastasio, C. Impacts of Antioxidants on Hydroxyl Radical Production from 302 Individual and Mixed Transition Metals in a Surrogate Lung Fluid. Atmos. Environ. 2011, 45 (40), 303 7555–7562. https://doi.org/10.1016/j.atmosenv.2010.12.021. 304 (31) Gonzalez, D. H.; Diaz, D. A.; Baumann, J. P.; Ghio, A. J.; Paulson, S. E. Effects of Albumin, 305 Transferrin and Humic-like Substances on Iron-Mediated OH Radical Formation in Human Lung 306 Fluids. Free Radic. Biol. Med. 2021, 165, 79-87. 307 https://doi.org/10.1016/j.freeradbiomed.2021.01.021. 308 (32) Wang, Y.; Kim, H.; Paulson, S. E. Hydrogen Peroxide Generation from α - and β -Pinene and 309 Toluene Secondary Organic Aerosols. Atmos. Environ. 2011, 45 (18), 3149–3156. 310 https://doi.org/10.1016/j.atmosenv.2011.02.060. 311 (33) Tong, H.; Arangio, A. M.; Lakey, P. S. J.; Berkemeier, T.; Liu, F.; Kampf, C. J.; Brune, W. H.; Pöschl, 312 U.; Shiraiwa, M. Hydroxyl Radicals from Secondary Organic Aerosol Decomposition in Water. Atmospheric Chem. Phys. 2016, 16 (3), 1761–1771. https://doi.org/10.5194/acp-16-1761-2016. 313 314 (34) Tong, H.; Lakey, P. S. J.; Arangio, A. M.; Socorro, J.; Kampf, C. J.; Berkemeier, T.; Brune, W. H.; 315 Pöschl, U.; Shiraiwa, M. Reactive Oxygen Species Formed in Aqueous Mixtures of Secondary 316 Organic Aerosols and Mineral Dust Influencing Cloud Chemistry and Public Health in the 317 Anthropocene. Faraday Discuss. 2017, 200, 251–270. https://doi.org/10.1039/C7FD00023E.

319 Mucus on Health Effects Due to Acidic Pollution. Sci. Total Environ. 1985, 41 (2), 101–123. 320 https://doi.org/10.1016/0048-9697(85)90181-0. 321 (36) Holma, B. Effects of Inhaled Acids on Airway Mucus and Its Consequences for Health. Env. 322 Health Perspect 1989, No. 79, 109–113. 323 (37) Hunt, J. F.; Fang, K.; Malik, R.; Snyder, A.; Malhotra, N.; Platts-Mills, T. A. E.; Gaston, B. 324 Endogenous Airway Acidification: Implications for Asthma Pathophysiology. Am. J. Respir. Crit. 325 *Care Med.* **2000**, *161* (3), 694–699. https://doi.org/10.1164/ajrccm.161.3.9911005. 326 (38) Ricciardolo, F. L. M.; Gaston, B.; Hunt, J. Acid Stress in the Pathology of Asthma. J. Allergy Clin. 327 Immunol. 2004, 113 (4), 610-619. https://doi.org/10.1016/j.jaci.2003.12.034. 328 (39) Tate, S.; MacGregor, G.; Davis, M.; Innes, J.; Greening, A. Airways in Cystic Fibrosis Are Acidified: 329 Detection by Exhaled Breath Condensate. Thorax 2002, 57 (11), 926–929. 330 (40) Fang, T.; Guo, H.; Zeng, L.; Verma, V.; Nenes, A.; Weber, R. J. Highly Acidic Ambient Particles, 331 Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity. Environ. 332 Sci. Technol. 2017, 51 (5), 2611–2620. https://doi.org/10.1021/acs.est.6b06151. 333 (41) Hug, S. J.; Leupin, O. Iron-Catalyzed Oxidation of Arsenic(III) by Oxygen and by Hydrogen 334 Peroxide: PH-Dependent Formation of Oxidants in the Fenton Reaction. Environ. Sci. Technol. 335 2003, 37 (12), 2734–2742. https://doi.org/10.1021/es026208x. 336 (42) Bataineh, H.; Pestovsky, O.; Bakac, A. PH-Induced Mechanistic Changeover from Hydroxyl Radicals to Iron(Iv) in the Fenton Reaction. Chem. Sci. 2012, 3 (5), 1594. 337 338 https://doi.org/10.1039/c2sc20099f. (43) Qiu, J.; Tonokura, K.; Enami, S. Proton-Catalyzed Decomposition of α -Hydroxyalkyl-339 340 Hydroperoxides in Water. Environ. Sci. Technol. 2020, 54 (17), 10561-10569. https://doi.org/10.1021/acs.est.0c03438. 341 342 (44) Enami, S. Fates of Organic Hydroperoxides in Atmospheric Condensed Phases. J. Phys. Chem. A 343 **2021**, *125* (21), 4513–4523. https://doi.org/10.1021/acs.jpca.1c01513. 344 (45) Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J. Protocol for the Development of the 345 Master Chemical Mechanism, MCM v3 (Part A): Tropospheric Degradation of Non-Aromatic 346 Volatile Organic Compounds. Atmos Chem Phys 2003, 3 (1), 161–180. 347 https://doi.org/10.5194/acp-3-161-2003. (46) Jenkin, M. E.; Saunders, S. M.; Wagner, V.; Pilling, M. J. Protocol for the Development of the 348 349 Master Chemical Mechanism, MCM v3 (Part B): Tropospheric Degradation of Aromatic Volatile Organic Compounds. Part B 2003, 3 (1), 181–193. https://doi.org/10.5194/acp-3-181-2003. 350 351 (47) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of Rate Constants for 352 Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (•OH/•O⁻ in Aqueous 353 Solution. J. Phys. Chem. Ref. Data 1988, 17 (2), 513-886. https://doi.org/10.1063/1.555805. 354 (48) Hoffman, M. Z.; Hayon, E. Pulse Radiolysis Study of Sulfhydryl Compounds in Aqueous Solution. 355 J. Phys. Chem. 1973, 77 (8), 990–996. https://doi.org/10.1021/j100627a005. 356 (49) Zhao, M. J.; Jung, L.; Tanielian, C.; Mechin, R. Kinetics of the Competitive Degradation of 357 Deoxyribose and Other Biomolecules by Hydroxyl Radicals Produced by the Fenton Reaction. 358 Free Radic. Res. 1994, 20 (6), 345–363. https://doi.org/10.3109/10715769409145635. 359 (50) Kanofsky, J. R.; Sima, P. D. Reactive Absorption of Ozone by Aqueous Biomolecule Solutions: 360 Implications for the Role of Sulfhydryl Compounds as Targets for Ozone. Arch. Biochem. Biophys. **1995**, *316* (1), 52–62. https://doi.org/10.1006/abbi.1995.1009. 361 362 (51) Pryor, W. A.; Giamalva, D. H.; Church, D. F. Kinetics of Ozonation. 2. Amino Acids and Model 363 Compounds in Water and Comparisons to Rates in Nonpolar Solvents. J. Am. Chem. Soc. 1984, 364 106 (23), 7094–7100. https://doi.org/10.1021/ja00335a038.

Holma, B. Influence of Buffer Capacity and PH-Dependent Rheological Properties of Respiratory

318

(35)

365 (52) Kim, H. I.; Kim, H.; Shin, Y. S.; Beegle, L. W.; Jang, S. S.; Neidholdt, E. L.; Goddard, W. A.; Heath, J. 366 R.; Kanik, I.; Beauchamp, J. L. Interfacial Reactions of Ozone with Surfactant Protein B in a Model 367 Lung Surfactant System. J. Am. Chem. Soc. 2010, 132 (7), 2254–2263. 368 https://doi.org/10.1021/ja908477w. 369 (53) Hasson, A. S.; Ho, A. W.; Kuwata, K. T.; Paulson, S. E. Production of Stabilized Criegee 370 Intermediates and Peroxides in the Gas Phase Ozonolysis of Alkenes: 2. Asymmetric and 371 Biogenic Alkenes. J. Geophys. Res. Atmospheres 2001, 106 (D24), 34143-34153. 372 https://doi.org/10.1029/2001JD000598. 373 (54) Hewitt, C. N.; Kok, G. L. Formation and Occurrence of Organic Hydroperoxides in the 374 Troposphere: Laboratory and Field Observations. J. Atmospheric Chem. 1991, 12 (2), 181–194. 375 https://doi.org/10.1007/BF00115779. 376 Zhou, Z.; Abbatt, J. P. D. Formation of Gas-Phase Hydrogen Peroxide via Multiphase Ozonolysis (55) of Unsaturated Lipids. Environ. Sci. Technol. Lett. 2021, 8 (2), 114-120. 377 378 https://doi.org/10.1021/acs.estlett.0c00757. 379 (56) Navarrete, M.; Rangel, C.; Corchado, J. C.; Espinosa-García, J. Trapping of the OH Radical by α -380 Tocopherol: A Theoretical Study. J. Phys. Chem. A 2005, 109 (21), 4777–4784. 381 https://doi.org/10.1021/jp050717e. 382 (57) Kermani, S.; Ben-Jebria, A.; Ultman, J. S. Kinetics of Ozone Reaction with Uric Acid, Ascorbic 383 Acid, and Glutathione at Physiologically Relevant Conditions. Arch. Biochem. Biophys. 2006, 451 (1), 8–16. https://doi.org/10.1016/j.abb.2006.04.015. 384 Rush, J. D.; Bielski, B. H. J. Pulse Radiolytic Studies of the Reaction of Perhydroxyl/Superoxide 385 (58) O2- with Iron(II)/Iron(III) lons. The Reactivity of HO2/O2- with Ferric lons and Its Implication on 386 387 the Occurrence of the Haber-Weiss Reaction. J. Phys. Chem. 1985, 89 (23), 5062–5066. 388 https://doi.org/10.1021/j100269a035. 389 (59) Christensen, H.; Sehested, K.; Corfitzen, H. Reactions of Hydroxyl Radicals with Hydrogen 390 Peroxide at Ambient and Elevated Temperatures. J. Phys. Chem. 1982, 86 (9), 1588–1590. 391 https://doi.org/10.1021/j100206a023. 392 Sehested, K.; Rasmussen, O. L.; Fricke, H. Rate Constants of OH with HO2,O2-, and H2O2+ from (60) 393 Hydrogen Peroxide Formation in Pulse-Irradiated Oxygenated Water. J. Phys. Chem. 1968, 72 394 (2), 626–631. https://doi.org/10.1021/j100848a040. 395 (61) Koppenol, W. H. The Haber-Weiss Cycle – 70 Years Later. Redox Rep. 2001, 6 (4), 229–234. 396 https://doi.org/10.1179/135100001101536373. 397 Jayson, G. G.; Parsons, B. J.; Swallow, A. J. Oxidation of Ferrous Ions by Perhydroxyl Radicals. J. (62) Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1973, 69, 236–242. 398 399 https://doi.org/10.1039/f19736900236. 400 (63) Lewis, S.; Lynch, A.; Bachas, L.; Hampson, S.; Ormsbee, L.; Bhattacharyya, D. Chelate-Modified 401 Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems. 402 Environ. Eng. Sci. 2009, 26 (4), 849–859. https://doi.org/10.1089/ees.2008.0277. 403 (64) Stuglik, Z.; PawełZagórski, Z. Pulse Radiolysis of Neutral Iron(II) Solutions: Oxidation of Ferrous 404 Ions by OH Radicals. Radiat. Phys. Chem. 1977 1981, 17 (4), 229-233. 405 https://doi.org/10.1016/0146-5724(81)90336-8. 406 (65) Masuda, T.; Shinohara, H.; Kondo, M. Reactions of Hydroxyl Radicals with Nucleic Acid Bases 407 and the Related Compounds in Gamma-Irradiated Aqueous Solution. J. Radiat. Res. (Tokyo) 408 **1978**, *16* (3), 153–161. 409 (66) Liphard, M.; Bothe, E.; Schulte-Frohlinde, D. The Influence of Glutathione on Single-Strand 410 Breakage in Single-Stranded DNA Irradiated in Aqueous Solution in the Absence and Presence of 411 Oxygen. Int. J. Radiat. Biol. 1990, 58 (4), 589–602. 412 https://doi.org/10.1080/09553009014551951.

413 (67) Carr, A.; Lykkesfeldt, J. Vitamin C in Health and Disease; MDPI-Multidisciplinary Digital 414 Publishing Institute, 2018. 415 (68) Shen, J.; Griffiths, P. T.; Campbell, S. J.; Utinger, B.; Kalberer, M.; Paulson, S. E. Ascorbate 416 Oxidation by Iron, Copper and Reactive Oxygen Species: Review, Model Development, and 417 Derivation of Key Rate Constants. Sci. Rep. 2021, 11 (1), 7417. https://doi.org/10.1038/s41598-418 021-86477-8. 419 (69) Adams, G. E.; Boag, J. W.; Currant, J.; Michael, B. D. Absolute Rate Constants for the Reaction of 420 the Hydroxyl Radical with Organic Compounds; Pulse Radiolysis, 1965. 421 (70) Goldstein, S.; Lind, J.; Merenyi, G. Reaction of Organic Peroxyl Radicals with * NO 2 and * NO in 422 Aqueous Solution: Intermediacy of Organic Peroxynitrate and Peroxynitrite Species. J. Phys. 423 Chem. A 2004, 108 (10), 1719–1725. https://doi.org/10.1021/jp037431z. 424 (71) Jones, C. M.; Lawrence, A.; Wardman, P.; Burkitt, M. J. Electron Paramagnetic Resonance Spin 425 Trapping Investigation into the Kinetics of Glutathione Oxidation by the Superoxide Radical: Re-426 Evaluation of the Rate Constant. Free Radic. Biol. Med. 2002, 32 (10), 982–990. 427 https://doi.org/10.1016/S0891-5849(02)00791-8. 428 (72) Winterbourn, C. C.; Metodiewa, D. The Reaction of Superoxide with Reduced Glutathione. Arch. 429 Biochem. Biophys. 1994, 314 (2), 284–290. https://doi.org/10.1006/abbi.1994.1444. 430 (73) Wefers, H.; Sies, H. Oxidation of Glutathione by the Superoxide Radical to the Disulfide and the 431 Sulfonate Yielding Singlet Oxygen. Eur. J. Biochem. 1983, 137 (1-2), 29-36. 432 https://doi.org/10.1111/j.1432-1033.1983.tb07791.x. 433 (74) Ford, E.; Hughes, M. N.; Wardman, P. Kinetics of the Reactions of Nitrogen Dioxide with 434 Glutathione, Cysteine, and Uric Acid at Physiological PH. Free Radic. Biol. Med. 2002, 32 (12), 435 1314–1323. https://doi.org/10.1016/S0891-5849(02)00850-X. Luo, D.; Smith, S. W.; Anderson, B. D. Kinetics and Mechanism of the Reaction of Cysteine and 436 (75) 437 Hydrogen Peroxide in Aqueous Solution. J. Pharm. Sci. 2005, 94 (2), 304–316. 438 https://doi.org/10.1002/jps.20253. 439 (76) Winkler, B. S.; Orselli, S. M.; Rex, T. S. The Redox Couple between Glutathione and Ascorbic 440 Acid: A Chemical and Physiological Perspective. Free Radic. Biol. Med. 1994, 17 (4), 333–349. 441 https://doi.org/10.1016/0891-5849(94)90019-1. 442 (77) Buettner, G. R.; Jurkiewicz, B. A. Catalytic Metals, Ascorbate and Free Radicals: Combinations to 443 Avoid. Radiat. Res. 1996, 145 (5), 532. https://doi.org/10.2307/3579271. 444 (78) Alfassi, Z. B.; Huie, R. E.; Neta, P.; Shoute, L. C. T. Temperature Dependence of the Rate Constants for Reaction of Inorganic Radicals with Organic Reductants. J. Phys. Chem. 1990, 94 445 446 (25), 8800-8805. https://doi.org/10.1021/j100388a011. (79) 447 Augusto, O.; Bonini, M. G.; Amanso, A. M.; Linares, E.; Santos, C. C. X.; De Menezes, S. L. 448 Nitrogen Dioxide and Carbonate Radical Anion: Two Emerging Radicals in Biology. Free Radic. 449 Biol. Med. 2002, 32 (9), 841–859. https://doi.org/10.1016/S0891-5849(02)00786-4. 450 (80) Goldstein, S.; Czapski, G. Reactivity of Peroxynitrite versus Simultaneous Generation of * NO and 451 O₂ • toward NADH. Chem. Res. Toxicol. 2000, 13 (8), 736–741. 452 https://doi.org/10.1021/tx000099n. 453 (81) Graetzel, M. Pulsradiolytische Untersuchung einiger Elementarprozesse der Oxydation und 454 Reduktion des Nitritions. Berichte Bunsenges. Fuer Phys. Chem. 1969, 73 (7). 455 (82) Jacob, D. Heterogeneous Chemistry and Tropospheric Ozone. Atmos. Environ. 2000, 34 (12–14), 456 2131-2159. https://doi.org/10.1016/S1352-2310(99)00462-8. 457 (83) Bonini, M. G.; Augusto, O. Carbon Dioxide Stimulates the Production of Thiyl, Sulfinyl, and 458 Disulfide Radical Anion from Thiol Oxidation by Peroxynitrite. J. Biol. Chem. 2001, 276 (13), 459 9749–9754. https://doi.org/10.1074/jbc.M008456200.

460 (84) Kurz, C. R.; Kissner, R.; Nauser, T.; Perrin, D.; Koppenol, W. H. Rapid Scavenging of Peroxynitrous 461 Acid by Monohydroascorbate. Free Radic. Biol. Med. 2003, 35 (12), 1529–1537. 462 https://doi.org/10.1016/j.freeradbiomed.2003.08.012. 463 (85) Squadrito, G. L.; Cueto, R.; Splenser, A. E.; Valavanidis, A.; Zhang, H.; Uppu, R. M.; Pryor, W. A. Reaction of Uric Acid with Peroxynitrite and Implications for the Mechanism of Neuroprotection 464 465 by Uric Acid. Arch. Biochem. Biophys. 2000, 376 (2), 333-337. 466 https://doi.org/10.1006/abbi.2000.1721. 467 Arana, A. A.; Artaxo, P.; Rizzo, L. V.; Bastos, W. Long Term Measurements of the Elemental (86) 468 Composition and Optical Properties of Aerosols in Amazonia. E3S Web Conf. 2013, 1, 03005. 469 https://doi.org/10.1051/e3sconf/20130103005. 470 (87) Birmili, W.; Allen, A. G.; Bary, F.; Harrison, R. M. Trace Metal Concentrations and Water 471 Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic. Environ. Sci. 472 *Technol.* **2006**, *40* (4), 1144–1153. https://doi.org/10.1021/es0486925. 473 (88) Heal, M. R.; Hibbs, L. R.; Agius, R. M.; Beverland, I. J. Total and Water-Soluble Trace Metal 474 Content of Urban Background PM10, PM2.5 and Black Smoke in Edinburgh, UK. Atmos. Environ. 475 2005, 39 (8), 1417–1430. https://doi.org/10.1016/j.atmosenv.2004.11.026. 476 (89) Harrison, R. M.; Yin, J. Chemical Speciation of PM2.5 Particles at Urban Background and Rural 477 Sites in the UK Atmosphere. J. Environ. Monit. 2010, 12 (7), 1404–1414. 478 https://doi.org/10.1039/c000329h. 479 (90) Maenhaut, W.; Salma, I.; Cafmeyer, J.; Annegarn, H. J.; Andreae, M. O. Regional Atmospheric 480 Aerosol Composition and Sources in the Eastern Transvaal, South Africa, and Impact of Biomass 481 Burning. J. Geophys. Res. Atmospheres 1996, 101 (D19), 23631–23650. 482 https://doi.org/10.1029/95JD02930. Artaxo, P.; Gerab, F.; Yamasoe, M. A.; Martins, J. V. Fine Mode Aerosol Composition at Three 483 (91) 484 Long-Term Atmospheric Monitoring Sites in the Amazon Basin. J. Geophys. Res. 1994, 99 (D11), 485 22857–22868. https://doi.org/10.1029/94JD01023. 486 (92) Pakkanen, T. A.; Loukkola, K.; Korhonen, C. H.; Aurela, M.; Mäkelä, T.; Hillamo, R. E.; Aarnio, P.; 487 Koskentalo, T.; Kousa, A.; Maenhaut, W. Sources and Chemical Composition of Atmospheric Fine 488 and Coarse Particles in the Helsinki Area. Atmos. Environ. 2001, 35 (32), 5381–5391. 489 https://doi.org/10.1016/S1352-2310(01)00307-7. 490 (93) Olson, D. A.; Turlington, J.; Duvall, R. M.; McDow, S. R.; Stevens, C. D.; Williams, R. Indoor and 491 Outdoor Concentrations of Organic and Inorganic Molecular Markers: Source Apportionment of 492 PM2.5 Using Low-Volume Samples. Atmos. Environ. 2008, 42 (8), 1742–1751. 493 https://doi.org/10.1016/j.atmosenv.2007.11.035. 494 (94) Lee, P. K. H.; Brook, J. R.; Dabek-Zlotorzynska, E.; Mabury, S. A. Identification of the Major Sources Contributing to PM 2.5 Observed in Toronto. Environ. Sci. Technol. 2003, 37 (21), 4831-495 496 4840. https://doi.org/10.1021/es026473i. 497 (95) Upadhyay, N.; Clements, A.; Fraser, M.; Herckes, P. Chemical Speciation of PM 2.5 and PM 10 in 498 South Phoenix, AZ. J. Air Waste Manag. Assoc. 2011, 61 (3), 302–310. 499 https://doi.org/10.3155/1047-3289.61.3.302. 500 (96) Hassanvand, M. S.; Naddafi, K.; Faridi, S.; Nabizadeh, R.; Sowlat, M. H.; Momeniha, F.; 501 Gholampour, A.; Arhami, M.; Kashani, H.; Zare, A.; Niazi, S.; Rastkari, N.; Nazmara, S.; Ghani, M.; 502 Yunesian, M. Characterization of PAHs and Metals in Indoor/Outdoor PM10/PM2.5/PM1 in a 503 Retirement Home and a School Dormitory. Sci. Total Environ. 2015, 527–528, 100–110. 504 https://doi.org/10.1016/j.scitotenv.2015.05.001. 505 (97) Contini, D.; Cesari, D.; Donateo, A.; Chirizzi, D.; Belosi, F. Characterization of PM10 and PM2.5 506 and Their Metals Content in Different Typologies of Sites in South-Eastern Italy. Atmosphere 507 **2014**, 5 (2), 435–453. https://doi.org/10.3390/atmos5020435.

- (98) Manousakas, M.; Papaefthymiou, H.; Eleftheriadis, K.; Katsanou, K. Determination of WaterSoluble and Insoluble Elements in PM2.5 by ICP-MS. *Sci. Total Environ.* 2014, 493, 694–700.
 https://doi.org/10.1016/j.scitotenv.2014.06.043.
- (99) Han, Y.-J.; Kim, H.-W.; Cho, S.-H.; Kim, P.-R.; Kim, W.-J. Metallic Elements in PM2.5 in Different
 Functional Areas of Korea: Concentrations and Source Identification. *Atmospheric Res.* 2015,
 153, 416–428. https://doi.org/10.1016/j.atmosres.2014.10.002.
- (100) Maenhaut, W.; Raes, N.; Chi, X.; Cafmeyer, J.; Wang, W.; Salma, I. Chemical Composition and
 Mass Closure for Fine and Coarse Aerosols at a Kerbside in Budapest, Hungary, in Spring 2002. *X-Ray Spectrom.* 2005, *34* (4), 290–296. https://doi.org/10.1002/xrs.820.
- (101) Rogula-Kozłowska, W.; Błaszczak, B.; Szopa, S.; Klejnowski, K.; Sówka, I.; Zwoździak, A.;
 Jabłońska, M.; Mathews, B. PM2.5 in the Central Part of Upper Silesia, Poland: Concentrations,
 Elemental Composition, and Mobility of Components. *Environ. Monit. Assess.* 2013, 185 (1),
 581–601. https://doi.org/10.1007/s10661-012-2577-1.
- (102) Morishita, M.; Keeler, G. J.; Kamal, A. S.; Wagner, J. G.; Harkema, J. R.; Rohr, A. C. Identification of Ambient PM2.5 Sources and Analysis of Pollution Episodes in Detroit, Michigan Using Highly
 Time-Resolved Measurements. *Atmos. Environ.* 2011, 45 (8), 1627–1637.
- 524 https://doi.org/10.1016/j.atmosenv.2010.09.062.
- (103) Chow, J. C.; Watson, J. G.; Fujita, E. M.; Lu, Z.; Lawson, D. R.; Ashbaugh, L. L. Temporal and
 Spatial Variations of PM2.5 and PM10 Aerosol in the Southern California Air Quality Study.
 Atmos. Environ. **1994**, *28* (12), 2061–2080. https://doi.org/10.1016/1352-2310(94)90474-X.
- (104) Vecchi, R.; Marcazzan, G.; Valli, G.; Ceriani, M.; Antoniazzi, C. The Role of Atmospheric
 Dispersion in the Seasonal Variation of PM1 and PM2.5 Concentration and Composition in the
 Urban Area of Milan (Italy). *Atmos. Environ.* 2004, *38* (27), 4437–4446.
 https://doi.org/10.1016/j.atmosenv.2004.05.029.
- 532 (105) Khodeir, M.; Shamy, M.; Alghamdi, M.; Zhong, M.; Sun, H.; Costa, M.; Chen, L.-C.; Maciejczyk, P.
 533 Source Apportionment and Elemental Composition of PM2.5 and PM10 in Jeddah City, Saudi
 534 Arabia. Atmospheric Pollut. Res. 2012, 3 (3), 331–340. https://doi.org/10.5094/APR.2012.037.
- (106) Hagler, G. S. W.; Bergin, M. H.; Salmon, L. G.; Yu, J. Z.; Wan, E. C. H.; Zheng, M.; Zeng, L. M.;
 Kiang, C. S.; Zhang, Y. H.; Schauer, J. J. Local and Regional Anthropogenic Influence on PM2.5
 Elements in Hong Kong. *Atmos. Environ.* 2007, *41* (28), 5994–6004.
- 538 https://doi.org/10.1016/j.atmosenv.2007.03.012.
- 539 (107) Loyola, J.; Arbilla, G.; Quiterio, S. L.; Escaleira, V.; Minho, A. S. Trace Metals in the Urban
 540 Aerosols of Rio de Janeiro City. *J. Braz. Chem. Soc.* 2012, *23* (4), 628–638.
 541 https://doi.org/10.1590/S0103-50532012000400007.
- 542 (108) Squizzato, S.; Masiol, M.; Visin, F.; Canal, A.; Rampazzo, G.; Pavoni, B. The PM2.5 Chemical
 543 Composition in an Industrial Zone Included in a Large Urban Settlement: Main Sources and Local
 544 Background. *Environ. Sci. Process. Impacts* 2014, *16* (8), 1913–1922.
 545 https://doi.org/10.1039/C4EM00111G.
- 546 (109) Matschullat, J.; Maenhaut, W.; Zimmermann, F.; Juliane Fiebig. Aerosol and Bulk Deposition
 547 Trends in the 1990's, Eastern Erzgebirge, Central Europe. *Atmos. Environ.* 2000, 34 (19), 3213–
 548 3221. https://doi.org/10.1016/S1352-2310(99)00516-6.
- 549 (110) Querol, X.; Alastuey, A.; Rodriguez, S.; Plana, F.; Ruiz, C. R.; Cots, N.; Massagué, G.; Puig, O.
 550 PM10 and PM2.5 Source Apportionment in the Barcelona Metropolitan Area, Catalonia, Spain.
 551 Atmos. Environ. 2001, 35 (36), 6407–6419. https://doi.org/10.1016/S1352-2310(01)00361-2.
- Martinez, M. A.; Caballero, P.; Carrillo, O.; Mendoza, A.; Mejia, G. M. Chemical Characterization
 and Factor Analysis of PM _{2.5} in Two Sites of Monterrey, Mexico. *J. Air Waste Manag. Assoc.* **2012**, *62* (7), 817–827. https://doi.org/10.1080/10962247.2012.681421.

555 (112)Janssen, N. A. H.; Van Mansom, D. F. M.; Van Der Jagt, K.; Harssema, H.; Hoek, G. Mass 556 Concentration and Elemental Composition of Airborne Particulate Matter at Street and 557 Background Locations. Atmos. Environ. 1997, 31 (8), 1185–1193. 558 https://doi.org/10.1016/S1352-2310(96)00291-9. 559 Na, K.; Cocker, D. R. Characterization and Source Identification of Trace Elements in PM2.5 from (113) 560 Mira Loma, Southern California. Atmospheric Res. 2009, 93 (4), 793–800. 561 https://doi.org/10.1016/j.atmosres.2009.03.012. 562 Shaltout, A. A.; Boman, J.; Al-Malawi, D. R.; Shehadeh, Z. F. Elemental Composition of PM2.5 (114)563 Particles Sampled in Industrial and Residential Areas of Taif, Saudi Arabia. Aerosol Air Qual. Res. 564 2013, 13 (4), 1356–1364. https://doi.org/10.4209/aagr.2012.11.0320. 565 (115) Chow, J. C.; Watson, J. G.; Lu, Z.; Lowenthal, D. H.; Frazier, C. A.; Solomon, P. A.; Thuillier, R. H.; Magliano, K. Descriptive Analysis of PM2. 5 and PM10 at Regionally Representative Locations 566 567 during SJVAQS/AUSPEX. Atmos. Environ. 1996, 30 (12), 2079–2112. 568 https://doi.org/10.1016/1352-2310(95)00402-5. 569 (116) Kendall, M.; Pala, K.; Ucakli, S.; Gucer, S. Airborne Particulate Matter (PM2.5 and PM10) and 570 Associated Metals in Urban Turkey. Air Qual. Atmosphere Health 2011, 4 (3–4), 235–242. 571 https://doi.org/10.1007/s11869-010-0129-9. 572 (117) Mansha, M.; Ghauri, B.; Rahman, S.; Amman, A. Characterization and Source Apportionment of 573 Ambient Air Particulate Matter (PM2.5) in Karachi. Sci. Total Environ. 2012, 425, 176–183. 574 https://doi.org/10.1016/j.scitotenv.2011.10.056. 575 Pant, P.; Shukla, A.; Kohl, S. D.; Chow, J. C.; Watson, J. G.; Harrison, R. M. Characterization of (118)576 Ambient PM2.5 at a Pollution Hotspot in New Delhi, India and Inference of Sources. Atmos. 577 Environ. 2015, 109, 178–189. https://doi.org/10.1016/j.atmosenv.2015.02.074. 578 (119) Tolis, E. I.; Saraga, D. E.; Filiou, K. F.; Tziavos, N. I.; Tsiaousis, C. P.; Dinas, A.; Bartzis, J. G. One-579 Year Intensive Characterization on PM2.5 Nearby Port Area of Thessaloniki, Greece. Environ. Sci. 580 Pollut. Res. 2015, 22 (9), 6812–6826. https://doi.org/10.1007/s11356-014-3883-7. 581 López, M. L.; Ceppi, S.; Palancar, G. G.; Olcese, L. E.; Tirao, G.; Toselli, B. M. Elemental (120) 582 Concentration and Source Identification of PM10 and PM2.5 by SR-XRF in Córdoba City, 583 Argentina. Atmos. Environ. 2011, 45 (31), 5450–5457. 584 https://doi.org/10.1016/j.atmosenv.2011.07.003. (121) Cao, L.; Zeng, J.; Liu, K.; Bao, L.; Li, Y. Characterization and Cytotoxicity of PM<0.2, PM0.2–2.5 585 586 and PM2.5–10 around MSWI in Shanghai, China. Int. J. Environ. Res. Public. Health 2015, 12 (5), 587 5076–5089. https://doi.org/10.3390/ijerph120505076. 588 (122) Yin, L.; Niu, Z.; Chen, X.; Chen, J.; Xu, L.; Zhang, F. Chemical Compositions of PM2.5 Aerosol 589 during Haze Periods in the Mountainous City of Yong'an, China. J. Environ. Sci. 2012, 24 (7), 590 1225–1233. https://doi.org/10.1016/S1001-0742(11)60940-6. 591 (123) Zhou, S.; Yuan, Q.; Li, W.; Lu, Y.; Zhang, Y.; Wang, W. Trace Metals in Atmospheric Fine Particles 592 in One Industrial Urban City: Spatial Variations, Sources, and Health Implications. J. Environ. Sci. 593 2014, 26 (1), 205-213. https://doi.org/10.1016/S1001-0742(13)60399-X. 594 (124) Wang, X.; Bi, X.; Sheng, G.; Fu, J. Chemical Composition and Sources of PM10 and PM2.5 595 Aerosols in Guangzhou, China. Environ. Monit. Assess. 2006, 119 (1-3), 425-439. 596 https://doi.org/10.1007/s10661-005-9034-3. 597 (125) Kulshrestha, A.; Satsangi, P. G.; Masih, J.; Taneja, A. Metal Concentration of PM2.5 and PM10 Particles and Seasonal Variations in Urban and Rural Environment of Agra, India. Sci. Total 598 Environ. 2009, 407 (24), 6196–6204. https://doi.org/10.1016/j.scitotenv.2009.08.050. 599 (126) 600 Yadav, S.; Satsangi, P. G. Characterization of Particulate Matter and Its Related Metal Toxicity in 601 an Urban Location in South West India. Environ. Monit. Assess. 2013, 185 (9), 7365–7379. 602 https://doi.org/10.1007/s10661-013-3106-6.

- 603 (127) Song, S.; Wu, Y.; Jiang, J.; Yang, L.; Cheng, Y.; Hao, J. Chemical Characteristics of Size-Resolved
 604 PM2.5 at a Roadside Environment in Beijing, China. *Environ. Pollut.* 2012, *161*, 215–221.
 605 https://doi.org/10.1016/j.envpol.2011.10.014.
- Sun, Y.; Zhuang, G.; Wang, Y.; Han, L.; Guo, J.; Dan, M.; Zhang, W.; Wang, Z.; Hao, Z. The Air Borne Particulate Pollution in Beijing—Concentration, Composition, Distribution and Sources.
 Atmos. Environ. 2004, *38* (35), 5991–6004. https://doi.org/10.1016/j.atmosenv.2004.07.009.
- (129) See, S. W.; Balasubramanian, R.; Rianawati, E.; Karthikeyan, S.; Streets, D. G. Characterization
 and Source Apportionment of Particulate Matter ≤ 2.5 Mm in Sumatra, Indonesia, during a
 Recent Peat Fire Episode. *Environ. Sci. Technol.* 2007, 41 (10), 3488–3494.
- 612 https://doi.org/10.1021/es061943k.
- (130) Poschl, U.; Martin, S. T.; Sinha, B.; Chen, Q.; Gunthe, S. S.; Huffman, J. A.; Borrmann, S.; Farmer,
 D. K.; Garland, R. M.; Helas, G.; Jimenez, J. L.; King, S. M.; Manzi, A.; Mikhailov, E.; Pauliquevis,
 T.; Petters, M. D.; Prenni, A. J.; Roldin, P.; Rose, D.; Schneider, J.; Su, H.; Zorn, S. R.; Artaxo, P.;
 Andreae, M. O. Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the
- 617 Amazon. Science 2010, 329 (5998), 1513–1516. https://doi.org/10.1126/science.1191056.
 618 (131) Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.;
- DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; Aiken, A. C.; Docherty, K. S.; Ulbrich, I. M.; Grieshop,
 A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.;
- Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.;
 Tomlinson, J. M.; Collins, D. R.; Cubison, M. J.; E.; Dunlea, J.; Huffman, J. A.; Onasch, T. B.;
 Alfarra, M. R.; Williams, P. I.; Bower, K.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.;
- Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, R.; Takami, A.; Miyoshi, T.;
 Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, J. R.; Sueper, D.;
- Jayne, J. T.; Herndon, S. C.; Trimborn, A. M.; Williams, L. R.; Wood, E. C.; Middlebrook, A. M.;
 Kolb, C. E.; Baltensperger, U.; Worsnop, D. R. Evolution of Organic Aerosols in the Atmosphere. *Science* 2009, *326* (5959), 1525–1529. https://doi.org/10.1126/science.1180353.
- (132) Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K. R.; Slowik, J. G.;
 Platt, S. M.; Canonaco, F.; Zotter, P.; Wolf, R.; Pieber, S. M.; Bruns, E. A.; Crippa, M.; Ciarelli, G.;
 Piazzalunga, A.; Schwikowski, M.; Abbaszade, G.; Schnelle-Kreis, J.; Zimmermann, R.; An, Z.;
 Szidat, S.; Baltensperger, U.; Haddad, I. E.; Prévôt, A. S. H. High Secondary Aerosol Contribution
 to Particulate Pollution during Haze Events in China. *Nature* 2014, *514* (7521), 218–222.
 https://doi.org/10.1038/nature13774.
- (133) Wingfors, H. Characterization of the Size-Distribution of Aerosols and Particle-Bound Content of
 Oxygenated PAHs, PAHs, and n-Alkanes in Urban Environments in Afghanistan. *Atmos. Environ.* 2011, 45 (26), 4360–4369. https://doi.org/10.1016/j.atmosenv.2011.05.049.
- (134) Valavanidis, A.; Fiotakis, K.; Vlahogianni, T.; Papadimitriou, V.; Pantikaki, V. Determination of
 Selective Quinones and Quinoid Radicals in Airborne Particulate Matter and Vehicular Exhaust
 Particles. *Environ. Chem.* 2006, 3 (2), 118–123. https://doi.org/10.1071/EN05089.
- 641 (135) Eiguren-Fernandez, A.; Miguel, A. H.; Di Stefano, E.; Schmitz, D. A.; Cho, A. K.; Thurairatnam, S.;
 642 Avol, E. L.; Froines, J. R. Atmospheric Distribution of Gas- and Particle-Phase Quinones in
 643 Southern California. *Aerosol Sci. Technol.* 2008, *42* (10), 854–861.
- 644 https://doi.org/10.1080/02786820802339546.
- (136) Delgado-Saborit, J. M.; Alam, M. S.; Godri Pollitt, K. J.; Stark, C.; Harrison, R. M. Analysis of
 Atmospheric Concentrations of Quinones and Polycyclic Aromatic Hydrocarbons in Vapour and
 Particulate Phases. *Atmos. Environ.* **2013**, *77*, 974–982.
- 648 https://doi.org/10.1016/j.atmosenv.2013.05.080.

- (137) Alam, M. S.; Delgado-Saborit, J. M.; Stark, C.; Harrison, R. M. Investigating PAH Relative
 Reactivity Using Congener Profiles, Quinone Measurements and Back Trajectories. *Atmospheric Chem. Phys.* 2014, *14* (5), 2467–2477. https://doi.org/10.5194/acp-14-2467-2014.
- 652 (138) Cho, A. K.; Di Stefano, E.; You, Y.; Rodriguez, C. E.; Schmitz, D. A.; Kumagai, Y.; Miguel, A. H.;
- Eiguren-Fernandez, A.; Kobayashi, T.; Avol, E.; Froines, J. R. Determination of Four Quinones in
- 654Diesel Exhaust Particles, SRM 1649a, and Atmospheric PM 2.5 Special Issue of Aerosol Science
- 655 *and Technology* on Findings from the Fine Particulate Matter Supersites Program. *Aerosol Sci.*
- 656 *Technol.* **2004**, *38* (sup1), 68–81. https://doi.org/10.1080/02786820390229471.

658 Table S1. Chemical reactions, rate constants as used in the KM-SUB-ELF, with reference

		Rate constant	
#	Reaction	(cm ⁻³ s ⁻¹ or s ⁻¹)	Reference
	Gas-phase reactions		
1	$NO^{\bullet} + O_3 \rightarrow NO_2^{\bullet} + O_2$	2.05 × 10 ⁻¹⁴	45,46
2	$NO_2^{\bullet} + O_3 \rightarrow NO_3^{\bullet} + O_2$	4.85 × 10 ⁻¹⁷	45,46
3	$NO^{\bullet} + NO^{\bullet} + O_2 \rightarrow NO_2^{\bullet} + NO_2^{\bullet}$	8.93 × 10 ⁻²⁰	45,46
4	$NO^{\bullet} + NO_{3}^{\bullet} \to NO_{2}^{\bullet} + NO_{2}^{\bullet}$	2.57 × 10 ⁻¹¹	45,46
5	$NO_2^{\bullet} + NO_3^{\bullet} \rightarrow NO^{\bullet} + NO_2^{\bullet} + O_2$	7.73 × 10 ⁻¹⁶	45,46
6	$NO_2^{\bullet} + NO_3^{\bullet} \rightarrow N_2O_5$	1.21 × 10 ⁻¹²	45,46
7	${}^{\bullet}OH + O_3 \rightarrow HO_2{}^{\bullet} + O_2$	8.20 × 10 ⁻¹⁴	45,46
8	${}^{\bullet}OH + H_2O_2 \rightarrow HO_2{}^{\bullet} + H_2O$	1.73 × 10 ⁻¹²	45,46
9	$HO_2^{\bullet} + O_3 \rightarrow {}^{\bullet}OH + O_2 + O_2$	8.24 × 10 ⁻¹⁶	45,46
10	${}^{\bullet}\text{OH} + \text{HO}_{2}{}^{\bullet} \rightarrow \text{H}_{2}\text{O} + \text{O}_{2}$	1.08 × 10 ⁻¹⁰	45,46
11	$HO_2^{\bullet} + HO_2^{\bullet} \rightarrow H_2O_2 + O_2$	5.09 × 10 ⁻¹²	45,46
12	$HO_2^{\bullet} + HO_2^{\bullet} \rightarrow H_2O_2$	3.50 × 10 ⁻¹²	45,46
13	$\bullet OH + NO \bullet \rightarrow HONO$	8.91 × 10 ⁻¹²	45,46
14	•OH + NO ₂ • \rightarrow HNO ₃	8.91 × 10 ⁻¹²	45,46
15	$^{\bullet}OH + NO_{3}^{\bullet} \rightarrow HO_{2}^{\bullet} + NO_{2}^{\bullet}$	2.00 × 10 ⁻¹¹	45,46
16	$HO_2^{\bullet} + NO^{\bullet} \rightarrow {}^{\bullet}OH + NO_2^{\bullet}$	8.24 × 10 ⁻¹²	45,46
17	$HO_2^{\bullet} + NO_2^{\bullet} \rightarrow HO_2NO_2$	6.87 × 10 ⁻¹³	45,46
18	$HO_2NO_2 \rightarrow HO_2^{\bullet} + NO_2^{\bullet}$	2.49 × 10 ⁻¹	45,46
19	${}^{\bullet}OH + HO_2NO_2 \rightarrow NO_2{}^{\bullet} + H_2O + O_2$	2.96 × 10 ⁻¹²	45,46
20	$HO_2^{\bullet} + NO_3^{\bullet} \rightarrow {}^{\bullet}OH + NO_2^{\bullet}$	4.00 × 10 ⁻¹²	45,46
21	•OH + HONO \rightarrow NO ₂ • + H ₂ O	5.78 × 10 ⁻¹²	45,46
22	•OH + HNO ₃ \rightarrow NO ₃ • +H ₂ O	1.37 × 10 ⁻¹³	45,46
23	$N_2O_5 \rightarrow NO_2^{\bullet} + NO_3^{\bullet}$	1.83 × 10 ⁻¹	45,46
	Surfactant reactions		
24	SPB + •OH \rightarrow SPB-ox	1.70 × 10 ⁻¹¹	47–49
25	$POG + OH \rightarrow POG-ox$	1.70 × 10 ⁻¹¹	1
26	$SPB+O_3\toSPB\text{-}ox$	1.00 × 10 ⁻¹⁴	50,51
27	$POG + O_3 \rightarrow POG\text{-}ox + 0.17 \text{ H}_2O_2$	1.66 × 10 ⁻¹⁶	52–55
28	aToc + OH \rightarrow aToc-ox	4.50 × 10 ⁻¹³	56
29	aToc + $O_3 \rightarrow$ aToc-ox	1.20 × 10 ⁻¹⁸	57
	ELF reactions		
30	$O_2^{\bullet^*} + HO_2 + H_2O \rightarrow H_2O_2 + OH^* + O_2$	1.70 × 10 ⁻¹³	1,58
31	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	1.40 × 10 ⁻¹⁵	58

32	$O_2^{\bullet^-} + O_2^{\bullet^-} + 2H^+ \rightarrow H_2O_2 + O_2$	3.82 × 10 ⁻¹⁶	58
33	$H_2O_2 + {}^{\bullet}OH \rightarrow HO_2 + H_2O$	5.50 × 10 ⁻¹⁴	59
34	$\bullet OH + \bullet OH \rightarrow H_2O_2$	8.60 × 10 ⁻¹²	60
35	$^{\bullet}OH + O_2^{\bullet^{-}} \rightarrow O_2 + OH^{-}$	1.30 × 10 ⁻¹¹	47
36	$\bullet OH + HO_2 \rightarrow H_2O + O_2$	1.20 × 10 ⁻¹¹	60
37	$H_2O_2 + HO_2 \rightarrow \bullet OH + O_2 + H_2O$	4.98 × 10 ⁻²¹	61
38	$Fe^{2+} + O_{2^{-}} + 2H^{+} \rightarrow Fe^{3+} + H_2O_2$	3.10 × 10 ⁻¹⁴	1,58
39	$Fe^{2+} + HO_2 + H^+ \rightarrow Fe^{3+} + H_2O_2$	1.99 × 10 ⁻¹⁵	62
40	$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + {}^{\bullet}OH + OH^-$	4.30 × 10 ⁻¹⁸	63
41	$Fe^{2+} + \cdot OH \rightarrow Fe^{3+} + OH^{-}$	5.30 × 10 ⁻¹³	64
42	$Fe^{2+} + H_2O_2 \rightarrow Fe^{4+} + H_2O$	9.50 × 10 ⁻¹⁸	1
43	$Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HO_2 + H^+$	3.32 × 10 ⁻²⁴	63
44	$Fe^{3+} + HO_2 \rightarrow Fe^{2+} + O_2 + H^+$	3.30 × 10 ⁻¹⁸	58
45	Fe^{4+} + Fe^{2+} \rightarrow Fe^{3+} + Fe^{3+}	6.60 × 10 ⁻¹⁸	41
46	$Fe^{3+} + AscH \rightarrow Fe^{2+} + Asc^{\bullet}$	1.10 × 10 ⁻¹⁹	1
47	$Fe^{4+} + AscH \rightarrow Fe^{3+} + Asc^{\bullet}$	7.60 × 10 ⁻¹⁹	1
48	$Fe^{2+} + O_2 \rightarrow O_2^{\bullet-} + Fe^{3+}$	5.20 × 10 ⁻²¹	1
49	$Cu^+ + HO_2 + H^+ \rightarrow Cu^{2+} + H_2O_2$	2.30 × 10 ⁻¹²	1
50	$Cu^{\scriptscriptstyle +} + O_2^{\scriptscriptstyle \bullet -} + H_2O \rightarrow Cu^{2+} + H_2O_2 + OH^{\scriptscriptstyle -}$	5.80 × 10 ⁻¹⁵	1
51	$Cu^{2*} + HO_2 \rightarrow Cu^* + O_2 + H^*$	1.60 × 10 ⁻¹¹	1
52	$Cu^{2+} + O_2^{\bullet-} \rightarrow Cu^+ + O_2$	8.30 × 10 ⁻¹²	1
53	$Cu^{2+} + AscH \rightarrow Cu^+ + Asc^-$	1.40 × 10 ⁻¹⁸	1
54	$Cu^+ + O_2 \rightarrow Cu^{2+} + O_2^{\bullet-}$	6.90 × 10 ⁻²⁰	1
55	$Cu^+ + H_2O_2 \rightarrow Cu^{2+} + {}^{\bullet}OH + OH^-$	2.40 × 10 ⁻²⁰	1
56	$Cu^+ + H_2O_2 \rightarrow Cu^{3+} + OH^- + OH^-$	5.00 × 10 ⁻¹⁹	1
57	$Cu^{\scriptscriptstyle +} + Cu^{\scriptscriptstyle 3+} \to Cu^{\scriptscriptstyle 2+} + Cu^{\scriptscriptstyle 2+}$	5.80 × 10 ⁻¹²	1
58	$Cu^{2+} + H_2O_2 \rightarrow Cu^+ + O_2^{\bullet-} + H^+$	3.80 × 10 ⁻²⁴	1
59	$PQN + AscH \rightarrow PQN^{\bullet} + Asc^{\bullet}$	1.20 × 10 ⁻²⁰	29
60	$PQN^{\bullet} + O_2 \rightarrow PQN + O_2^{\bullet^{\bullet}}$	4.60 × 10 ⁻¹³	1
61	$PQN^{\bullet} + O_2^{\bullet^{\bullet}} + 2H^+ \rightarrow PQN + H_2O_2$	3.30 × 10 ⁻¹²	1
62	NQN12 + AscH \rightarrow NQN12• + Asc•	1.50 × 10 ⁻¹⁹	29
63	$NQN12^{\bullet} + O_2 \rightarrow NQN12 + O_2^{\bullet}$	4.60 × 10 ⁻¹³	1
64	$NQN12^{\bullet} + O_2^{\bullet^{\bullet}} + 2H^+ \rightarrow NQN12 + H_2O_2$	3.30 × 10 ⁻¹²	1
65	NQN14 + AscH \rightarrow NQN14• + Asc•	6.30 × 10 ⁻²¹	29
66	$NQN14^{\bullet} + O_2 \rightarrow NQN14 + O_2^{\bullet-}$	4.60 × 10 ⁻¹³	1
67	$NQN14^{\bullet} + O_2^{\bullet^{\bullet}} + 2H^+ \rightarrow NQN14 + H_2O_2$	3.30 × 10 ⁻¹²	1
68	$UA + O_3 \to Products$	9.60 × 10 ⁻¹⁷	57

69	$UA + {}^{\bullet}OH \to Products + OH^{-}$	1.20 × 10 ⁻¹¹	65
70	$GSH + {}^{\bullet}OH \to Products + OH^{-}$	1.50 × 10 ⁻¹¹	66
71	$GSSG + {}^{\bullet}OH \to Products + OH^{-}$	1.50 × 10 ⁻¹¹	Assumed to be the same as R67
72	Asc• + Asc• + H $^+$ \rightarrow AscH + DHA	5.00 × 10 ⁻¹⁶	67
73	AscH + $O_2^{\bullet^*}$ + $H^+ \rightarrow Asc^{\bullet}$ + H_2O_2	5.10 × 10 ⁻¹⁷	1
74	AscH + HO ₂ \rightarrow Asc• + H ₂ O ₂	2.65 × 10 ⁻¹⁷	68
75	AscH + •OH \rightarrow Products + OH ⁻	1.80 × 10 ⁻¹¹	69
76	AscH + ${}^{\bullet}O_3 \rightarrow Products$	9.10 × 10 ⁻¹⁷	57
77	1.25 GS ⁻ + 0.5 O ₃ \rightarrow Products	9.60 × 10 ⁻²⁰	57
78	$1.25 \text{ GSH} + 0.5 \text{ O}_3 \rightarrow \text{Products}$	9.60 × 10 ⁻²⁰	57
79	$GSOO + GSOO \rightarrow 0.56 O_2^{\bullet} + Products$	6.79 × 10 ⁻¹³	70
80	$O_2^{\bullet-} + GSH \rightarrow GSO^{\bullet} + OH^{-}$	3.32 × 10 ⁻¹⁹	71–73
81	$NO_2^{\bullet} + GS^{\bullet} \rightarrow GSNO_2$	4.98 × 10 ⁻¹²	4
82	$GSOO^{\bullet} + NO_2^{\bullet} \to GSOONO_2$	2.49 × 10 ⁻¹²	70
83	$GSOONO_2 \to GSOO^\bullet + NO_2^\bullet$	7.5 × 10 ⁻¹	70
84	$NO_2^{\bullet} + GS^{-} \rightarrow NO_2^{-} + GS^{\bullet}$	4.00 × 10 ⁻¹³	4
85	$NO_2^{\bullet} + GSH \rightarrow NO_2^{-} + GS^{\bullet} + H^+$	1.66 × 10 ⁻¹⁴	74
86	$GSOO^{\bullet} + GSH \to GSO^{\bullet} + GSOH$	3.32 × 10 ⁻¹⁵	4
87	$GSO+NO_2\toGSOONO$	7.47 × 10 ⁻¹²	4
88	$GSOONO \to Products$	7.00 × 10 ²	4
89	$GS^{\bullet} + GS^{-} \rightarrow GSSG^{\bullet}$	1.59 × 10 ⁻¹⁴	4,5
90	$GSSG^{\bullet} \rightarrow GS^{\bullet} + GS^{-}$	1.60 × 10 ⁵	4,5
91	$GSSG^{\bullet-} + O_2 \rightarrow GSSG + O_2^{\bullet-}$	8.30 × 10 ⁻¹²	4,5
92	$GS^{\bullet} + GS^{\bullet} \rightarrow GSSG$	8.30 × 10 ⁻¹²	5
93	$\text{GSOH} + \text{GSH} \rightarrow \text{GSSG} + \text{H}_2\text{O}$	1.20 × 10 ⁻¹⁸	75
94	$GSO^\bullet + GSO^\bullet \to Products$	9.96 × 10 ⁻¹⁴	4
95	$GS^{-} + H_2O_2 \rightarrow GSOH + OH^{-}$	1.60 × 10 ⁻²¹	75
96	$GS^{\bullet} + AscH \rightarrow GSH + Asc^{\bullet}$	1.00 × 10 ⁻¹²	76,77
97	$UA + NO_{2^{\bullet}} \to UA^{\bullet} + NO_{2^{-}}$	3.00 × 10 ⁻¹⁴	78,79
98	$AscH + NO_2^\bullet \to Asc^\bullet + NO_2^-$	5.80 × 10 ⁻¹⁴	78,79
99	$UA^{\bullet} + AscH \rightarrow UA + Asc^{\bullet}$	1.70 × 10 ⁻¹⁵	77
100	$GS^{\bullet} + UA \rightarrow GSH + UA^{\bullet}$	5.00 × 10 ⁻¹⁴	74
101	$O_2^{\bullet-} + NO_2^{\bullet-} \rightarrow O_2 NOOm$	7.50 × 10 ⁻¹²	4,80
102	$O_2 NOO^- \rightarrow NO_2^- + O_2$	7.00 × 10 ⁻¹	4
103	$O_2 NOO^- \rightarrow O_2^{\bullet-} + NO_2^{\bullet-}$	1.10 × 10 ⁰	4
104	$NO_2^{\bullet} + NO_2^{\bullet} \rightarrow N_2O_4$	7.50 × 10 ⁻¹³	81

105	$N_2O_4 \rightarrow NO_2^{\bullet} + NO_2^{\bullet}$	6.90 × 10 ³	81
106	$N_2O_4 + H_2O \rightarrow NO_2^- + NO_3^- + 2H^+$	1.00 × 10 ³	4
107	$O_2^- + O_3 + H_2O \rightarrow \bullet OH + 2O_2 + OH^-$	2.50 × 10 ⁻¹²	82
108	$HO_2 + O_3 \rightarrow \bullet OH + 2O_2$	1.66 × 10 ⁻¹⁷	82
109	$NO_2^- + {}^{\bullet}OH \rightarrow NO_2^{\bullet} + OH^-$	8.80 × 10 ⁻¹²	80
110	$^{\bullet}\text{OH} + \text{NO}_{2}^{\bullet} \rightarrow \text{NO}_{3}^{-} + \text{H}^{+}$	7.50 × 10 ⁻¹²	4
111	$OH + NO_2 \rightarrow ONOOH$	7.50 × 10 ⁻¹²	4
112	$ONOOH \rightarrow NO_2 + OH$	3.00 × 10 ⁻¹	4
113	$ONOOH \rightarrow NO_{3}{}^{-} + H^{+}$	7.00 × 10 ⁻¹	4
114	$ONOO^- + GSH \rightarrow NO_2^- + GSOH$	1.10 × 10 ⁻¹⁸	83
115	$GSO^{\bullet} + NO_2^{\bullet} \to GSOONO$	7.50 × 10 ⁻¹²	4
116	$GSOONO + H_2O \rightarrow Products$	7.00 × 10 ²	4
117	$ONOOH + AscH \rightarrow Im_1$	1.66 × 10 ⁻¹⁵	84
118	$Im_1 \rightarrow ONOOH + AscH$	5.00 × 10 ²	84
119	$Im_1 \rightarrow Im_2$	4.00 × 10 ¹	84
120	$Im_2 \rightarrow Im_1$	5.00 × 10 ⁰	84
121	$Im_2 + AscH \rightarrow Asc + DHA + NO_2^- + H_2O$	1.66 × 10 ⁻¹⁹	84
122	$Im_2 \rightarrow Asc + NO_3^- + H^+$	8.50 × 10 ⁻¹	84
123	$ONOOH + UA \rightarrow UA^{rad} + NO_2 + Products$	2.60 × 10 ⁻¹⁹	85
124	$O_2 \bullet^{-} + SOD + H^+ \rightarrow 0.5 \text{ H}_2O_2 + SOD$	2.65 × 10 ⁻¹²	See text S2.
125	$H_2O_2 \text{ + catalase} \rightarrow H_2O \text{ + } 0.5 O_2 \text{ + catalase}$	3.20 × 10 ⁻¹⁴	See text S2.
126	•OH + organic matter \rightarrow oxidized organic matter	1.66 × 10 ⁻¹²	21,65

Parameter	Description	Value
KH _{ccO3}	Henrys law equilibrium constant for O ₃ [aq]/[gas]	1.7 × 10 ⁻¹
KH _{ccNO2}	Henrys law equilibrium constant for NO ₂ [aq]/gas]	2.2 × 10 ⁻¹
KH _{ccNO}	Henrys law equilibrium constant for NO [aq]/[gas]	3.9 × 10 ⁻²
КН _{ссОН}	Henrys law equilibrium constant for OH [aq]/[gas]	4.3 × 10 ²
KH _{ccHO2}	Henrys law equilibrium constant for HO ₂ [aq]/[gas]	1.7 × 10 ³
KH ccH2O2	Henrys law equilibrium constant for H ₂ O ₂ [aq]/[gas]	9.9 × 10 ⁴
ω _{O3}	Mean thermal velocity of O ₃	3.7 × 10 ⁴ cm s ⁻¹
WNO2	Mean thermal velocity of NO ₂	3.8 × 10 ⁴ cm s ⁻¹
ωΝΟ	Mean thermal velocity of NO	4.7 × 10 ⁴ cm s ⁻¹
ωон	Mean thermal velocity of OH	6.2 × 10 ⁴ cm s ⁻¹
ω_{HO2}	Mean thermal velocity of HO ₂	4.5 × 10 ⁴ cm s ⁻¹
ω H2O2	Mean thermal velocity of H ₂ O ₂	4.4 × 10 ⁴ cm s ⁻¹
MWaa	Average molecular weight of amino acids	125 g mole ⁻¹
<i>MW</i> _{Cu}	Molecular weight copper	63.6 g mole ⁻¹
<i>MW</i> Fe	Molecular weight iron	55.6 g mole ⁻¹
<i>MW</i> soa	Average molecular weight SOA	250 g mole ⁻¹
MW PQN	Molecular weight phenanthrenequinone (PQN)	208.2 g mole ⁻¹
MW _{NQN}	Molecular weight naphthoquinone (NQN)	158.2 g mole ⁻¹
рКа _{GSH}	Acid dissociation constant of GSH	8.8
рКа _{но2}	Acid dissociation constant of HO ₂	4.8
рКа _{олоон}	Acid dissociation constant of ONOOH	6.5
VR	Lung ventilation rate	1.5 m ³ h ⁻¹
BR	Breathing rate	16 min ⁻¹
FCR	Functional residual capacity of the lung	2750 cm ³
TV	Tidal Volume – Breath volume	1500 cm ³
SA _{ELF}	Total ELF surface area	890000 cm ²
T _{RT}	Respiratory tract temperature	37°C
pH _{ELF}	pH of the ELF	7

660 Table S2. Input parameters to the KM-SUB-ELF model

662	Table S	3. List of	symbols	and	definitions
-----	---------	------------	---------	-----	-------------

Symbol	Meaning	SI unit
Cy	ELF concentration of PM2.5 constituent Y	µmol L ⁻¹
$C_{ m gas,PM2.5}$	Ambient gas phase concentration of PM2.5	µg m⁻³
CEROS	ROS concentration in the ELF during or after model simulation	nmol L ⁻¹
б РМ2.5	Fraction of PM2.5 that deposits in the ELF	
D РМ2.5	Dose of PM2.5 deposited in the ELF	μg
I _{i→j}	Gross chemical interconversion between individual ROS in the ELF	nmol L ⁻¹
I _{ΣROS}	Gross chemical interconversion between all ROS in the ELF	nmol L ⁻¹
MF _Y	PM2.5 mass fraction of constituent Y	
My	Molar mass of PM2.5 constituent Y	g mol⁻¹
N _{ΣROS}	Cumulative production of ROS in the ELF	nmol L ⁻¹
Ν' ΣROS	Cumulative production rate of ROS in the ELF	nmol L ⁻¹ s ⁻¹
P _{ΣROS}	Gross chemical production of ROS in the ELF	nmol L ⁻¹
Ρ' ΣROS	Gross chemical production rate of ROS in the ELF	nmol L ⁻¹ s ⁻¹
Р	Gross chemical production of an individual ROS in the ELF	nmol L ⁻¹
SF _Y	Soluble fraction of PM2.5 constituent Y in ELF	
t _{acc}	Accumulation time of PM2.5 in the ELF	h
<i>t</i> sim	Model simulation time	h
V _{ELF}	Volume of the ELF	mL
VR	Lung ventilation rate	m ³ h ⁻¹
Y _{OH}	OH yield in the ELF	pmol

Table S4. Mathematical formulas used to calculate ELF ROS metrics $I_{\Sigma ROS} = \Sigma_{j,i>j} \ I_{i \rightarrow j}$ $N_{\Sigma ROS} = P_{\Sigma ROS} - I_{\Sigma ROS}$ $N'_{\Sigma ROS} = (P_{\Sigma ROS} - I_{\Sigma ROS}) / t_{sim}$ $P'_{\Sigma ROS} = P_{\Sigma ROS} / t_{sim}$

Table S5. PM2.5 and transition metal concentrations with mass fractions as quantified in PM2.5 collected at different sampling sites throughout the world.

	PM2.5	Fe	Cu	Fe	Cu	
Sampling location	(µg m⁻³)	(ng m ⁻³)	(ng m ⁻³)	mass fraction	mass fraction	Reference
Amazon (wet season)	1.65	33	0.07	2.00 × 10 ⁻²	4.24 × 10 ⁻⁵	86
Mace Head (Ireland)	4.2	5.68	0.71	1.35 × 10 ⁻³	1.69 × 10 ⁻⁴	87
Amazon (dry season)	4.87	19	0.8	3.90 × 10 ⁻³	1.64 × 10 ⁻⁴	86
Edinburgh (Scotland)	7.1	27.6	1.39	3.89 × 10 ⁻³	1.96 × 10 ⁻⁴	88
West Midlands (UK, rural)	7.6	51.3	13.5	6.75 × 10 ⁻³	1.78 × 10 ⁻⁴	89
West Midlands (UK, urban)	9	80.2	13.9	8.91 × 10 ⁻³	1.54 × 10 ⁻³	89
Skukuza (South Africa)	9.4	51	0.41	5.43 × 10 ⁻³	4.36 × 10 ⁻⁵	90
Amazon (Serro do Navio)	9.87	120	1.65	1.22 × 10 ⁻²	1.67 × 10 ⁻⁴	91
Amazon (Cuiabá)	10.5	175	1.55	1.67 × 10 ⁻²	1.48 × 10 ⁻⁴	91
West Midlands (UK, rural, average)	10.5	87.1	20	8.30 × 10 ⁻³	1.91 × 10 ⁻³	89
West Midlands (UK, urban, average)	11.6	102	21.9	8.79 × 10 ⁻³	1.89 × 10 ⁻³	89
Helsinki (Finland)	11.8	96	3.1	8.14 × 10 ⁻³	2.63 × 10 ⁻⁴	92
Tampa (Florida)	12.7	79	2.4	6.22 × 10 ⁻³	1.89 × 10 ⁻⁴	93
Toronto (Canada)	12.7	55	2.5	4.33 × 10 ⁻³	1.97 × 10 ⁻⁴	94
South Phoenix (Texas)	12.95	147	7.6	1.14 × 10 ⁻²	5.87 × 10 ⁻⁴	95
Tehran (inside a school dormitory)	14	102.13	22.17	7.30 × 10 ⁻³	1.58 × 10 ⁻³	96
Tehran (inside a retirement home)	15	130.78	25.1	8.72 × 10 ⁻³	1.67 × 10 ⁻³	96
South-Eastern Italy (background sites)	16.4	86.8	3.1	5.29 × 10 ⁻³	1.89 × 10 ⁻⁴	97
Patras (Greece)	17.4	124	7.28	7.13 × 10 ⁻³	4.18 × 10 ⁻⁴	98
Yeongwol (South Korea)	19.7	31.2	9.8	1.58 × 10 ⁻³	4.98 × 10 ⁻⁴	99
Budapest (Hungary)	20	430	18.3	2.15 × 10 ⁻²	9.15 × 10 ⁻⁴	100
South-Eastern Italy (industrial sites)	21.7	85	5.1	3.92 × 10 ⁻³	2.35 × 10 ⁻⁴	97

Zabrze (upper Silesia, Poland)	22	160.8	6.5	7.31 × 10 ⁻³	2.96 × 10 ⁻⁴	101
Chuncheon (South Korea)	23	29.6	9.9	1.29 × 10 ⁻³	4.30 × 10 ⁻⁴	99
Detroit (Michigan)	23	234	6	1.02 × 10 ⁻²	2.61 × 10 ⁻⁴	102
Megalopolis (Greece)	23	87	4.02	3.78 × 10 ⁻³	1.75 × 10 ⁻⁴	98
Tehran (outside a retirement home)	24	238.81	25.99	9.95 × 10 ⁻³	1.08 × 10 ⁻³	96
South-Eastern Italy (urban sites)	24.1	78.8	5.7	3.27 × 10 ⁻³	2.37 × 10 ⁻⁴	97
Tehran (outside a school dormitory)	26	280	32.42	1.08 × 10 ⁻²	1.25 × 10 ⁻³	96
Anaheim (California)	26.8	29.6	39.6	1.11 × 10 ⁻³	1.48 × 10 ⁻³	103
Milan (Summer, Italy)	27.2	186	10	6.84 × 10 ⁻³	3.68 × 10 ⁻⁴	104
Jeddah City (Saudi Arabia)	28.4	590	5.6	2.08 × 10 ⁻²	1.97 × 10 ⁻⁴	105
Hong Kong	29	140	5.7	4.83 × 10 ⁻³	1.97 × 10 ⁻⁴	106
Rio de Janeiro (Brazil)	29.2	307	35	1.05 × 10 ⁻²	1.20 × 10 ⁻³	107
Katowice (upper Silesia, Poland)	31	157	8.2	5.07 × 10 ⁻³	2.65 × 10 ⁻⁴	101
Porto Marghera (Italy)	31	200	9.3	6.45 × 10 ⁻³	3.00 × 10 ⁻⁴	108
Erzgebirge (Germany)	32.5	188	3	5.79 × 10 ⁻³	9.23 × 10 ⁻⁵	109
Barcelona (Spain)	35	260	52	7.43 × 10 ⁻³	1.49 × 10 ⁻³	110
Santa Catarina (Mexico)	36.15	466	16	1.29 × 10 ⁻²	4.42 × 10 ⁻⁴	111
Escobedo (Mexico)	37.78	493	13	1.31 × 10 ⁻²	3.44 × 10 ⁻⁴	111
Arnhem (the Netherlands)	38.95	241	13.5	6.19 × 10 ⁻³	3.47 × 10 ⁻⁴	112
Mira Loma (Southern California, average)	41.8	581	75	1.39 × 10 ⁻²	1.79 × 10 ⁻³	113
Taif (residential area, Saudi Arabia)	46	2000	5.3	4.35 × 10 ⁻²	1.15 × 10 ⁻⁴	114
Taif (industrial site, Saudi Arabia)	47	2300	13	4.89 × 10 ⁻²	2.77 × 10 ⁻⁴	114
Azusa (California)	47.1	281.9	13.4	5.99 × 10 ⁻³	2.85 × 10 ⁻⁴	103
Edison (New Jersey)	49.6	1953	10	3.94 × 10 ⁻²	2.02 × 10 ⁻⁴	115
Bursa (Turkey)	53	875	15	1.65 × 10 ⁻²	2.83 × 10 ⁻⁴	116
Karachi (summer, Pakistan)	55.89	3360	56	6.01 × 10 ⁻²	1.00 × 10 ⁻³	117
New Delhi (summer, high traffic, India)	58.2	710	20	1.22 × 10 ⁻²	3.44 × 10 ⁻⁴	118

Milan (Winter, Italy)	58.6	309	18	5.27 × 10 ⁻³	3.07 × 10 ⁻⁴	104
Thessaloniki (cold period, Greece)	60.9	2890	93	4.75 × 10 ⁻²	1.53 × 10 ⁻³	119
Thessaloniki (warm period, Greece)	70.6	4094	66	5.60 × 10 ⁻²	9.35 × 10 ⁻⁴	119
Córdoba City (Argentina)	70.87	325	8	4.59 × 10 ⁻³	1.13 × 10 ⁻⁴	120
Shanghai (China)	71.61	424.93	9.47	5.93 × 10 ⁻³	1.32 × 10 ⁻⁴	121
Yong'an (Winter, China)	79.01	582.1	19.6	7.37 × 10 ⁻³	2.48 × 10 ⁻⁴	122
Yong'an (Spring, China)	83.26	736.1	16.5	8.84 × 10 ⁻³	1.98 × 10 ⁻⁴	122
Karachi (winter, Pakistan)	98.44	3706	39	3.77 × 10 ⁻²	3.96 × 10 ⁻⁴	117
Ji'nan (urban site, China)	101	1040	30	1.03 × 10 ⁻²	2.97 × 10 ⁻⁴	123
Guangzhou (China)	104.58	66	60	6.31 × 10 ⁻⁴	5.74 × 10 ⁻⁴	124
Argra (urban, India)	104.9	1900	200	1.81 × 10 ⁻²	1.91 × 10 ⁻³	125
Pune (India)	113.8	2090	339	1.84 × 10 ⁻²	2.98 × 10 ⁻³	126
Beijing (Summer, China)	125	1060	44.7	8.48 × 10 ⁻³	3.58 × 10 ⁻⁴	127
Ji'nan (industrial site, China)	130	2410	40	1.85 × 10 ⁻²	3.08 × 10 ⁻⁴	123
Beijing (Winter, China)	138	1330	53.2	9.64 × 10 ⁻³	3.86 × 10 ⁻⁴	127
Beijing (China)	182.2	1180	70	6.48 × 10 ⁻³	3.84 × 10 ⁻⁴	128
New Delhi (winter, high traffic, India)	276.9	1150	70	4.15 × 10 ⁻³	2.53 × 10 ⁻⁴	118
Peat fire episode (Indonesia)	640	4810	100	7.52 × 10 ⁻³	1.56 × 10 ⁻⁴	129
Iron and copper medians	_	_	-	8.14 × 10 ⁻³	3.07 × 10 ⁻⁴	This study

 Table S6.
 PM2.5 and SOA concentrations with mass fractions as quantified in PM2.5 collected at different sampling sites throughout the world.

	PM2.5	SOA	SOA	
Sampling location	(µg m⁻³)	(µg m ⁻³)	mass fraction	Reference
Amazon (Brazil)	1.8	0.34	0.189	130
Hyytiälä (Finland)	2	1.2	0.60	131
Storm Peak (Colorado)	2.1	0.7	0.333	131

Jungfraujoch (Switzerland)	2.2	1.2	0.545	131
Duke Forest (North Carolina)	2.8	1.3	0.464	131
Chebogue Pt. (Canada)	2.9	1.5	0.517	131
Edinburgh (Scotland)	3	1.2	0.400	131
Mainz (Germany)	4.3	1.1	0.256	131
Boulder (Colorado)	4.4	2.5	0.568	131
Manchester (winter, UK)	5.2	0.6	0.115	131
Chelmsford (UK)	5.3	1.8	0.340	131
Vancouver (Canada)	7	2.5	0.357	131
Okinawa (Japan)	7.9	1.7	0.215	131
Off New England Coast	8.5	4.9	0.576	131
Thompson Farm (New Hampshire)	9.5	4.2	0.442	131
Zurich (winter, Switzerland)	9.6	4.3	0.448	131
Cheju (South Korea)	10.7	4	0.374	131
Fukue (Japan)	11	3.6	0.327	131
New York City (winter, New York)	11.6	2.6	0.224	131
New York City (summer, New York)	12.2	4.8	0.393	131
Pinnacle Park (New York)	12.3	5.4	0.439	131
Houston (Texas)	12.8	2.7	0.211	131
Tokyo (summer, Japan)	13.2	4.7	0.356	131
Manchester (summer, UK)	14.3	3	0.210	131
Pittsburgh (Pensylvenia)	14.7	3.1	0.211	131
Tokyo (winter, Japan)	16.2	2.3	0.142	131
Taunus (Germany)	16.3	7.9	0.485	131
Riverside (California)	19.1	7	0.366	131
Zurich (summer, Switzerland)	25.5	5.1	0.200	131
Mexico City (Mexico)	26.8	8.1	0.302	131

Guangzhou (China)	69.1	12.5	0.181	132
Beijing (China)	79.9	16.6	0.208	132
Shanghai (China)	90.7	11.1	0.122	132
Beijing (China)	158.5	40.9	0.258	132
Xi'an (China)	345.1	53.5	0.155	132
SOA median	_	_	0.333	This study

Table S7. PM2.5, Phenanthrenequinone (PQN), 1,4-naphthoquinone (1,4-NQN) and 1,2-naphthoquinone (1,2-NQN) concentrations with mass fractions as quantified in PM2.5 collected at different sampling sites throughout the world. *see SI section on particulate pollutant concentrations in the ELF.

	PM2.5	PQN	1,2-NQN	1,4-NQN	PQN	1,2-NQN	1,4-NQN	
Sampling location	(µg m⁻³)	(ng m ⁻³)	(ng m⁻³)	(ng m⁻³)	mass fraction	mass fraction	mass fraction	Reference
Umea (Sweden)	7.8	Unknown	Unknown	0.03	2.6 × 10 ⁻⁶	1.3 × 10 ⁻⁶	1.3 × 10 ⁻⁶	133
Athens (Greece)	35.6	0.071	0.157	0.26	2.69 × 10 ⁻⁶	5.95 × 10 ⁻⁶	9.86 × 10 ⁻⁶	134
Mazar-e Sharif (Afghanistan)	69	Unknown	Unknown	0.027	1.06 × 10 ⁻⁶	5.28 × 10 ⁻⁷	5.28 × 10 ⁻⁷	133
Kabul (Afghanistan)	86	Unknown	Unknown	0.2	6.28 × 10 ⁻⁶	3.14 × 10 ⁻⁶	3.14 × 10 ⁻⁶	133
								120
Atascadero (California)	5*	0.023	0.0127	0.0246	6.21 × 10 ⁻⁶	3.43 × 10 ⁻⁶	6.64 × 10 ⁻⁶	
Birmingham (UK)	15*	4.6	3.2	1.7	4.14 × 10 ⁻⁴	2.88 × 10 ⁻⁴	1.53 × 10 ⁻⁴	136
Lake Elsinore (California)	20*	0.311	0.246	0.14	2.1 × 10⁻⁵	1.66 × 10 ⁻⁵	9.45 × 10 ⁻⁶	135
Norfolk (UK)	5*	0.058	0.024	0.012	1.57 × 10 ⁻⁵	6.48 × 10 ⁻⁶	3.24 × 10 ⁻⁶	137
Riverside (California)	25*	0.57	0.06	0.23	3.08 × 10 ⁻⁵	3.24 × 10 ⁻⁶	1.24 × 10 ⁻⁵	138
Quinones median	_	_	-	-	6.28 × 10 ⁻⁶	3.43 × 10 ⁻⁶	<i>6.64 ×</i> 10 ⁻⁶	This study

Figure S1. Mass fractions of all redox-active PM2.5 constituents quantified in field data (Tabs. S5-7). The median mass fraction of each redox-active PM2.5 constituent is indicated by the red horizontal line.

Figure S2. (a) ROS concentration, $C_{\Sigma ROS,end}$, after pollutant exposure, and (b) the average ROS concentration, $C_{\Sigma ROS,avg}$, during pollutant exposure as a function of PM2.5 concentration. The solid lines represent a standard composition of PM2.5 using median mass fractions of the redox-active constituents. Black markers represent calculations using explicit PM2.5 composition field data (Tab. S5-7)

Figure S3. (a) ROS concentrations, $C_{\Sigma ROS}$, as a function of pollutant concentration with and without consideration of antioxidant depletion in the model. One µg of the co-pollutant NO₂ is added per µg PM2.5. For O₃, a constant concentration of 30 µg m⁻³ was used, independent of PM2.5 concentration. (b) Antioxidant consumption rate of NO₂, PM2.5 and O₃ as a function of pollutant concentration. The dashed line indicates the antioxidant consumption rate at which the ELF antioxidants would deplete in healthy humans within two hours of pollutant exposure without the consideration of enzymes or antioxidant replenishment.

Figure S4. Gross chemical production of individual ROS in the ELF solely associated with and as a function of the concentration of three pollutants: (a) PM2.5, (b) O₃, and (c) NO₂. Simulations were carried out using only the single pollutant. In panel a, the solid lines represent standard PM2.5 composition, and the markers represent explicit PM2.5 composition data for redox-active constituents (Tabs. S5-7). O₃ does not contribute to production of O₂⁻ or OH in the model.

Figure S5. Aqueous-phase (a) NO₂ concentration and (b) O₃ concentration in the ELF as a function of pollutant concentration and comparison to hypothetical saturation with respect to ambient air. Dashed lines indicate saturation concentrations assuming Henry's law equilibrium, which are calculated using the ambient gas phase pollutant concentration and the dimensionless water–air partitioning coefficients for O₃ and NO₂, respectively (Table S2).

Figure S6. Effect of using different pH on the main results (panels a,b, e-j) and transition metal valence state (panels c,d) using the median mass fractions of all redox-active PM2.5 constituents, co-varied NO₂ (PM2.5:NO₂ = 1:1) and an O₃ concentration of 30 μ g m⁻³.