Supplementary Figures

Supplementary Figure 1 | Error metrics for DeepLabCut fine-tuned with hand-labeled frames.

DLC 3D error relative to hand-labeled landmark positions after training on hand-labeled frames

A. B.

100-

DLC, 6 cameras DLC, 6 cameras
BN DLC, 3 cameras 80- s DLC, 3 cameras
60 !
40- '
"E | L
N ‘ 0 ‘ N S - e
Q@fb 4 ? S &b@?’

Accuracy (%)

40- I

+
<

%

¢ 0&96 SR
Nl w
v.

A. Mean DLC Euclidean error for trunk, head, and appendage landmarks. N = 3 animals. N = 894 overall

landmarks, N =193 head, N = 371 trunk, N = 330 appendages. Error bars show the standard deviation.

B. Bar plots of DLC accuracy for trunk, head, and appendage landmarks using the same data as in (A).
Accuracy is computed using an 18 mm (the average distance between two forelimb markers) threshold to
binarize predictions. Error bars show 95% confidence intervals.

Supplementary Figure 2 | lllustration of triangulation vs. volumetric concepts.

A. Triangulation C. Multi-view Geometric Learning
Consider: 2D Location 1D Classification Matched Objects Use Projective Geometry To 2D Classification Object Identies Are
Using 1D Sensors (Color, Length) Are Triangulated Lift and Combine 1D Detections in 2D (Color, Shape) Directly Assigned in 2D
: 2D | :
: Space | : .

w BI """""" ® | 7 8

1D A
Sensors
" Additional Feature and 1D Classification Triangulation Fails D. Use Projective Geometry To 2D Classification Objects Have Spatial
Environmental Complexity (Color, Length) Lift and Combine 1D Detections in 2D (Multi-color, Shape, Distance) and Multi-view Features
i Cloi L, .
! |1 I Uz ‘ | Ecl
; . . i I d
o A & I - g 8
P Lo A Eeis - -
¢ b G @ : - : i iy
occlgsion iy ,?b& P \ occlusion
e — —— 2 e —— -
A ? C > B C

A. In an analogous scenario where measurements using 1D sensors are used to reconstruct the 2D
positions of specific objects, 1D classifiers are sufficient when the projections of each object onto the
sensors are perfectly separated and distinguishable.

B. When the features associated with each object become more natural and complex (e.g. colors that look
different depending on viewing angle), and objects become occluded, it is challenging to classify the
detections on each 1D sensor separately and unambiguously.

C. Rather than classify 1D detections separately in 1D using 1D classifiers, an alternative is to combine
the 1D detections in a 2D space, using knowledge of where the 1D detections would intersect based on
the orientation of the sensors relative to this space. A 2D, rather than a 1D, classifier takes in the entire
2D space as input and can use overlapping color and shape to assign identities to each object.

D. Using the combined 2D strategy, the 2D classifier can combine information across sensors (e.g. the
larger pink and blue intersection corresponds to object C), and, critically, it can learn and utilize the
distribution of distances between objects. This is especially useful in the presence of occlusions and when
landmark positions have consistent spatial relationships, such as across the body of an animal.

Supplementary Figure 3 | Detailed schematic of DANNCE.

DANNCE Steps

@ Triangulate

Position 3D CNN Combines

And Processes Volumes

<

=

) Detect Animal 3) Anchor Empty 3D Grid) Project Voxels, (5) Transfer Pixels @ CNN Outputs
Position On 3D Position And Sample Images Into Voxels 3D Confidence Maps

Collect synchronized multi-view
images

}

— Run full resolution images through
DANNCE

}

for each landmark

I_1

Landmark positions are the voxel
coordinates at the maximum values
of each respective map

— [3D CNN outputs 3D confidence map }

Use 3D position to anchor a
64x64x64 volumetric grid

[Project grid centers onto images]

Downsample images (4x)

!

Run downsampled images through
COM Network

)
)
)
! !
)
]
)

A MAX Network

[Each map is softmax normalized]

point) in each view

}

positions

Extract coarse 2D positions (single Sample images at projected

[Normalize resulting volumes to [-1, 1]

Triangulate individual pairs of views

AVG Network

(Direct Linear Transformation)

} !

{ Use median across pairs as coarse Concatenate normalized volumes

estimate of global 3D position along color axis

| !

Optionally smoothAt.race of global 3D]_ [Run volumes through 3D CNN } _
position

Top. Details of the steps used in DANNCE to predict 3D landmarks, illustrated with real images of a rat. (1)
To anchor the volume that will contain a 3D representation of the animal, the animal’s 2D position in each
frame (red dot) is detected using a 2D neural network. (2) These 2D positions are triangulated to 3D using
the calibrated geometry of the cameras. (3) An empty 3D grid is then centered on this triangulated 3D
positions, and each voxel is this 3D grid is assigned a real 3D spatial coordinate (in mm). (4) The spatial
coordinates of each voxel are projected to 2D using the calibrated geometry of the cameras. In these
images, the white dots show the projected 2D coordinates of each voxel’s 3D coordinate, and the white

3

outlines denote the 3D border of the grid projected into 2D. (5) The RGB image content at each projected
voxel 2D location is transferred to the voxel’s original 3D position, creating 3D spatially aligned image
volumes. (6) These volumes are then passed as input to the 3D CNN. The 3D positions of each landmark
lie at the intersection of matched image features in these volumes. For this example, rat volumes were
manually segmented to illustrate feature convergence. (7) Finally, the 3D CNN detects landmark-specific
feature convergence and output a 3D spatial confidence map indicating the location of each landmark.

Bottom. Extended flow chart describing all required steps in more detail.

Supplementary Figure 4 | Rat 7M contains a diversity of camera arrangements.

A

views 4 views 3 views 2 views 1

views 5

z (mm)
2500
® views1
2000 F ° ® views2
Y views 3
L Y @ views4
1500 © viewss
‘ X origin
1000
°
500
y (mm) X L4 .
-500 L
°
-1000 |
o o
-1500 b ° L4
[] L]
2000
-1500 -1000 -500 0 500 1000 1500
X (mm)
azimuth difference between neighboring views
6,
2
3
-« 4
o
5,
£
5
< 0
0 20 40 60 80 100 120

degrees

1500

1000

500 ~

0

2000

a

-2000
Y] +1000
0 y(mm)
1000
T -
1500 1000 s00 T ;0 1000* 2000
500 - -1500 2000
x (mm)
1400
1200 | ° [
° ° g
L []
1000 PP
800 [
z (mm)
[)
600 °.® ®
° H
400 - °
° N [X . ®
200
0 A . N . .)
-1500 -1000 -500) 500 1000 1500
x (mm)
E. elevation difference between neighboring views
8
£
8 s
b
o4
o
Qo
€ 2
2
E— 5 10 15 20 25 30 35
degrees

A. Example image of the L-frame target used for calibrating each video and motion capture camera to a
single world coordinate system. Positions of markers on the L-frame are overlaid with colored circles.

B. Example positions of a single set of 6 calibrated cameras used for recordings in one rat.

C. All 3D camera positions in Rat 7M, shown on the xy-plane (left) and xz-plane (right). The different colors
represent different recordings.

D. Histogram of azimuth angle differences between neighboring camera pairs across the Rat 7M dataset.
A neighboring camera pair is a given camera and its closest neighbor. All cameras and their closest
neighbors are included, without repeating pairs.

E. Histogram of the elevation angle differences between neighboring camera pairs.

F. Example video frames from each of the 30 views included in the Rat 7M dataset. Each view shows the
L-frame targets with marker positions overlaid with colored circles.

Supplementary Figure 5 | Extended performance metrics for DLC and DANNCE.

A. Trained on Rat 7M. tested on a new Rat 7M subject
100-
80 - [DANNCE, 6 cameras
’\3 [DANNCE, 6 cameras (larger training set)
< [DANNCE, 6 cameras (fine-tune)
oy 60- 3 DLC, 6 cameras
© Il DANNCE, 3 cameras
8 40- [DANNCE, 3 cameras (larger training set)
2 [DANNCE, 3 cameras (fine-tune)
20 | | | | | | | | | [DLC, 3 cameras
0 ‘o o ® ~ pa > = | ‘E vE < ‘E I = I
85 5= ® S 3 2L £ 8o 09 =L £5 L
23 £3 & = & Of 5§ §8 388 %F 28 oF
< @ o j=d o [©] o
& g =® g0 @ @
B £ <
140-

120-

-
o
o

Error (mm)
N @
o o

LSI S
o o

o

| |
il HJHJ HJHJ i H%H; HJHJ Hﬂ“&l HJHJ Hﬂﬂ&l Hﬂhl i Héh&

=82 a® 2 = @ 58 g3 £ 45 35 x5 %5
o 8 20 85 n %]
£ <
C. . E
Control: trained on Rat 7M, tested on validation periods in Rat 7M training animals
30- .
BNl DANNCE, 6 cameras 100 » 1.0-
DANNCE, 6 cameras (3 camera median) 1)
25- [DLC, 6 cameras 80- £ 0.8-
EEE DANNCE, 3 cameras —_ B Y-
_. 20 - == DLC, 3 cameras X %
E 3 %0 £06-
= 15- o k]
8 g 40 504
w10~ T & 5
20- ©0.2-
5- [] L
1 0-° ! ! ‘ 0.0-. . ‘ ! ‘
0- 1 6 12 18 1 5 10 15 20
Method Error threshold (mm) Number of landmarks

accurately tracked

A. Landmark prediction accuracy (% predictions with error < 18 mm relative to ground truth) on specific
behavioral categories for the same data and methods as in Fig. 3A. N = 199 instances of each behavior, N
= 1980 markers for each 6 camera method per behavior, N = 39,600 markers for each 3 camera method
per behavior. DLC predictions come from the “median” triangulation condition.

B. Box plots of Euclidean error for the same data and behaviors as in (A). Box plots in (B-C) show median
with IQR and whiskers extending to 1.5x IQR. Black squares in the box plots are arithmetic means.

C. Box plots of Euclidean error for the indicated methods, over withheld data in N = 4 training animals. N
= 80,000 markers. “DANNCE, 6 cameras (3 camera median)” computes final pose output as the median
over predictions from all 20 combinations of 3 cameras.

D. Landmark prediction accuracy as a function of error threshold, for the same data and methods as in
(C). Line colors use the same legend as in (C).

E. Fraction of timepoints with the indicated number of markers accurately tracked (error < 18 mm). Line
colors use the same legend as in (C).

Supplementary Figure 6 | DANNCE is more robust than triangulation to small calibration errors.

A Motion capture (mocap) B Mocap C D
z . ' . s :
T 140 100 10 £ 10 i
- £ .
=120 _. 80 \ £ 10" g o
£ 100 £ ! £ E 10"
© < 60 g o s
5% 5 gao” O) P
g W 40 o 8 10" ag
o 40 8 © 40 - z s
a 20- < z o
& 20 o ~ Mocap S,
Q 0 0- (W 1072 —+ DANNCE RO
N i " 0 " ' ' 0 0 v ' i 0 0 3
0 10 20 30 0 10 20 30 10° 10" 102 100 10" 102
Calibration error Calibration error it ;
(angular difference from actual) (angular difference from actual) 2D Mocap reprojection error (pixels) A Mocap 3D error (mm)
E.
Calibration error: 0° 1.2° 2.7° 3.8° 12.6° 32.4°
2D mocap
reprojection
error: 0 pixels 5.3 pixels 10.2 pixels 18.5 pixels 53.3 pixels 105.3 pixels

Motion
Capture

DANNCE

A. Simulation of error in triangulated ground truth motion capture measurements with camera calibration
noise. Random 3D rotations were applied to each of 6 cameras’ extrinsic rotation matrices and the error
relative to ground truth motion capture was computed after triangulating and reprojecting using the noisy
calibration matrix. Shown is a scatter plot of the reprojection error (averaged over 6 cameras) vs. the
angular error (gray squares, averaged over 6 cameras). The black squares and error bars reflect the mean
and standard deviation of the reprojection error over bins in angular calibration error. Error was calculated
in a single Rat 7M subject, over the same N =3000 2D landmarks for each simulation (N = 300 simulations).

B. Scatter plot of 3D error relative to ground truth for the same calibration errors and samples as in (A).
For each simulation, 3D points were calculated via triangulation, using the shifted rotation matrices, of
ground truth 2D reprojections. N = 500 3D landmarks for each of N = 300 simulations. Black squares and
error bars reflect the mean and standard deviation of the 3D error over bins in angular calibration error.

C. Scatter plot of the change in 3D error for triangulation and for DANNCE predictions as calibration noise
increases, for the same simulations as in (A) and (B). N = 500 3D and 3000 2D landmarks for each of N =

300 simulations for each condition.

D. Scatter plot showing the change in 3D error for DANNCE vs. triangulation across all simulations. The
colors indicate regions where either DANNCE (blue) or motion capture (gray) are more robust to
calibration error, in terms of the number of simulations achieving lower 3D error (i.e., asymmetries over
the identity line, dashed black).

E. Example (1 of 6 views) showing the effect of calibration error on triangulation vs. DANNCE
reprojections.

Supplementary Figure 7 | DANNCE performance is more robust than triangulation to decreases in image
resolution.

A B. C.
10 500 % 8-
—— Motion capture (downsampled) —— Motion capture (downsampled) 5 K
€ g. — DANNCE E 400 ~— DANNCE S 7 o0t
£ £ DLC 40 - g,\s, —— 0.01
= = [N ——
5o £8, ¢
s 5 20 &0 T qo
s 4 § 200- 10- 554
3 3 L ———— 583
@ @ e W S | =3
E 2- E 100- 2 4 8 16 W
< < Downsample factor % 2-
0 OJ — ‘ ‘ : : E 1-
1 2 4 8 16 32 1 2 4 8 16 32 o 1 2 4 8 16 32
Downsample factor Downsample factor Downsample factor
D. -
Downsampling factor DANNCE predictions
1x
(None)
2x
4x
8x
16x
32x

A. Line plot showing the change in median Euclidean error for DANNCE predictions (6 cameras) and
triangulation as input image resolution is decreased. Triangulation is adjusted by rounding 2D landmark
coordinates, here computed using reprojections of motion capture, to the nearest multiple of the
indicated downsampling factor and then retriangulating. Light lines are the median error for each of the
20 marker types, and the dark line for each condition is the mean of the condition’s marker-specific traces.

9

All data are from the Rat 7M validation subject. DANNCE predictions using the “DANNCE, 6 cameras (fine-
tune)” model. N = 400,000 markers for each downsample factor.

B. Line plot of the mean lines from (A), with the addition of the change in median error for 6-camera DLC
(median triangulation method). Inset shows a zoom-in of the indicated region.

C. Line plots showing the fold-change in DANNCE Euclidean error at increasing error percentiles, for the
indicated image downsampling factors, using the same DANNCE data as in (A).

E. Examples of DANNCE prediction reprojections for three different Rat 7M samples at decreasing image
resolutions. Each pair of columns is a different sample, with each pair of columns showing 1 of 6 total
views. Images were downsampled using the mean of pixel values over non-overlapping image patches,
followed by bilinear upscaling back to the original image size.

10

Supplementary Figure 8 | DANNCE performance increases with the size of the training dataset when
fine-tuning.

Ay B. 4

—— mean error
—4— median error
15 6
E
10 l 4
. 17 ,
) T ! ! !]
0 '
10

Error (mm)

Error (

)) 0 !)
100 225 1000 0 250 500 750 1000
No. fine-tuning samples No. fine-tuning samples
C. D. E o
8- —i— Head =" 7
\ — —+— Trunk I
B €6\ —a— Appendages _ ————
Eo s E \ S "/ I I
- — - < -
5 A\ 5 W\ z w”
B 4TI\ 54 '\\.\ g 95
° ' . < N . 3
3 e 9 S — T &
S 2. —— Head o2 4 [—s+— Head
—¢— Trunk = =—¢= Trunk
—m— Appendag —m— Appendages
) ") . 0-. . 90
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
No. fine-tuning samples No. fine-tuning samples No. fine-tuning samples

A. Box plots of Euclidean error for 6-camera DANNCE predictions on the validation subject after fine-
tuning the network with an increasing number of frames from Rat 7M. N = 33,200 validation markers for

each training condition. Plots show median with IQR and whiskers extending to 1.5x IQR. Black squares
are arithmetic means.

B. Plots showing the mean and median for the data in (A).

C. The mean error for each training condition, broken down by marker type. N = 4980 head markers, N =
11,620 trunk, N = 16,600 appendages.

D. The median error for each training condition, broken down by marker type, for the same data partitions
asin (C).

E. The accuracy (18 mm threshold) for each training condition, broken down by marker type, for the same
data partitions as in (C).

11

Supplementary Figure 9 | DANNCE generalizes to unseen behavioral categories.

Control: trained on Rat 7M with and without left grooming behavior removed. tested on Rat 7M validation periods

25- 1 DANNCE, all data
[DANNCE, no left groom

20

i I S

“JmH H H " H Al OB H uf aL .
52 8 - = = - =

o S OO A T T [T 11 11
52 2= 2 £ § B¢ F. 85 «E .5 zE =8

Box plots of Euclidean error of the 6-camera DANNCE network on individual behavioral types after
withholding a single behavior (“Left Groom”) from the training set in temporal validation periods of the N
= 4 training animals. Box plots of error after training on the entire dataset are shown for comparison. N
=1,642 — 72,070 instances of each behavior (N = 32,840 — 1,441,400 markers). For left groom, N = 7,520
behavioral instances, N = 150,400 markers. Plots show median with IQR and whiskers extending to 1.5x

IQR. Black squares are arithmetic means.

12

Supplementary Figure 10 | DANNCE generalizes to markerless rats without additional training data.

B. DeeplabCut

A. DANNCE

BB

Wet Dog

L. Scratch
ace

Anogenital
Groom

R. Scratch

0 0 Co— . Postural
100 25x10¢ Adjustment

200 -100 v (mm) 0
X (mm) 300 -200 Probability Density

A. Example DANNCE predictions over a rearing sequence in a markerless rat (6 total cameras). The top
row shows the 3D predictions, and the bottom row shows every other frame of the top row projected
down onto a single 2D camera view.

B. Example DLC predictions and projections for two of the frames in (A).
C. 3D center of mass position extracted from 1 hour of video recording in a single animal.

D. Left, Density map of behavioral space isolated from ~3.5 hours of recording in 3 markerless rats. Right,
the same behavioral space, segmented into low- and high-level clusters using a watershed transformation.
Dark outlines are high-level clusters, light outlines are low-level clusters.

E. 3D renderings of examples from the indicated behavioral categories in (D).

13

Supplementary Figure 11 | DANNCE outperforms DLC in mice.

A. B.
40- === Human 100 o
I DANNCE, 3 cameras
DLC, 3 cameras 80 -
30- =
o £
£ § 60 -
2% S 40
w <
10- e Human
’ 20- s DANNCE, 3 cameras
DLC, 3 cameras
0- i (- S— —
Method Method
C. D
40 N 100 -
B Human
I DANNCE, 5 cameras
30- DLC, 5 cameras 80-
£ S
£ > 60- | == Human
=20 8 B DANNCE, 5 cameras
o —
LE § 40- DLC, 5 cameras
<
10-
20-
0 Method 0 Method
E.
DANNCE Markerless mouse

hﬁﬂ i%@mm
Qﬁliﬁ/ @P}?AD@@%

A. Quantification of mean error relative to triangulated 3D human annotations for DANNCE predictions
made using 3 cameras. N =3 animals, N = 709 landmarks. Error bars are standard deviation.

B. Accuracy, as the fraction of landmarks within 9 mm, relative to triangulated landmarks hand-labeled by
humans, for the same data and methods as in (A). Individual dots show the accuracy for individual animals.
Black dots are animals that were used for training, although all samples used for analysis were not used
for training. The white dot is a validation animal that was not used for training.

C. Quantification of mean error relative to triangulated 3D hand labels for DANNCE predictions made using
5 cameras in a single animal. N = 287 landmarks. Error bars are standard deviation.

D. Accuracy, as in (B), for the same data and methods as in (C).

14

E. Representative example of DANNCE and DLC 3D predictions made using 5 cameras on a rearing
sequence. Images to the right show reprojections of the samples indicated by the black and red
arrowheads.

15

Supplementary Figure 12 | 3D kinematic analysis of the mouse behavioral repertoire.

<

7
=4
& (zH/n) asd &
o o
———
1S
8
[
o
ES
sk
S o
L
=
)
—
o n v v o
o ~ v
(zH) Aousnbag
o
1
=4
S (zH/0) asd S
o o
C————
£
o
§
o
L
58
= X
S
2
4 o 1 1w 1 o
o ~ v
(zH) Aousnbag
o
1
=3
& (zH/,n) asd S
o el
————
§5
85
S
©
&8
b ox
o 1 1w 1 o
o N5
(zH) Aousnbagy
o
I
=1
= (2H/p7) asd &
o o
———
€
2
)
i
Q
5]
<
o 1 1w 1 o
o ~ v
(zH) Aousnbag

IreL
quiipuy by
quuipuly Yo
quuialo} JyBry
quijaio) Yo
yuniy

jnoug

IreL
quiipuy Jybry
quuipuly ya
quuiai0} JyBry
quiaio) Yo
yunil

jnoug

IreL
quiipuy by
quuipuly Y
quuialo} JyBry
quijaio) Yo
yunig

jnoug

IreL
quiipuy by
quupuly ya
quuial0} JyBry
quijaio Yo
junil

jnous

1.4x1073

@ (zH/z/) asd
=]
C—————

quuialo} JyBry
quijaio) Yo
yunil
jnoug

Left Forelimb Groom
y component

o v v v
o N
(zH) Aousnbag

10

0.5x1073

o
- (zH/,1) asd
o

C————
§
) ey
0] m quiipuy Jybry
Qc quuipuly ye
£ 0
=Q
[
G Q quuiaio) Yo
L ©
= > Junip
=
2 jnoug
14

0
25
5
7.5
10

(zH) Aousnbag

3.1x1073

'l
N (zH/,7) asSd
o

|

A-D. PSDs for individual x-, y-, and z-velocity components for the Walk (A), Face Groom (B), Right Forelimb

Groom (C),

IreL
quuiipuiy Jybry

quuija10} Y3
Nunij
noug

Face Groom
y component

10

o 1w v 1
o ~

(zH) Aousnbag

0.9x1073

©
< (zH/z/) asd
o

|

Walk

y component

quuijai0) Yo
Nuni|
noug

o v v 1
o ~
(zH) Aousnbag

10

0.1x1073

©
© (zH/,A) Sd
=]
————

quuija.0} Jybry
quuijaio) Yo

yuniy
jnoug

Left Forelimb Groom
z component

o 1 v v
(Y] ~
(zH) Aouanbag

10

0.1x1073

(=2}
< (2H/,7) asd
o

C——
g
8 IreL
[0} m quuipuy Jybry
25 quupuy e
5 m. quuija.0} Jybry
53 quuijaio} Yo
LN SuniL
=y
= nous
e o 1w v v o
o ~ v
(zH) Aousnbag
™
1
=]
& (zH/,7) asd &
o (3]

el

ET quuipuly bRy
o o
o< quupuy e
o
o g quuiia104 Jybry
85 quiie10} yo]
© O
W N quniy
jnoug
o v v v o
(Y] N
(zH) Aousnbag
-
)
o
~ *
S (2HM) asd 3
———

quuija.0} Jybry
quuijaio} Y

yuniy
jnoug

Walk

z component

o ©v v 1
(Y] ~
(zH) Aousnbag

10

and Left Forelimb Groom (D) clusters in Fig. 4E-H. Traces were z-scored individually for each

marker before computing PSDs, except for right forelimb (C) and left forelimb (D) grooming PSDs, in which

all limb velocity traces were normalized to the standard deviation of the right and left forelimb traces,

respectively.

16

Supplementary Figure 13 | Validation of the rat pup behavioral clusters discovered by DANNCE.

P7 P14 P21 P30
28 40 70
3 Human 50
— 24 I DANNCE _35 — _60
£ E30- E40 Es50-
£ 20- £ £ £
=) =3 =) =)
5 l:; 2 § 30- 5 40
516 5 3 5
£ E 20- £ £ 30-
=) =3 =3 =3
&1 3 & &
15- 20-
8- i i i 10 ' i 10- . ' 10- . . i
Head Spine Fore- Hind- Head Spine Fore- Hind- Head Spine Fore- Hind- Head Spine Fore- Hind-
limbs limbs limbs limbs limbs limbs limbs limbs
B P7 P14 P21
IlE .
0 - max
C Probability Density
P14 P21

still still still still

Locomotion Locomotion Locomotion Locomotion

Groom Groom Groom Groom

Human Labeled class
Fraction of automated labels

Rear Rear Rear Rear

Still Locomotion Still Locomotion Groom Rear Still Locomotion Groom Rear Still Locomotion Groom Rear
Automated Class Automated Class Automated Class Automated Class

A. Boxplots of link length distance distributions for both hand-labeled frames and DANNCE predictions.
For all developmental timepoints, N = 12 animals, N = 21-68 segments, hand-labeled, and N = 210,612—
836,968, DANNCE. Plots show median with IQR and whiskers extending to 1.5x IQR. Black squares are
arithmetic means.

B. Density maps that were clustered and annotated to make Fig. 5D.

C. Confusion matrices between human-assigned labels and labels derived from DANNCE behavioral
mapping in (B), showing 83 + 11 % agreement between the two labeling methods (mean + s.d.). Confusion
matrices were created from 25 randomly drawn timepoints from each coarse behavioral category by
creating videos from [-1,1] s intervals around each timepoint.

17

Supplementary Note

Hardware and compute benchmarks

In the tables below, we list the system components used for DANNCE on all markerless datasets, along
with associated temporal benchmarks. DANNCE runs effectively on many different systems (see hardware
specifications per dataset in tables below), making predictions at a maximum of >12 Hz at 64x64x64 voxel
resolution on RGB video and >20 Hz at 64x64x64 voxel resolution of monochrome video when using a
single GPU. At 32x32x32 voxel resolution, DANNCE achieves a maximum of 44 Hz on RGB video when
using a single GPU. DANNCE prediction is also parallelizable, showing linear speed-ups when using
additional GPUs (our top speed thus far is 310 Hz for 64x64x64 voxel resolution). Note that Hz is with
respect to samples (i.e. timepoints). The total number of video frames processed per second is higher,
equal to the sample rate times the number of camera views. DANNCE fine-tuning typically takes less than
12 hours, but it depends on the size of the labeled dataset and the number of epochs run for convergence.

DANNCE configuration parameters

The open-source DANNCE package implements a collection of tunable configuration parameters that can
be used to refine DANNCE on new species and datasets. While the default values of these parameters
have been set so that DANNCE works “out of the box” on new data, we make the parameters accessible
to users as part of a feature-rich system that can in principle be further optimized to address any
unexpected new dataset idiosyncrasies. We note that most successful and popular systems, in both
software and hardware, provide tunable parameters so that users can maximize the utility of the system
via customization.

In this section we define each tunable parameter and describe the expected effect of parameter
modifications on DANNCE performance.

Best practices for new users

The lists below can be used when planning hardware purchases and when adapting DANNCE to new
environments and species. In general, for new setups, we recommend using at least 3 cameras
synchronized with a hardware trigger. Because DANNCE can integrate information from multiple views
and landmarks when making predictions, once trained it is robust to decreases in image resolution
(Supplementary Fig. 7). We therefore recommend an image resolution that is sufficient to hand label each
landmark of interest for fine-tuning.

We recommend running DANNCE on a CUDA-capable GPU with 6 GB memory or more. We provide code
for camera calibration, as well as real time compression, on our GitHub page
(https://github.com/spoonsso/dannce). DANNCE has been tested and works well on Windows 10, Ubuntu
16.04, and CentOS 7.6. We also recommend at least 16 GB system memory (RAM).

Our parts list for the six-camera mouse setup can serve as a guide for users looking to purchase the
necessary components for 3D tracking in a relatively small behavioral space at high frame rates. For larger
arenas, additional lighting may be necessary to ensure bright and uniform coverage of the arena. For high
frame rate acquisition (100 Hz) at 1 megapixel resolution, an additional GPU with dedicated NVENC
capabilities will be needed for real-time compression — we recommend Nvidia Quadro RTX 4000. Slower
or lower resolution systems can use the CPU for compression. Our CamPy code repository, which can be
accessed from the DANNCE GitHub, provides necessary code for synchronization and real-time video
compression for Basler and FLIR cameras.

18

Mouse setup
Arena: (One) Glass cylinder, 8” diameter x 8” height. Clear acrylic may also be used. We
recommend a cylindrical arena to avoid occlusions from the corners of a rectangular prism. Note,
for birds, we made the arena large enough to place the cameras inside the arena, thus avoiding
this problem. (One) 30” x 30” aluminum breadboard as a base for mounting the setup. (One) PVC
sheet for the arena floor. (Five) 1” x 3” x 3/8” mounting bases, for securing the PVC sheet on the
breadboard.
Lighting: (Three) lkan Onyx 240 Bi-Color On-Camera LED light, mounted above the cylinder. 30W
(250W equivalent) at full power. IR LEDs can be used for light-sensitive applications. Lights were
set to 100% power, camera irises were closed to maximize pixel intensities on the floor just below
saturation, and cameras were set to 2 ms exposure time. These values were chosen to maximize
contrast and minimize motion blur.
Cameras: (Six) Basler acA1920-150uc, 2/3”, C-mount, 1920x1200, 150 fps, color, USB 3.0, CMOS,
global shutter. (Six) 10 meter GP-I/O cables for USB 3.0 cameras. (Six) 3 meter Micro B USB 3.0
cables. (One) PCle-to-USB 3.0 expansion card (4 ports, 4 host controllers). To achieve 100 Hz frame
rate, camera pixel format was set to 8-bit RGB, and resolution was reduced to 1152x1024 pixels.
Lenses and filters: (Six) 8 mm, 2/3”, 5 MP, C-Mount, Ultra Low Distortion lenses. (Six) 30.5 mm
Ultra High Contrast Linear Polarizer Filter. Note that the filters reduce glare but are not absolutely
necessary.
Camera Mounting hardware: (Six) 1/4-20" Aluminum Mounting Plate. (Six) Rotating clamps for 5"
posts, continuously adjustable, 3/16” Hex (ThorLabs). Cameras were mounted onto %” posts
(ThorLabs) at either 90° or ~60° and positioned to achieve even coverage of views around the
arena.

We recommend training the COM network and DANNCE with at least 100 samples (the same labels can
be used to train both) labeled using Label3D. DANNCE approximates human performance with around
200 samples, but there can be good returns on labeling up to at least 1000 samples (Supplementary Fig.
8). Users should choose the number of points to track based on the requirements of their animal and/or
experiment, which generally should capture all independently controllable skeletal segments. Because
DANNCE learns geometric relationships between landmarks on the animal skeleton, we expect prediction
accuracy to increase with additional labeled points. This intuition is supported by evidence from the
human pose literature that prediction accuracy increases with the number of tracked (i.e. labeled)
landmarks (Fisch and Clark, 2020, arxiv).

The only parameter that absolutely requires customization before using DANNCE on a new species is
vol_size, which sets the physical dimensions of the 3D volume encapsulating the subject in the
unprojected 3D space. vol_size must be large enough to encompass the entire subject and thus should be
fit to the actual physical size of the animal.

19

Hyperparameter (Primary)

Definition
The length (in mm) of one size

Guidance
This should be big enough to fit

vol_size of the 3D cube whose center is the entire animal, with a little
the animal's 3D position. wiggle room to accommodate
noise in the 3D COM.
net_type Possible values: AVG or MAX. The AVG version can achieve

This parameter toggles between
two different versions of
DANNCE. Default: AVG.

better accuracy but is
sometimes harder to train. We
recommend starting with AVG.

Hyperparameter (Secondary)

Definition

Guidance

epochs This is the number of times the | You should need fewer epochs
full dataset will be looped over | as you increase the number of
during training. Default: 600. images in your training dataset.
With ~100 timepoints in the
training set, 500-1000 epochs is
probably sufficient. Inspect your
training and validation loss in
your tensorboard logs. If using a
validation set, you should
continue to train if the
validation loss has not yet
plateaued.
batch_size This is the number of For prediction, increasing
timepoints that will be included | batch size may increase
in a batch of samples during prediction speed. For training,
training and prediction. This batch size can be modified
value is constrained by the as a hyperparameter. The effect
amount of GPU memory you of batch size on training is an
can access. Default: 4. open area of research in deep
learning, although there is
agreement that the optimal
batch size is problem- and data-
specific.
interp Possible values: nearest or Nearest neighbor interpolation

linear. Sets the interpolation
method when building 3D
volumes from 2D images.
Default: nearest.

is faster, but bilinear
interpolation can in principle be
more accurate. Note that it is
best to use the same
interpolation method for both
training and prediction.

medfilt_window

If not None, the 3D COM trace
will be smoothed with a median
filter with size indicated here.
Default: None.

Inspect your COM traces after
they are generated by the
COMnet. You want them to look
smooth, without any outliers. If
outliers or jumps are sparse,
you can try to smooth them
away by introducing this

20

median filter. The larger the
window, the more likely your
COM will become inaccurate
and not capture the entire
animal in the DANNCE 3D
volume.

loss

The loss function used for
training. Default: mse mask.

DANNCE ships with a small set
of built-in loss functions for
training the network, in
addition to default loss
functions provided by keras and
tensorflow. We always use our
custommse mask. This is just
a mean squared error loss that
ignores missing landmarks in
labeled samples (from an
inability to see the landmark
during data labeling).

sigma

When using the MAX network,
this value sets the size of the
spherical Gaussians (the
standard deviation for all 3
dimensions, in mm) used as
training targets for each
landmark. Default: 10.

This should scale with the size
of your species (and volume
size) and should approximate
the deviation of your labeled
landmark positions from the
true anatomical position of the
landmark.

The learning rate used by the
optimizer during training.
Default: 0.001.

The learning rate is often
included in hyperparameter
searches. If not performing a
systematic search, you might
still try a few different learning
rates to see if this improves
performance. We do not
recommend learning rates
larger than 0.01.

n_layers_locked

The number of layers in the
pretrained model (including the
input layer) whose weights are
locked and will not update
during training. Default: 2.

After training on a large
database, early layers in a CNN
have learned to capture
features universal to all images
(such as edges) and thus do not
need to be fine-tuned for
another domain. The rule of
thumb is that the more data
you are using for fine-tuning,
the more layers you should
unlock. However, in our
experiments we find that
locking just the first
convolutional layer works well,

21

even when fine-tuning with just
50 samples.

rotate

Either True or False. When
True, during training image
volumes are rotated randomly
around the z-axis in 90 degree
steps. (Default: True)

Image augmentation is a
commonly used technique for
improving neural network
performance. For rotation, this
generates synthetic examples
that increase the diversity of
viewpoints in the training data.

augment_brightness

Either True or False. When
True, during training image
volume brightness is randomly
scaled. (Default: False)

Brightness augmentation can
improve performance and
generates synthetic training
examples of samples under
diverse lighting conditions or
exposures.

augment_hue

Either True or False. When
True, during training image
volume brightness is randomly
scaled. (Default: False)

Hue augmentation can improve
performance and generates
synthetic training examples of
samples under diverse lighting
conditions or differences in
camera color balance.

channel_combo

Either None or random. If
random, camera order is
shuffled as batches are
generated. (Default: None)

When the first layers of the CNN
are locked during fine-tuning,
this parameter has no practical
effect. When the first layers are
unlocked, setting to random
makes the network robust to
different view configurations.

22

DANNCE

Rat7M FT Mice Mice Mice Chickadee | Marmoset
Fig. 3 Fig. 4 Fig. S11A Fig, S11C Fig. 6 Fig. 6
Primary
Hyperparameters
vol_size 240 mm 120 mm 120 mm 120 mm 84 mm 600 mm
net_type AVG MAX MAX MAX AVG MAX
Secondary
Hyperparameters
nvox 64 64 64 64 64 64
Ir 0.001 0.001 0.001 0.001 0.001 0.001
loss mse_mask | mse_mask | mse_mask | mse_mask | mse_mask | mse _mask
epochs 600 1200 1200 817 2000 1696
channel_combo random random random random None random
interp nearest nearest nearest nearest nearest nearest
sigma n/a 10 10 10 n/a 20
n_layers_locked 2 2 2 2 0 2
batch_size 4 4 4 4 4 4
medfilt_window None None None None None 10
augment_brightness | False False False False True False
augment_hue False False False False False False
rotate True True True True True True
Performance and
Instrumentation
camera type FLIR Basler FLIR FLIR FLIR FLIR
video size 1280 x 1152 x 1280 x 1280 x 2816 x 1280 x
1024 1024 1024 1024 1408 or 1024
2816 x
1696
animal length (pixels) | 170-340 200-400 250-400 150-300 100-500 150-650
mono False False False False True False
acquisition fps 30 100 30 30 60 30
operating system Ubuntu Windows Ubuntu Ubuntu Ubuntu & | Ubuntu
Windows
10
GPU Type Titan V Titan RTX Titan V Titan V 2080ti Titan V
12 GB 24 GB 12 GB 12 GB 12GB 12 GB
training duration 11 hours 6 | 120 hours | 7 hours 10 hours 24hrs 17 hours
prediction speed, 3 cameras: | 11.1 Hz 12.4 Hz 10.2 Hz 10 Hz 12.4 Hz
1 GPU 12.4 Hz
6 cameras:
9.8 Hz
no. of views {3, 6} 6 3 5 6 3
no. of training 225 82 25 50 70 100

samples (per subject)

23

no. training subjects

data rate (GB per
camera per hour)

30 GB

15 GB

672 GB

24

DANNCE Pups

P7 P14 P21 P30
Primary

Hyperparameters
vol_size 160 160 160 400
net_type AVG AVG AVG AVG

Secondary

Hyperparameters
nvox 64 64 64 64
Ir 0.001 0.001 0.001 0.001
epochs 500 500 500 500
channel_combo None None None None
interp linear linear linear nearest
sigma n/a n/a n/a n/a
n_layers_locked 2 2 2 2
batch_size 4 4 4 4
medfilt_window 30 30 30 30
augment_brightness True True True False
augment_hue True True True False
rotate True True True True

Performance and

Instrumentation
camera type FLIR FLIR FLIR FLIR
video size 1280 x 1024 1280 x 1024 1280 x 1024 1280 x 1024
animal length (pixels) 170-430 220-610 300-540 360-530
mono False False False False
operating system Cent0S 7.6 Cent0S 7.6 Cent0S 7.6 Cent0S 7.6
acquisition fps 30 30 30 30
GPU Type V100 V100 V100 V100

16 GB 16 GB 16 GB 16 GB

training duration 4.7 hrs 22.5 hrs 31.9 hrs 9.2 hrs
prediction speed, 12.4 Hz 12.4 Hz 12.4 Hz 12.4 Hz
1GPU
prediction speed, Max 310 Hz (25) 310 Hz (25) 310 Hz (25) 310 Hz (25)
(no. GPUs)
no. of views 3 3 3 3
no. of training samples | 30 25 96 35
(per subject)
no. training animals 6 6 6 6
Additional or shared n/a 10 P13, 30 P15, 150 P14, 60 P20, | 105 P40
samples 60 P20, 575 P21 60 P22
data rate (per camera 0.15 0.15 0.15 0.15

per hour)

25

26

DANNCE parameters or properties tested before finalizing models. Best value is italicized.

Rat 7M fine-tune (FT). None.

6 camera mouse. Number of training epochs {1200, 12000}.

5 camera mouse. sigma {5, 10}. channel_combo {None, random}.

3 camera mouse. None.

Marmoset. Number of training samples {50, 100}. vol_size {200 mm, 300 mm}. medfilt_window {0, 10}.
net_type {MAX, AVG}. Number of training epochs {1696, 2400}.

Bird. vol_size {53, 64, 74, 84 mm}, n_layers_locked {2, 0}.

Pups, all ages. net_type {MAX, AVG}. nvox {64, 80, 96}. Ir {5e-5, 1e-3}. interp {linear, nearest}.
Pups, P7. No additional.

Pups, P14. Added additional shared training data from nearby developmental timepoints.
Pups, P21. Added additional shared training data from nearby developmental timepoints.

Pups, P30. vol_size {240, 340, 360, 400 mm}. Added additional shared training data from nearby
developmental timepoints.

27

COMnet configuration parameters

To anchor the 3D volumes for DANNCE, we provide a training and prediction environment for a 2D CNN
that tracks only the rough position (center of mass — COM) of the subject. The COM network also has
associated parameters that can be changed by the user. Note that use of the COMnet is not required. If
you have good estimates of the animal position via an alternative approach (a different 2D CNN, or a
classic computer vision technique), then these estimates can then be plugged into DANNCE. For
instance, in bird the COM was tracked with DeepPoseKit.

We consider all the COMnet hyperparameters to be secondary because the COMnet should work well
with default values, given enough training data.

Hyperparameter (Secondary)

Definition

Guidance

sigma This value sets the size of the This should scale with the size
spherical Gaussians (the of your species (and image size),
standard deviation for all 2 and should approximate the
image dimensions, in pixels) deviation of your labeled COM
used as training targets for the positions.
COM. Default: 30.
Ir The learning rate used by the The learning rate is often
optimizer during training. included in hyperparameter
Default: 5e-5. searches. If not performing a
systematic search, you might
still try a few different learning
rates to see if this improves
performance. We do not
recommend learning rates
larger than 0.01.
epochs This is the number of times the | You should need fewer epochs
full dataset will be looped over | as you increase the number of
during training. Default: 100. images in your training dataset.
With ~100 timepoints in the
training set, 100-200 epochs is
probably sufficient. Inspect your
training and validation loss in
your tensorboard logs. If using a
validation set, you should
continue to train if the
validation loss has not yet
plateaued.
downfac This is the factor by which your | The more you downsample your

images will be downsampled
before getting passed through
the network. Default: 4.

images (the higher downfac),
the faster training and
prediction will be. Because you
only need a coarse estimate of
the animal’s position from the
COMnet, downsampling does

28

not typically degrade
performance noticeably

batch_size

This is the number of frames
that will be included in a batch
of samples during training and
prediction. This value is
constrained by the amount of
GPU memory you can access.
Default: 6.

For prediction, increasing
batch size may increase
prediction speed. For training,
batch size can be modified
as a hyperparameter. The effect
of batch size on training is an
open area of research in deep
learning, although there is
agreement that the optimal
batch size is problem- and data-
specific. For the COMnet,
increases in the downfac
amount increase the achievable
batch size by creating smaller
image dimensions. In the same
way, increases and decreases in
native image resolution also
affect the batch size.

augment_brightness,
augment_hue,
augment_rotation,
augment_shear,
augment_zoom,
augment_shift

We also provide a standard set
of 2D image augmentations, as
implemented by tensorflow.

Image augmentation is a
commonly used technique for
improving neural network
performance. With a very small
labeled dataset, turning on
these augmentations could
increase COMnet performance.

COMnet
Rat7M FT Mice Mice Mice Chickadee | Marmoset
Fig. 3 6 cam 3 cam 5cam Fig. 6 Fig. 6
Fig. 4 Fig. S11A Fig. S11C
Secondary
Hyperparameters

downfac 4 2 2 2 n/a 4

sigma 10 30 10 10 n/a 20
batch_size 6 2 6 6 n/a 6

Ir 5e-5 S5e-5 S5e-5 5e-5 n/a S5e-5
epochs 30 250 100 55 n/a 1000
augment_brightness | False False False False n/a False
augment_hue False False False False n/a False
augment_rotation False False False False n/a False
augment_shear False False False False n/a False
augment_zoom False False False False n/a False

29

augment_shift False False False False n/a False
Performance and
Instrumentation
training samples 12,946 0 0 311 n/a 300
added to DANNCE bootstrap bootstrap COM-only
labels (total) ped ped
training duration 6 hours 1 hour 1 hour 1.5 hours n/a 8 hours
GPU Type Titan V Titan RTX | TitanV Titan V n/a Titan V
operating system Ubuntu Windows Ubuntu Ubuntu n/a Ubuntu
prediction speed, 3 cameras | 8 Hz 27 Hz 8 Hz n/a 27 Hz
1 GPU 27 Hz:
6 cameras:
18 Hz
COMnet Pups
P7 P14 P21 P30
downfac 2 2 2 2
sigma 18 18 18 18
batch_size 2 2 2 2
Ir 5e-5 S5e-5 S5e-5 S5e-5
epochs 200 200 200 200
augment_brightness False False False False
augment_hue False False False False
augment_rotation False False False False
augment_shear False False False False
augment_zoom False False False False
augment_shift False False False False
Performance and
Instrumentation
COM-only training 1000 P7 0 P14, 50 P13, 450 P21, 150 0 P30
samples added to 150 P15 P22
DANNCE labels
additional COM-only 0 150 P20, 450 150 P20 0
shared samples P21
GPU Type V100 V100 V100 V100
operating system Cent0S 7.6 Cent0S 7.6 Cent0S 7.6 Cent0S 7.6
prediction speed, 5.7 Hz 5.7 Hz 5.7 Hz 5.7 Hz
1 GPU
prediction speed, Max 142.5 Hz (25) 142.5 Hz (25) 142.5 Hz (25) 142.5 Hz (25)
(No. GPUs)

30

COMnet parameters or properties tested before finalizing models. Best value is italicized.

Rat 7M fine-tune (FT). Bootstrapped training samples (see Methods).

6 camera mouse. None.

5 camera mouse. Bootstrapped training samples (see Methods).

3 camera mouse. None.

Marmoset. Added additional COM-only labeled training samples {300}. sigma {10, 20}.

Pups. Added additional COM-only labeled training samples, except for P30.

31

	supp_only_edited
	supplementary_note_final

