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SUMMARY
Tissue-clearing methods allow every cell in the mouse brain to be imaged without physical sectioning. How-
ever, the computational tools currently available for cell quantification in cleared tissue images have been
limited to counting sparse cell populations in stereotypical mice. Here, we introduce NuMorph, a group of
analysis tools to quantify all nuclei and nuclear markers within the mouse cortex after clearing and imaging
by light-sheet microscopy. We apply NuMorph to investigate two distinct mouse models: a Topoisomerase 1
(Top1) model with severe neurodegenerative deficits and a Neurofibromin 1 (Nf1) model with a more subtle
brain overgrowth phenotype. In each case, we identify differential effects of gene deletion on individual cell-
type counts and distribution across cortical regions that manifest as alterations of gross brain morphology.
These results underline the value of whole-brain imaging approaches, and the tools are widely applicable for
studying brain structure phenotypes at cellular resolution.
INTRODUCTION

Tissue-clearing methods render biological specimens trans-

parent while preserving their three-dimensional (3D) structure.

Upon fluorescent labeling of protein and molecular markers,

the entire cellular organization of cleared tissues can be rapidly

imaged using light-sheet microscopy at acquisition rates 2–3 or-

ders of magnitude faster than point scanning systems (Richard-

son and Lichtman, 2015; Ueda et al., 2020). Great strides have

been made in the development of clearing protocols that are

compatible with immunolabeling and the design of complemen-

tary sophisticated imaging systems (Murray et al., 2015; Park

et al., 2019; Matsumoto et al., 2019; Susaki et al., 2020). Yet

challenges remain in expanding the accessibility of these tech-

nologies to research labs for quantitative analysis at cellular

resolution.

For example, many of the current imaging protocols for whole-

brain profiling require custom light-sheet systems to image tis-

sues at cellular resolution (Tomer et al., 2014; Pende et al.,

2018; Fei et al., 2019; Matsumoto et al., 2019; Voigt et al.,
C
This is an open access article under the CC BY-N
2019). These systems are therefore inaccessible to those lacking

the expertise or resources required to assemble the necessary

microscope components. Expanding tissues during the clearing

process is a potential workaround that can increase the effective

spatial resolution, allowing interrogation of subcellular structures

without the need for custom imaging solutions (Chen et al., 2015;

Ku et al., 2016;Murakami et al., 2018; Gao et al., 2019). However,

expanded tissues can fall outside of the working distance of con-

ventional microscope objectives and require prolonged imaging

times and significantly larger data storage resources. Therefore,

computational tools designed for conventional light-sheet

microscope users are needed to compare cell counts in a wild-

type (WT)/knockout (KO) design.

With more than 100 million cells in the mouse brain and data

sizes of whole-brain images approaching the terabyte scale,

advanced image analysis tools are needed to achieve accurate

cell quantification. Current segmentation methods for tissue-

cleared brain images apply a threshold for nuclear staining inten-

sity and filter objects with a predefined shape, size, and/or den-

sity (Renier et al., 2016; Matsumoto et al., 2019; F€urth et al.,
ell Reports 37, 109802, October 12, 2021 ª 2021 The Author(s). 1
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2018). However, variations in cell size, image contrast, and label-

ing intensity can all lead to inaccurate counts. In addition, whole-

brain images are typically registered to a standard reference,

such as the Allen Reference Atlas (ARA), to assign cell locations

to their corresponding structural annotations. Thus far, image

registration has been performed mostly on stereotypical mice

and has not been designed for mouse models with significant

changes in gross morphology. With these limitations, the

computational tools currently available have not been fully adop-

ted for studying cellular organization in mouse models.

To address these issues, we developed a group of image anal-

ysis tools called NuMorph (Nuclear-Based Morphometry; avail-

able at https://bitbucket.org/steinlabunc/numorph/) for end-to-

end processing to perform cell-type quantification within the

mouse cortex after tissue clearing and imaging by a conventional

light-sheet microscope. To demonstrate the effectiveness of the

tool, we first applied and evaluated NuMorph to quantify struc-

tural changes in a mouse model with large differences in cortical

structure, a topoisomerase I (Top1) conditional KO (Top1 cKO)

mouse model that exhibits clear reductions in both cortical size

and specific cell types (Fragola et al., 2020). We then apply Nu-

Morph to investigate a neurofibromin I (Nf1) cKO (Nf1 cKO)

model, a gene harboringmutations in individuals with neurofibro-

matosis type I (NF1). This disorder often results in cognitive

impairment, attention-deficit/hyperactivity disorder (ADHD),

and autism spectrum disorder (ASD) (Gutmann et al., 2017).

Our results reveal unique genetically influenced cell-type and

structural changes in eachmousemodel, demonstrate the broad

applicability of our analysis tools for studying both severe and

subtle brain structure phenotypes in combination with tissue-

clearing methods, and present an alternative to two-dimensional

(2D) stereology for cellular quantification that does not rely on

representative sampling.

RESULTS

iDISCO+ reveals neuronal cell-type deficits in the Top1

cKO cortex
A previous study demonstrated that deletion of Top1 in postmi-

totic excitatory neurons within the cortex and hippocampus re-

sults in massive neurodegeneration in these structures by post-

natal day 15 (P15) (Fragola et al., 2020). Interestingly, although all

cortical layers were affected by Top1 deletion, the lower cortical

layers (layers 5 and 6) showed a noticeably greater reduction in

thickness and cell count compared with the upper cortical layers

(layers 2–4) (Fragola et al., 2020). However, these previous ob-

servations were limited to 2D sections within the somatosensory

cortex, which itself is a large structure that can be further decom-

posed into multiple functional regions. To evaluate the effects of

Top1 deletion on excitatory neuron cell types throughout all

cortical structures, we performed iDISCO+ (Renier et al., 2016)

to clear and image the Top1 cKO (Neurod6Cre/+::Top1fl/fl) mouse.

We chose to use iDISCO+ among other tissue-clearing tech-

niques because of its demonstrated compatibility with antibody

labeling, minimal tissue expansion or shrinkage, and simplified

protocol (Renier et al., 2016). To go beyond qualitative evalua-

tion, we proceeded to develop cell detection and image registra-

tion tools that could accurately quantify the number of upper
2 Cell Reports 37, 109802, October 12, 2021
layer and lower layer neurons in each cortical region in Top1

cKO mice (Figure 1A).

We processed one brain hemisphere from four WT and four

Top1 cKOmice at P15, when the Top1 cKO had displayed large,

bilateral deficits in brain structure (Fragola et al., 2020). We

labeled layer-specific cell types using antibodies for Cux1 (upper

layer neuron marker) and Ctip2 (lower layer neuron marker) in

addition to staining all cell nuclei with TO-PRO-3 (TP3) during

iDISCO+ processing. After clearing, samples were imaged using

the Ultramicroscope II, one of the most widely used commercial

light-sheetmicroscopes for imaging cleared tissues (Ert€urk et al.,

2012; Tainaka et al., 2014; Susaki et al., 2015; Liebmann et al.,

2016; Pan et al., 2016; Renier et al., 2016; Ye et al., 2016; Cai

et al., 2019; Kirst et al., 2020). The Top1 cKO hemispheres dis-

played a noticeable reduction in overall cortical volume (Fig-

ure 1B). During light-sheet imaging, there is a well known trade

off between optical resolution, particularly in the axial (z) dimen-

sion, and imaging speed. Although the Ultramicroscope II fea-

tures axial sweeping to maintain relatively even z resolution

throughout the field of view (Dean et al., 2015), the additional me-

chanical movement of the light-sheet significantly reduces the

imaging rate. After testing various imaging schemes, we imaged

at 1.21 3 1.21 3 4 mm/voxel resolution with a light-sheet thick-

ness of 9 mm. The resulting images provided sufficient resolution

to visually delineate cell nuclei in the cortex (Figure 1C) while

limiting imaging time to 10–15 h for all three channels in one

WT hemisphere (�9 h for Top1 cKO).

Prolonged imaging of cleared tissue samples can induce

several artifacts over the course of image acquisition. In partic-

ular, drift in the sample or aberrant microscope stage movement

can cause misalignment between image tile positions within and

between channels. These issues become more pronounced at

higher optical resolution, at which slight variations can prevent

colocalization of cell nuclei with their respective immunolabeled

markers. To ensure correct alignment between channels, we

applied a series of rigid and non-rigid registration steps using

the Elastix toolbox (Klein et al., 2010) to map the Cux1 and

Ctip2 channels onto the TP3 channel without inducing non-spe-

cific local background warping (Figure S1). We also found that

many of the commonly used programs for performing 3D image

stitching (Bria and Iannello, 2012; Hörl et al., 2019) did not accu-

rately align adjacent tile stacks, because of spurious stage

movement, which has been noted by other groups (Kirst et al.,

2020). To ensure accurate image reconstruction, we applied a

simplified iterative 2D stitching procedure that uses scale-

invariant feature transforms (Lowe, 2004) to produce continuous

images without cell duplication along tile edges (Figure S2).

Finally, differences in fluorescence intensity caused by light

attenuation and photo bleaching during the course of imaging

can result in uneven brightness between image tile positions.

To ensure uniform signal across tiles, we measured the differ-

ences in image contrast in overlapping tile regions to estimate

and correct for variations in signal intensity among tile stacks

(Figure S1D).

Completion of the preprocessing steps described above re-

sulted in aligned, fully stitched three-channel images and data-

sets < 1 TB per sample (�400 GB for WT and �180 GB for

Top1 cKO). The Top1 cKO hemispheres displayed clear

https://bitbucket.org/steinlabunc/numorph/
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Figure 1. Cellular resolution analysis of brain structure phenotypes for tissue-cleared 3D brain images

(A) Overview of tissue processing, imaging, and image analysis procedures.

(B) Three-dimensional rendering of nuclei in WT and Top1 cKO samples. Scale bar, 1mm.

(C) Example of TO-PRO-3 (TP3) labeled nuclei within aWT cortex captured at sufficient lateral (xy) and axial (xz) resolution for cell quantification. Scale bar, 50 mm.

(D) Optical sagittal sections of TO-PRO-3 nuclear staining and immunolabeling for cell-type-specific markers Ctip2 (lower layer neuron) and Cux1 (upper layer

neuron) in WT and Top1 cKO samples. Scale bar, 1 mm.

(E) Zoomed-in images of boxed cortical areas in (D) demonstrating channel alignment and showing the expected localization of upper and lower layer markers.

Scale bar, 200 mm.
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reductions in thickness throughout the cortex (Figure 1D).

Although all cortical layers showed some amount of degenera-

tion, layer 5 and layer 6 neurons seemed to be more severely

depleted (Figure 1E), and we hypothesized that certain cortical

areas may be differentially affected as well.

Point correspondence improves image registration for
structures with large morphological differences
Because of the significant differences in gross morphology

within the Top1 cKO brain, image registration was not accurate
using only intensity-based mutual information metrics (Fig-

ure 2A). To improve registration accuracy of the Top1 cKO brain,

we manually selected up to 200 points at distinguishable struc-

ture landmarks in the Nissl-stained ARA and their corresponding

locations in the TP3 nuclei channel for each sample. Point loca-

tions were positioned primarily around the cortex, as this was our

region of interest (Figure S3A). Using Euclidean point distances

as an additional metric during the registration process signifi-

cantly improved cortical annotation compared with a manually

delineated mask (Figure 2A). Increasing the number of points
Cell Reports 37, 109802, October 12, 2021 3
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Figure 2. NuMorph integrates point correspondence to register difficult structures and 3D-Unet for accurate detection of cortical nuclei

(A) Cortical masks from registeredWT and Top1 cKO brain images (magenta) compared with manual labeled traces (green). Mattesmutual information (MMI) was

used as the primary registration metric with additional point correspondence to guide registration in the Top1 cKO case.

(B) Voxel-wise differences in cortical volumes between Top1 cKO and WT samples.

(C) Description of 3D-Unet approach for detecting nuclei centroids (CC3D, 3D connected component analysis).

(D) Centroids of WT cortical nuclei predicted by 3D-Unet. Scale bar, 1 mm (inset, 20 mm).

(E and F) Comparison of cell detection precision (E) or recall (F) at the indicated xy resolutions (mm/pixel). Examples of misclassification instances contributing to

false positive errors (E) or false negative errors (F) are shown. Data are represented as mean ± SD.
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resulted in higher DICE similarity coefficient scores in Top1 cKO

samples (Top1 cKO Mattes mutual information [MMI], mean =

0.526, SD = 0.189; Top1 cKO MMI + 200 Pts, mean = 0.890,

SD = 0.013) indicating improvements in registration accuracy

(Figures S3A–S3D). These results show that point correspon-

dence can be used to better register mouse models with large

structural variation.

Using the spatial deformation fields generated after image

registration, we analyzed which areas in the Top1 cKO cortex
4 Cell Reports 37, 109802, October 12, 2021
exhibited the largest changes in volume relative to WT. Although

the cortex as a whole showed a large reduction in volume

(mean = 80%, SD = 3.7%, p < 0.001), we observed slightly

greater decreases in frontal regions, such as the orbitofrontal

(ORB) and infralimbic (ILA) areas, as well as certain lateral re-

gions near the temporal association area (TEa) (Figures 2B and

S3E). This suggests that the neuronal cell types within these

structures may be more susceptible to degeneration upon

Top1 deletion.
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3D-Unet accurately quantifies cell nuclei in the cortex
Three-dimensional cell segmentation of tissue-cleared images

can be difficult because of the density of cells in the brain, limits

of imaging resolution, and overall data complexity. Here we im-

plemented a deep learning model, based on a 3D version of

the popular U-Net framework (3D-Unet) (Çiçek et al., 2016; Isen-

see et al., 2018), to accurately quantify the total number of cell

nuclei marked by TP3 staining within the cortex. We generated

two sets of manually labeled nuclei. First, for training, �67,000

cortical nuclei were manually delineated from 256 training image

patches (112 3 112 3 32 voxels/patch) of cortical nuclei at

either high (0.75 3 0.75 3 2.5 mm/voxel) or low (1.21 3 1.21 3

4 mm/voxel) spatial resolutions. To increase manual delineation

efficiency, we focused only on cell detection by delineating a

2D binary mask at the middle Z position to be used as a marker

for each cell nucleus. Second, for evaluation, an independent set

of �3,500 manually delineated nuclei were used in which the full

3D extent of the nucleus was labeled in order to determine accu-

racy of predicted centroid placement. Cell marker predictions

within each 3D patch were then thresholded and analyzed for

connected components to calculate final cell centroid positions

(Figure 2C).

To evaluate cell detection accuracy, we compared precision

and recall rates for detecting nuclei in the evaluation dataset us-

ing 3D-Unet and two previously published analysis tools for tis-

sue-cleared images with cell counting components: ClearMap

and CUBIC Informatics (CUBIC). In our tests, 3D-Unet achieved

the highest precision and recall rates in both high- and low-res-

olution images when the full training datasets were used (Figures

2E and 2F). At low resolution, 3D-Unet achieved significantly

lower error rates compared with the next best performing

method (CUBIC) at higher resolution (p = 0.043, CUBIC 0.75/

3D-Unet 1.21; p < 0.001, CUBIC 1.21/3D-Unet 1.21; p < 0.001,

ClearMap 1.21/3D-Unet 1.21; McNemar’s test). We also tested

cell detection accuracy in several regions outside of the cortex

and found comparably high accuracy in moderately dense re-

gions with a higher error rate in more dense regions such as

the dentate gyrus (Figure S4D). Using the trained 3D-Unet

model, we counted 8.43 (±0.05)3 106 cells in the P15WT cortex

hemisphere (Figure 2D), which was similar to previously pub-

lished results in adult mice (Murakami et al., 2018). This indicates

that with sufficient training, deep neural networks can compen-

sate for a lack of imaging resolution and achieve accurate cell

quantification.

Lower layer neurons in the frontal cortex are
preferentially targeted by Top1 deletion
To quantify neuronal cell types inWT and Top1 cKO cortexes, we

developed a supervised support vector machine (SVM) model to

classify cell types on the basis of local intensity, shape, and

annotation features. We found that a supervised approach, after

training on 1,000 nuclei in each brain sample, achieved more ac-

curate classification compared with an unsupervised mixture

model approach (Figure S5C; Video S2). After removing outliers

and summing across cortical structures, we counted 1.74

(±0.07) 3 106 Ctip2+ and 1.94 (±0.05) 3 106 Cux1+ in WT

compared with 0.30 (±0.08) 3 106 Ctip2+ and 0.73 (±0.11) 3

106 Cux1+ in the Top1 cKO (Figures 3A and 3B; Video S1). Over-
all, this constitutes an�83% decrease in Ctip2+ cells and�62%

decrease in Cux1+ cells. Compared with previous results in 2D

sections from somatosensory cortex (Fragola et al., 2020), we

saw a similar bias toward lower layer neuron degeneration (per-

centage decrease Ctip2/Cux1 = 1.97 in 3D SSp; 2.33 in 2D), but

with a larger reduction in total neuron counts (70% decrease in

Ctip2+ cells and 30% decrease in Cux1+ cells from 2D analysis).

Although this can be partially attributed to differences in cell

quantification methods, the increase in sampling depth from

volumetric analyses can also uncover larger effects in total cell

count compared with serial 2D analysis.

Next, we compared differences in cell counts and density

across the isocortex to determine which regions were most

affected by Top1 deletion. As genetic manipulation may lead

to alterations in areal identity, precise regional boundaries

can be poorly defined after registering the ARA to a nuclear

labeled mouse brain image. Therefore, we focused primarily

on voxel-wise comparisons and, to add interpretability, supple-

ment voxel-wise data with measured differences in 43 cortical

areas in the ARA and the complete isocortex. We observed sig-

nificant and broad decreases in nuclei number throughout the

cortex (false discovery rate [FDR] < 0.05; Figure 3), and when

using registered atlas labeled regions, all but 1 of the 43 struc-

tures showed a significant decrease in total nuclei count, indi-

cating broad degeneration across all cortical areas in the Top1

cKO model (FDR < 0.05; Figures S6E). As expected, Ctip2+

cells mainly showed significant differences in lower layers of

the cortex, whereas Cux1+ cells mainly showed significant dif-

ferences in upper layers of the cortex (Figure 3). We identified

25 and 41 cortical areas with significant decreases in Cux1+

and Ctip2+ cell counts, respectively (Figure S6E). Although

many structures, including several areas in somatosensory cor-

tex (SSp-n, SS-m, SSp-bfd), shared significant losses in both

Cux1+ and Ctip2+ excitatory neurons, the most significant de-

creases were seen in Ctip2+ cells localized in frontal areas,

such as the prelimbic (PL) area and secondary motor area

(MOs) not measured in previous work (Fragola et al., 2020).

We then calculated cell density by normalizing counts to regis-

tered structure volumes. Interestingly, the majority of structures

show significant increases in nuclei density in Top1 cKO brains

(Figure S6E), suggesting that, in addition to cell loss, degener-

ation of neuronal processes is also contributing to differences

in cortical structure. Structures with the most significant in-

creases in density were again localized in frontal regions,

such as the PL, ILA, and ORB areas, as well as medial regions,

such as the anterior cingulate areas (ACAs). Decreases in nuclei

number were more strongly correlated with reductions in

cortical surface area compared with cortical thickness (Figures

S6B–S6D). Taken together, these results show that even in

cases in which genetic perturbation induces strong phenotypic

effects such as in the Top1 cKO model, NuMorph can reveal

more localized differences in cell-type number within specific

brain regions.

Neurodegeneration is spatially correlated with genes
differentially expressed in Top1 cKO
Previous evidence suggests that lower layer neurons, particu-

larly those in L5, are most susceptible to degeneration as a result
Cell Reports 37, 109802, October 12, 2021 5
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Figure 3. Top1 deletion induces broad degeneration of neuronal cell types, particularly in frontal regions

(A and B) Point cloud display of Cux1+ (A) and Ctip2+ (B) cells within WT and Top1 cKO cortexes.

(C) Coronal slice visualizations displaying voxel-wise percentage change in cell count (left hemisphere) and FDR-adjusted p values (right hemisphere).
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of reduced expression of long, neuronal genes in the Top1 cKO

model (Fragola et al., 2020). Although the severe structural defi-

cits in Top1 cKO precluded us from accurately quantifying neu-

rons within L5 in individual cortical regions, we found that regions

with larger L5 volumes in the ARA saw the greatest reductions in

total structure volume in Top1 cKO (Figure 4A). Furthermore,

these regions also saw the largest increases in cell density (Fig-

ure 4B), suggesting local degeneration of neuronal processes.

We then performed spatial correlations between regional cell

count differences and gene expression using in situ hybridization

(ISH) data from Allen Mouse Brain Atlas (AMBA) (Lein et al.,

2007). We tested whether the degree of Top1 cKO induced

structural change among cortical regions was related to the

expression of long genes (i.e., genes > 100 kb) within those re-

gions, as Top1 is known to be a transcriptional regulator of

long genes (King et al., 2013; Mabb et al., 2016). We found that

regions with larger reductions in cell numbers in Top1 cKO
6 Cell Reports 37, 109802, October 12, 2021
were correlatedwith increased long gene expression (Figure 4C),

providing further support that neuronal degeneration mediated

by Top1 loss preferentially targets cell types with high long

gene expression. Gene Ontology analysis using random null en-

sembles to overcome gene-enrichment bias (Fulcher et al.,

2021), identified 113 functional annotations associated with

greater neuronal loss, including several processes involved in

axon guidance and extension (Figure S6F). We then searched

for spatial correlations with individual genes differentially ex-

pressed in the P7 Top1 cKO cortex as measured by single-cell

RNA sequencing (scRNA-seq) (Fragola et al., 2020). Among

the 125 differentially expressed genes in Top1 cKO that also

contained ISH signatures in the AMBA, 5 were significantly

correlated with relative difference in excitatory neuron count

(Figure 4D). The most significant gene, S100a10 (also known

as p11), is predominantly expressed by L5a corticospinal motor

neurons in the cortex (Arlotta et al., 2005; Milosevic et al., 2017).
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Figure 4. Effects of Top1 deletion are associated with spatial patterns of gene expression

(A and B) Association between structure volume (A) and cell density (B) differences in Top1 cKO with L5 volume as a fraction of total volume in the ARA. Data

points shown for L5 associations (R, Pearson correlation coefficient).

(C) Association between spatial gene expression and cell loss in Top1 cKO. Genes were ordered according to length and grouped into bins of 200 genes.

Spearman correlation coefficients were calculated between binned gene expression and cell loss across cortical regions. TP3+ indicates all cells, and ExNeun

indicates excitatory neurons (i.e., Ctip2+ or Cux1+). Displaying mean ± SEM.

(D) Genes differentially expressed in Top1 cKO excitatory neurons significantly correlated with relative change in excitatory neuron count across cortical regions

(Spearman correlation; FDR < 0.05).

(E) ISH expression of S100a10 at P14 in the Allen Developing Mouse Brain Atlas (ADMBA) with the cortex outlined and a corresponding sagittal section of Top1

cKO (MOs, secondary motor area). Scale bar, 1 mm.

(F) Flattened isocortex displaying percentage change in excitatory neuron counts (i.e., Ctip2+ or Cux1+) in Top1 cKO relative to WT. Only significant pixels are

colored, and significant regions are bolded and starred (FDR < 0.05). Structure name abbreviations are provided in Table S1.
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Large reductions in Ctip2+ neurons in the Top1 cKO MOs and

other frontal areas where S100a10 is highly expressed suggest

that changes in S100a10 expression may increase susceptibility

for L5 degeneration in these regions (Figures 4E and 4F). These

results demonstrate how existing spatial gene expression re-

sources can be leveraged with cleared tissue analysis to identify

the specific genes, cell types, and biological processes contrib-

uting to gene-structure associations.

Conditional Nf1 deletion induces a brain overgrowth
phenotype that shares similarities with human MRI
results
Although the Top1 cKO model served as a suitable test case for

applying NuMorph to study severe brain structure deficits, germ-

line loss-of-functionmutations in Top1 are highly deleterious and

are extremely rare in humans (Karczewski et al., 2020). To further

validate the utility of NuMorph for analyzing more subtle struc-

tural phenotypes in a disease-relevant animal model, we applied
NuMorph to investigate Nf1 KO models. We generated two

Nf1 cKO mouse models with one (Nf1fl/+;Emx1-Cre) or both

(Nf1fl/fl;Emx1-Cre) copies of the Nf1 gene conditionally deleted

in dorsal telencephalic progenitor cells by Emx1 promoter-driven

Cre recombination (Gorski et al., 2002). We chose Emx1:Cre

mouse line because Cre recombinase activity can be detected

as early as embryonic day 10.5 (E10.5), 1 and 2 days earlier

than Nestin:Cre (Tronche et al., 1999) and hGFAP:Cre lines

(Zhuo et al., 2001), respectively. In addition, the expression of

Cre recombinase inEmx1:Cremice is highly restricted to the dor-

sal telencephalic progenitor cells that allows us to investigate ef-

fects of Nf1 deletion in the cortex. We found that biallelic Nf1

inactivation resulted in increased brain weight and decreased

bodyweight comparedwith control andmono-allelic inactivation

(Figures S7A–S7C). The increase in brain weight is evident as

early as P0, suggesting a possible alteration in cortical develop-

ment at the embryonic stage, a time window that is critical for

both cortical neurogenesis and gliogenesis. We sought to
Cell Reports 37, 109802, October 12, 2021 7
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Figure 5. Nf1 deletion induces cortical thickening driven by increased numbers of non-excitatory neuronal cell types

(A) Optical sagittal sections of immunolabeled lower layer (Ctip2+) and upper layer (Cux1+) neurons in P14 Ctrl, Nf1fl/+;Emx1-Cre, and Nf1fl/fl;Emx1-Cre brain

hemispheres. Zoomed-in regions of boxed cortical areas near the somatosensory cortex showing expected localization of upper and lower layer neurons.

Average cortical thickness (TH) measurements indicated for full 3D somatosensory volumes.

(B) Three-dimensional rendering of cell nuclei in Ctrl, Nf1fl/+;Emx1-Cre, and Nf1fl/fl;Emx1-Cre brain hemispheres.

(C) Flattened isocortex displaying percentage change and FDR-adjusted p values for cortical thickness in Nf1fl/fl;Emx1-Cre across 43 cortical regions and the full

isocortex (Iso) compared with Ctrl. Significant regions are bolded (FDR < 0.05) and starred.

(D) Total isocortex counts of each cell-type class measured across all Nf1+/+, Nf1fl/+;Emx1-Cre, and Nf1fl/fl;Emx1-Cre samples (n = 6, mean ± SEM).
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systematically characterize this brain overgrowth phenotype us-

ing NuMorph.

We performed tissue clearing and whole-brain imaging of six

control, six heterozygous KO (Nf1fl/+;Emx1-Cre), and six homo-

zygous KO (Nf1fl/fl;Emx1-Cre) brain hemispheres in littermate

groups using the same Ctip2/Cux1 antibody panel as in the

Top1 study. Nf1fl/fl;Emx1-Cre showed typical localization of

Ctip2+ lower layer neurons and Cux1+ upper layer neurons but

an increase in isocortical volume (17% increase, p = 0.02) (Fig-

ures 5A and 5B; Video S3). Using NuMorph we also measured

voxel-wise cortical thickness and the average thickness of 43

cortical regions. We detected significantly increased thickness

in posterior regions such as the posterior parietal association

areas (PTLp) with cortical thinning in ORB areas in the Nf1fl/

fl;Emx1-Cre model (Figure 5C). These differences along with

the overall differences bear a strikingly similar pattern to human

MRI findings, in which individuals with NF1 were shown to have

thicker occipital and thinner frontal cortices (Barkovich et al.,

2018). Much of the increase in overall cortical thickness was
8 Cell Reports 37, 109802, October 12, 2021
driven by expansion of cortical layers 5 and 6 (Figure S7D). To

identify which cell types were leading to increased cortical thick-

ness in these regions, we quantified the total number of cortical

nuclei and found a noticeable increase in overall cell count in

Nf1fl/fl;Emx1-Cre (25% increase, p = 0.011) that was largely

attributed to greater numbers of Ctip2�/Cux1� non-excitatory

neuron cell types (50% increase, p = 0.001) (Figure 5D). No sig-

nificant differences in global cortical cell count were observed in

the heterozygous Nf1fl/+;Emx1-Cre model.

Astrocytes and oligodendrocytes drive increased
cortical thickness in the Nf1fl/fl;Emx1-Cre model
We further investigated which specific cell types constituted the

Ctip2�/Cux1� class of cells that was driving cortical expansion

in the Nf1fl/fl;Emx1-Cre model and how these effects varied

across cortical regions. We found broad increases in the propor-

tion of Ctip2�/Cux1� cells throughout the cortex (in voxel-wise

maps and in 40 of 44 cortical areas, FDR < 0.05) with the greatest

increases seen in posterior and medial areas such as the
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Figure 6. Nf1 deletion increases production of astrocytes and oligodendrocytes broadly throughout the cortex

(A) Differences in relative proportion of non-excitatory neuronal cell types (i.e., [Ctip2� and Cux1�)/TO-PRO-3+) across 43 cortical regions and the full isocortex

(Iso) after Nf1 deletion. The top 15 regions sorted by binned p value and fold change are shown (Nf1fl/fl;Emx1-Cre versus Ctrl, mean ± SD, FDR < 0.05). Flattened

isocortex displaying percentage change in Nf1fl/fl;Emx1-Cre are shown on the right. Only significant pixels are colored, and significant regions are bolded and

starred (FDR < 0.05).

(B) Association between estimated astrocyte and oligodendrocyte proportion across regions in the wild-type cortex (Erö et al., 2018) and relative change in non-

excitatory neuronal cell types measured in Nf1fl/fl;Emx1-Cre (R, Pearson correlation coefficient).

(C) Coronal slice visualization displaying percentage change in cell count (left hemisphere) and FDR-adjusted p values (right hemisphere) near somatosensory

cortex (SS) as measured by 3D analysis.

(D) Representative 2D sections of 1 mm cortical columns from the somatosensory region outlined in (C) showing immunolabeling for GFAP (astrocytes) and Olig2

(oligodendrocytes). Scale bars, 200 mm.

(E and F) Quantification of GFAP+ (E) and Olig2+ (F) cells within 1 mm cortical columns in (D) (n = 5–7 animals, mean ± SEM).
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retrosplenial (RSP), auditory (AUD), and visual (VIS) cortices (Fig-

ure 6A). As expected, regions with higher Ctip2�/Cux1� cell

numbers showed a significant positive correlation with cortical

thickness (Figure S7E). To identify the specific cell types within

the Ctip2�/Cux1� class, we focused on non-neuronal cell types

differentiated from the Emx1-Cre expressing lineage: astrocytes
and oligodendrocytes. On the basis of previously estimated cell-

type proportions within the adult mouse brain (Erö et al., 2018),

regions with larger increases in Ctip2�/Cux1� cell numbers in

the Nf1fl/fl;Emx1-Cre model typically have a higher fraction of

glial cell types in the WT cortex (Figure 6B), suggesting that the

non-excitatory neuronal cells were glia. Furthermore, previous
Cell Reports 37, 109802, October 12, 2021 9
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Figure 7. Nf1 deletion alters neuronal cell-type proportions in a region-specific manner

(A and B) Differences in relative proportion of Ctip2+ (A) and Cux1+ (B) cells across 43 cortical regions and the full isocortex after Nf1 deletion. The top 15

structures sorted by binned p value and fold change are shown (Nf1fl/fl;Emx1-Cre versus Ctrl, mean ± SD, FDR < 0.05). Flattened isocortex displaying percentage

change in Nf1fl/fl;Emx1-Cre versus Ctrl are shown on the right. Only significant pixels are colored, and significant regions are bolded and starred (FDR < 0.05).

(C) Association between relative change in Ctip2+ and Cux1+ cell numbers across cortical regions in the Nf1fl/fl;Emx1-Cre.

(D) Representative 2D sections of 1mmcortical columns fromP14 somatosensory cortex after EdU injection at E16.5 showing colocalizationwith SATB2 (callosal

projection neurons) immunolabeling in upper layers. Scale bar, 200 mm.

(E) Quantification of EdU+/SATB2+ cells within 1 mm cortical columns in (D) (n = 3–5 animals, mean ± SEM).
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studies have shown that inactivation of Nf1 results in aberrant

proliferation of both astrocytes and oligodendrocytes (Gutmann

et al., 1999; Bajenaru et al., 2001; Hegedus et al., 2007; Wang

et al., 2012). To confirm an expansion in glial cell numbers was

present, we performed immunolabeling of P14 sections taken

from the somatosensory cortex for Olig2 and GFAP, markers

of oligodendrocytes and astrocytes, respectively, where we de-

tected increased numbers of both Olig2+ and GFAP+ cells in this

region (Figures 6C–6F). Combined with our measurements of

cortical thickness, these results suggest that increased produc-

tion of glial cell types may explain the cellular mechanism that

leads to increased thickness of posterior cortical regions

observed in individuals with NF1.

Nf1 deletion results in a regionally specific imbalance of
upper layer and lower layer neurons
Finally, we testedwhether the proportion of Ctip2+ and/or Cux1+

excitatory neurons was altered across the cortex following Nf1

deletion. Although only a small number of regions were signifi-

cant for changes in raw cell count for either Ctip2 or Cux1 in

Nf1fl/fl;Emx1-Cre compared with control, we detected stronger

voxel-wise and regional effects when normalizing individual

counts by total cell number or by volume (Figures 7A and 7B;
10 Cell Reports 37, 109802, October 12, 2021
Figure S7G). In other words, alterations in cell-type distribution

become more apparent when accounting for the increased

rate of gliogenesis in the Nf1fl/fl;Emx1-Cre model. Across the

entire cortex, we observed a significant reduction in the relative

number of excitatory neurons following biallelic Nf1 deletion,

with a slightly greater reduction in the fractional proportion of

Cux1+ neurons (35% decrease, p = 0.002, 19 of 44 structures,

FDR < 0.05) compared with Ctip2+ neurons (24% decrease,

p = 0.007), though the effect on Ctip2+ neurons was more

broadly distributed (30 of 44 structures, FDR < 0.05). The organi-

zation of upper layer barrel fields was also disrupted in the

Nf1fl/fl;Emx1-Cre model (Figure S7H), similar to previous work

(Lush et al., 2008). In addition, we observed a strong inverse rela-

tionship in the change in Ctip2/Cux1 ratio whereby regions with a

greater reductions in Cux1+ neuron proportions saw lower re-

ductions or increases in the number of Ctip2+ neuron propor-

tions and vice versa. This negative correlation persists when

normalizing to either total cell counts or regional volume (cell

density) (Figure 7C; Figure S7G). These opposing findings across

the cortex show the utility of a whole-brain imaging approach,

because slices within specific regions may not be representative

of the effects across regions. To further investigate whether up-

per layer neurogenesis is disrupted in the Nf1fl/fl;Emx1-Cre



Resource
ll

OPEN ACCESS
model, we performed EdU pulse labeling of E16.5 mice and

quantified their differentiated progeny within P14 brain sections

of somatosensory cortex (Figure 7D). We saw a significant

reduction of Satb2+ upper layer neurons co-labeled with EdU,

indicating decreased upper layer neurogenesis at E16.5.

Considering the increase in gliogenesis seen in the Nf1fl/fl;

Emx1-Cre mouse, these data suggest that Nf1 deletion may

accelerate the brain’s developmental trajectory, which can result

in widely disparate effects on neuronal cell-type composition

across cortical regions in the adult brain.

DISCUSSION

Tissue-clearing methods provide a unique opportunity to explore

the cellular organization of the entire 3D brain structure. However,

the current computational tools for analyzing cell types in tissue-

cleared images have either been applied to sparse cell popula-

tions in which segmentation is less difficult (Renier et al., 2016;

Yun et al., 2019) or taken advantage of tissue expansion and

custom-built light-sheet systems to increase spatial resolution

(Murakami et al., 2018; Matsumoto et al., 2019). Here, we present

NuMorph, a computational pipeline for processing and quanti-

fying nuclei within structures of the adult mouse cortex acquired

by conventional light-sheet fluorescence microscopy.

In the course of developing NuMorph and an appropriate im-

aging protocol, a large emphasis was placed on outlining a

reasonable compromise between cell detection accuracy, imag-

ing time, and computational resources. With the imaging param-

eters used to resolve cortical nuclei in this study, WT brain hemi-

spheres required 3–6 h of imaging per channel, while end-to-end

processing and analysis using NuMorph required �1 day with a

graphics processing unit (GPU)-equipped workstation. By

training a 3D-Unet model on a diverse set of manually labeled

nuclei from multiple imaging experiments, we were able to

achieve effectively equivalent error rates at this resolution

compared with 1.6 times higher resolution (p = 0.91, 3D-Unet

0.75/3D-Unet 1.21; McNemar’s test) that would have otherwise

required significantly longer imaging times and expanded data

size by �4 times for a whole hemisphere acquisition. We show

that cell detection accuracy using the training dataset generated

here remains high for analyzing other brain regions with similar

cell density, while supplementation with additional training data

may be needed for denser structures such as the hippocampus

(Figure S4D). Furthermore, NuMorph provides additional fea-

tures and flexibility, such as (1) targeting analyses to specific

structures after registration to avoid unnecessary computation

time, (2) detecting cells directly by nuclear protein marker

expression without DNA staining, and (3) classifying cell types

by cellular markers using either supervised or unsupervised

methods.

Top1 is critical for maintaining genomic stability and regulating

the expression of long genes important for neuronal function

(McKinnon, 2016). Recent evidence suggests that many of these

same long genes contribute to neuronal diversity and have the

greatest expression in the forebrain (Sugino et al., 2019). In the

developing cortex, scRNA-seq studies revealed that L5 neurons

had higher long gene expression compared with neurons from

other cortical layers (Loo et al., 2019). In this study, we found
that Top1 deletion preferentially targeted many frontal areas

with high L5 thickness, larger numbers of Ctip2+ lower layer neu-

rons, and greater long gene expression. These effects likely

occur much earlier than the time point studied here, as previous

behavioral assays showed that severe motor deficits are present

as early as P7 (Fragola et al., 2020). Interestingly, inhibition of

S100a10, the gene most correlated with neuron loss, was

recently shown to have a neuroprotective effect, delaying motor

neuron loss in amousemodel amyotrophic lateral sclerosis (ALS)

(Garcı́a-Morales et al., 2019). Because Top1 deletion results in

multiple stress factors that negatively affect cell health, addi-

tional studieswill be needed to disambiguate whichmechanisms

ultimately lead to biased degeneration of certain neuronal sub-

types across brain regions.

Human MRI studies have detected gross cortical structural

differences in individuals with neuropsychiatric disorders

compared with neurotypical controls (van Erp et al., 2018).

The cellular basis underlying these differences cannot be as-

sessed with standard in vivo MRI, because of the low resolution

and lack of cellular labels. Overall increases in brain size and

regional variabilities in cortical thickness were previously de-

tected in individuals with NF1 (Payne et al., 2010; Barkovich

et al., 2018). To explain the cellular basis underlying those find-

ings, we used an approach complementary to MRI in humans,

3D cellular resolution imaging in a mouse model. Tissue

shrinkage or expansion during the clearing process may alter

volumetric measurements; nevertheless, the genetic effects

on structure were still large enough to be detected and were

consistent with MRI findings. Specifically, our Nf1 KO model

exhibited a broad expansion in glial cell numbers that drove

cortical thickness increases, particularly in posterior regions,

which reproduced findings from human MRI measurements.

Numerous studies have reported increased glial cell prolifera-

tion following Nf1 inactivation in both animal models and hu-

man induced pluripotent stem cell (iPSC) lines (Zhu et al.,

2001; Hegedus et al., 2007; Wang et al., 2012; Gutmann

et al., 2017). However, it was previously unknown if Nf1 inacti-

vation leads to areal differences in the brain and what cell types

lead to these structural differences. We also found striking areal

differences in upper and lower layer neuron proportions upon

Nf1 biallelic deletion in cortical neural progenitor cells early in

development. This highlights the key advantages of 3D

whole-brain imaging over 2D sectioning, which may lead to

more variable results based on the anatomical location from

which the tissue is sampled. A limitation in both 2D and 3D

analysis is the lack of areal-specific markers that can be used

for delineating precise cortical boundaries. Therefore, we

generally displayed voxel-wise representations of differences

that were not dependent on areal boundary position. Addition-

ally, potential sex-specific effects were not analyzed in this

study but could also affect structural phenotypes and NF1 eti-

ology (Diggs-Andrews et al., 2014). Further coupling of immedi-

ate-early gene immunolabeling with cleared tissue analysis

could reveal how specific structure-function relationships are

altered at a cellular level in the Nf1 and similar models (Renier

et al., 2016, 2017; Ye et al., 2016).

Although NuMorph has proved to be effective in analyzing

moderately dense tissues such as the adult mouse cortex,
Cell Reports 37, 109802, October 12, 2021 11
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the development of additional computational tools may be

required to pursue more challenging experimental designs.

For example, to achieve accurate cell quantification within

highly dense structures such as the cerebellum, olfactory

bulb, and dentate gyrus, increased spatial resolution and

further 3D-Unet model training are essential to improve nuclei

detection accuracy. In addition, structures in the embryonic

brain are typically of much higher cell density and vary in

gross morphology across developmental time, making both

cell quantification and image registration more difficult. Tech-

nological improvements in the next generation of light-sheet

systems can ultimately allow quantitative interrogation of sub-

cellular structures at high throughput (Migliori et al., 2018; Vo-

leti et al., 2019). However, computational tools using deep

neural networks have also proved to be effective in executing

diverse segmentation tasks (Schubert et al., 2019; Friedmann

et al., 2020; Kirst et al., 2020; Stringer et al., 2021) or even

enhancing image quality (Weigert et al., 2018). Nevertheless,

community-based efforts may be needed to generate suffi-

cient annotation data for training deep learning models to

accurately perform these tasks (Roskams and Popovi�c,

2016; Borland et al., 2021). Together we hope these imaging

and computational tools will lead to greater adoption of tis-

sue-clearing methods for quantitative analyses, rather than

qualitative visualizations, of how the entire brain structure is

changed by genetic or environmental risk factors for neuro-

psychiatric disorders.
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Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., and Ronneberger, O.

(2016). 3D U-Net: learning dense volumetric segmentation from sparse anno-

tation. arXiv, arXiv:1606.06650v1. https://arxiv.org/abs/1606.06650.

Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M.R., Armean,

I.M., Bennett, R., Bhai, J., Billis, K., Boddu, S., et al. (2019). Ensembl 2019. Nu-

cleic Acids Res. 47 (D1), D745–D751.

David Arthur, S.V. (2007). K-means++: the advantages of careful seeding. In

Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algo-

rithms. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.7427.

Dean, K.M., Roudot, P., Welf, E.S., Danuser, G., and Fiolka, R. (2015). Decon-

volution-free subcellular imaging with axially swept light sheet microscopy.

Biophys. J. 108, 2807–2815.

Diggs-Andrews, K.A., Brown, J.A., Gianino, S.M., Rubin, J.B., Wozniak, D.F.,

and Gutmann, D.H. (2014). Sex Is a major determinant of neuronal dysfunction

in neurofibromatosis type 1. Ann. Neurol. 75, 309–316.

Dong, H.W. (2008). The Allen Reference Atlas: A Digital Color Brain Atlas of the

C57BL/6J Male Mouse (Hoboken, NJ: John Wiley).

Ellis, D., G., and Aizenberg, M., R.. (2021). Structural brain imaging predicts in-

dividual-level task activation maps using deep learning. bioRxiv. https://doi.

org/10.1101/2020.10.05.306951.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-Cux1 (Clone M-222) Santa Cruz Biotechnology Cat#: sc-13024; RRID: AB_2261231

Rat anti-Ctip2 (Clone 25B6) Abcam Cat#: ab18465; RRID: AB_2064130

Rabbit anti-SATB2 Abcam Cat#: ab51502; RRID: AB_2184455

Rabbit anti-Olig2 Millipore Cat#: AB9610; RRID: AB_570666

Goat anti-GFAP Abcam Cat#: ab53554; RRID: 880202

Chemicals, peptides, and recombinant proteins

5-ethynyl-20-deoxyuridine (EdU) Cayman Chem Cat#: 20518; CAS: 61135-33-9

TO-PRO-3 Iodide Thermo Fisher Cat#: T3065; CAS: 157199-63-8

Deposited data

Raw and analyzed imaging data This study https://braini.renci.org/

Experimental models: Organisms/strains

Mouse: Top1fl/fl Mabb et al., 2016 N/A

Mouse: Nf1fl/fl Jackson Laboratory JAX: 017640

Mouse: Neurod6-Cre Gift from Dr. Klaus-Armin Nave;

Goebbels et al., 2006

RRID:IMSR_CARD:2562

Mouse: Emx1-Cre Jackson Laboratory JAX: 005628

Software and algorithms

NuMorph This study; https://zenodo.org/record/

5346838

https://bitbucket.org/steinlabunc/

numorph/

MATLAB vR2020a Mathworks RRID:SCR_001622

Python v3.6 Python Software Foundation RRID:SCR_008394

Elastix v4.9 Klein et al., 2010 RRID:SCR_009619

3DUnetCNN (Ellis and Aizenberg, 2021) https://github.com/ellisdg/3DUnetCNN

VLFeat A. Vedaldi and B. Fulkerson https://www.vlfeat.org/

SHARP-Track Shamash et al., 2018 https://github.com/cortex-lab/allenCCF

Allen SDK Allen Institute RRID:SCR_018183

ClearMap Renier et al., 2016 https://github.com/ChristophKirst/

ClearMap

CUBIC-Informatics Matsumoto et al., 2019 https://github.com/lsb-riken/

CUBIC-informatics

Bitplane Imaris v9.4 Oxford Instruments RRID:SCR_007370

FIJI NIH RRID:SCR_002285

Prism 9 GraphPad RRID:SCR_002798

Gene Category Enrichment Analysis Fulcher et al., 2021 https://github.com/benfulcher/

GeneCategoryEnrichmentAnalysis
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Jason Stein

(jason_stein@med.unc.edu).

Materials availability
This study did not generate new materials.
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Data and code availability

d Manually labeled annotations for 3D-Unet training and raw light-sheet images are available at https://braini.renci.org/ through

the ‘‘Download Image’’ service.

d NuMorph source code is available at https://bitbucket.org/steinlabunc/numorph/ and deposited at Zenodo. The DOI is listed in

the Key Resource Table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Top1 conditional knockout mice (Top1fl/fl;Neurod6-Cre, Top1 cKO) were bred by crossing Top1fl/fl mice (Mabb et al., 2016) with the

Neurod6-Cre mouse line (Goebbels et al., 2006) as described previously (Fragola et al., 2020). Cre-negative mice (Top1fl/fl) were

used as controls (WT). Nf1 conditional knockout mice (Nf1fl/fl) were purchased from (Jackson Laboratory, Stock No: 017639) (Zhu

et al., 2001). Emx1-Cre mice were originally generated by Gorski et al. (Gorski et al., 2002) and previously validated and maintained

in the lab (Xing et al., 2016). Homozygous Nf1 cKO mice (Nf1fl/fl;Emx1-Cre) and heterozygous Nf1 cKO mice (Nf1fl/+;Emx1-Cre) were

generated by breeding Nf1fl/+;Emx1-Cre mice with Nf1fl/fl or Nf1fl/+ mice. Cre-negative (Nf1fl/fl, Nf1fl/+, Nf1+/+) and Nf1+/+;Emx1-Cre

mice were used as littermate controls. All animal procedures were approved by the University of North Carolina at Chapel Hill Institu-

tional Animal Care and Use Committee. Mice were maintained on a 12-hr dark/light cycle and housed at temperatures of 18-23�C,
40%–60% humidity, and ad libitum food and water. Genomic DNA extracted from tail or ear samples was utilized for genotyping by

PCR. Primers for gene amplification are as follows (listed 50-30): Top1-F: GAGTTTCAGGACAGCCAGGA, Top1-R: GGACCGGGAA

AAGTCTAAGC; Cre-F (Neurod6-Cre): GATGGACATGTTCAGGGATCGCC, Cre-R (Neurod6-Cre): CTCCCATCAGTACGTGAGAT,

Nf1-F: ACATGGAGGAGTCAGGATAGT, Nf1-R: GTTAAGAGCATCTGCTGCTCT, Cre-F (Emx1-Cre): GAACGCACTGATTTCGACCA

and Cre-R (Emx1-Cre): GATCATCAGCTACACCAGAG. Male P15 Top1 cKO and WT littermate controls were used for tissue clearing

in the Top1 study. Male P14 Nf1fl/fl;Emx1-Cre, Nf1fl/+;Emx1-Cre and Ctrl littermates were used for tissue clearing in the Nf1 study.

METHOD DETAILS

Tissue clearing & immunolabeling
Tissue clearing was performed on 4WT and 4 Top1 cKO for the Top1 study and 6Ctrl, 6Nf1fl/+;Emx1-Cre, and 6Nf1fl/fl;Emx1-Cre for

the NF1 study according to the iDISCO+ protocol (Renier et al., 2016). Genotyped samples were processed concurrently in littermate

pairs/triplicates. Briefly, mice were fixed via transcardial perfusion using 4% paraformaldehyde and whole-brain samples were

dissected and cut along the midline. As the effects of Top1 deletion on gross structure were bilateral upon visual inspection, only

the left hemisphere was used in clearing experiments and analysis. Similarly, effects of Nf1 deletion were found to be bilateral based

on 2D stereological analysis and therefore only the right hemisphere was used in the Nf1 study. Investigators were blinded to geno-

type for the Nf1 study during tissue clearing and subsequent imaging and analysis. Large differences in overall brain size between

Top1 cKO and WT prevented blinding in this model. Samples were then washed in phosphate-buffered-saline (PBS), dehydrated

in a graded series of methanol (Fisher, A412SK), pretreated with 66% dichloromethane (Sigma- Aldrich, 270997)/methanol and

5% H2O2 (Sigma-Aldrich, H1009)/methanol, followed by rehydration, permeabilization (20% dimethyl-sulfoxide, Fisher, BP2311;

1.6% Triton X-100, Sigma-Aldrich, T8787; 23mg/mL Glycine, Sigma-Aldrich G7126), and blocking with 6% goat serum (Abcam,

ab7481). Samples were then incubated with antibodies for Cux1 (Santa Cruz, sc-13024-Rb, 1:200) and Ctip2 (Abcam, ab18465-

Rt, 1:500) for 5 days at 37�C in PTwH buffer (PBS; 0.5% Tween-20, Fisher, BP337; 10mg/L Heparin, Sigma-Aldrich, H3393) . After

2 days of washing with PTwH, samples were then incubated with TO-PRO-3 (Thermo Fisher, T3605, 1:300), goat anti-rat Alexa Fluor

568 (Thermo Fisher, A11077, 1:200), and goat anti-rabbit Alexa Fluor 790 (Thermo Fisher, A11369, 1:50) for an additional 5 days at

37�C. Samples were then washed for 2 days with PTwH, dehydrated again using a graded methanol series, incubated in 66% di-

chloromethane/methanol for 3 hours, followed by a 30 minute incubation in 100% dichloromethane before storing in a dibenzyl ether

solution (RI = 1.56, Sigma-Aldrich, 108014) at RT. Tissue clearing and antibody labeling required 21 days to complete.

Light-sheet imaging
Imaging of cleared brain samples was performed using the Ultramicroscope II (LaVision Biotec) equipped with MVPLAPO 2X/0.5 NA

objective (Olympus), sCMOScamera (Andor), and ImSpector control software. The zoombodywas set to 2.5xmagnification (yielding

1.21 mm/pixel) and a single light sheet was used with NA =�0.08 (9 mm thickness/ 4 mm z-step) as this allowed for better resolution of

cell nuclei compared to using multiple light sheets. Dynamic horizontal focusing using the contrast enhanced setting in ImSpector

was used to ensure axial resolution wasmaintained along thewidth of the image using the recommended number of steps depending

on the laser wavelength. Samples were positioned sagittally with the cortex surface facing the single illuminating light-sheet (Fig-

ure S1D). This prevented excessive light scattering and shadowing from affecting the image quality in the cortical regions. Individual

channels were acquired for tiled positions in a row-major order using 561nm (Ctip2), 647nm (TO-PRO-3), or 785nm (Cux1) laser lines.

The 785nm channel was imaged first for the entire hemisphere. After refocusing the objective, the 561nm/647nm channels were then
Cell Reports 37, 109802, October 12, 2021 e2
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captured sequentially for each stack at a given tile position. Using these settings, mouse hemispheres were acquired using 3x3, 4x4,

or 4x4 tiling schemes depending on hemisphere sizewith 5%–15%overlap. Typical imaging times ranged from 10 to 15 hours for all 3

imaged channels. In the Nf1 study, tissue autofluorescence was additionally imaged within a single tile using a 488nm laser at 0.8x

magnification (3.86 3 3.86 3 4 mm/voxel; 0.015 light sheet NA, no horizontal focusing) for all samples.

Computing resources
All data processingwas performed locally on a Linuxworkstation runningCentOS 7. Theworkstation was equippedwith an Intel Xeon

E5-2690 V4 2.6GHz 14-core processor, 8 3 64GB DDR4 2400 LRDIMM memory, 4 x EVGA GeForce GTX 1080 Ti 11GB GPU, and

2 3 4TB Samsung EVO 860 external SSDs. Hot swap bays were used to transfer data from the imaging computer to the analysis

workstation.

Intensity adjustments
Two types of image intensity adjustments were performed on raw images prior to image stitching to increase accuracy of sub-

sequent processing. First, uneven illumination along the y dimension (perpendicular to the light path) of each 2D image caused

by the Gaussian shape of the light sheet was corrected using a MATLAB implementation of BaSiC, a tool for retrospective

shading correction (Peng et al., 2017). We used 10% of all images, excluding tile positions around the cerebellum, to estimate

a flatfield image for each channel. Each image was then divided by the flatfield prior to alignment and stitching to correct for

uneven illumination. Second, differences in intensity distributions between image tile stacks, primarily as a result of photo-

bleaching and light attenuation, were measured in the horizontal and vertical overlapping regions of adjacent tiles. To ensure

bright features were of equal intensity between each stack, we measured the relative difference (tadj ) in the 95th percentile of

pixel intensities in overlapping regions from 5% of all images. The measured image intensity Imeas at tile location ðx; yÞwas

then adjusted according to:

Iadjðx; yÞ = ðImeasðx; yÞ�DÞ � tadjðx; yÞ+D

where Dis the darkfield intensity (set as a constant value based on the 5th percentile of pixel intensities in all measured regions).

Image channel alignment
As image channels are acquired one at a time, subtle drift in stage and sample positions during imagingmay result in spatial misalign-

ment between the reference nuclei channel and the remaining immunolabeledmarkers in amultichannel image.We tested two image

registration approaches to ensure robust alignment across image channels. The first approach estimates 2D slice translations to align

the immunolabeled channel images to the nuclear channel image. The axial (z) correspondence between the nuclei channel and every

other channel within an image stack of an individual tile is first estimated using phase correlation at 20 evenly spaced positions within

the stack. The correspondence along the axial direction with the highest image similarity (based on intensity correlation) determines

the relative tile z displacement between channels (up to 50 mm in some cases). xy translations are then determined after multimodal

image registration for each slice in the tile stack using MATLAB’s Image Processing toolbox. Outlier translations, defined as x or y

translations greater than 3 scaled median absolute deviations within a local 10 image window in the stack, were corrected by linearly

interpolating translations for adjacent images in the stack. In our data, outlier translations often occur in image slices without any

sample present where the lack of image contents limits registration accuracy.

While a rigid 2D registration approach is sufficient for channel alignment when samples are securely mounted, sporadic move-

ment of some samples during long imaging sessions can result in not only shifting translation but also rotational drift. In these

cases, performing registration relying solely on translation will result in only part of the target image aligning correctly to the nuclei

reference at a given z position with the remaining misaligned target features appearing in z positions immediately above and/or

below (Figure S1B). To correct for these displacements, we applied a nonlinear 3D registration approach using the Elastix toolbox

(Klein et al., 2010) between channels for each individual tile. Full image stacks were loaded and downsampled by a factor of 3 for

the x/y dimensions to make the volume roughly isotropic and reduce computation time. Intensity histogram matching was then

performed and a mask was identified for the nuclei reference channel using an intensity threshold that limits sampling positions

in the background. Next, an initial 3D translational registration is performed on the entire image stack between the reference and

the remaining channels. The stack is then subdivided into smaller chunks of 300 images and rigid registration is performed on

each chunk to account for 3D rotation and achieve a more accurate initial alignment within local regions of the full stack. Finally,

a nonlinear B-spline registration is performed on each chunk using an advanced Mattes mutual information metric to account for

xy drift along the z axis and ensure precise alignment of image features. B-spline transformation grid points were set to be sparser

along xy compared to z (800x800x8 voxels) as this setting well balances accurate alignment with computational cost while also

preventing local warping of background intensities.

During image processing, the 2D rigid alignment approach was initially used to align each sample. Each tile was then visually in-

spected to ensure accurate alignment of all channels along the stack. For tiles where rigid alignment was inaccurate, the non-rigid

alignment method was used to correct for misalignment.
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Iterative image stitching
A custom 2D iterative stitching procedure was used to assemble whole-brain images at high resolution. First, an optimal pairwise z

correspondence along the axial direction was determined for adjacent tile stacks by exhaustive image matching for the horizontally

and vertically overlapped candidate regions. Specifically, a sample of 10 evenly spaced images were taken within a stack and regis-

tered to every z position within a 20 image window in the adjacent stack using phase correlation. The displacement in zwith the high-

est count of peak correlations among the 10 images was presumed to represent the best z correspondence. The difference in cor-

relation between the best and the 2nd best z displacement was used as a weight for the strength of the correspondence, with a larger

difference representing a stronger correspondence. This resulted in 4 matrices: pairwise horizontal and vertical z displacements and

their corresponding weights. To determine the final z displacement for each tile, we implemented a minimum spanning tree (Kruskal,

1956) using displacements and their weights as vertices and edges, as previously implemented (Chalfoun et al., 2017).

An intensity threshold to measure the amount of non-background signal was determined by uniformly sampling 5% of all images

and calculating the median intensity. The starting point for iterative stitching going up/down the stack was selected at a position near

themiddle of stack with sufficient non-background signal (set to 1 standard deviation above the darkfield intensity) present in all tiles.

Translations in xy were calculated using phase correlation and further refined using the Scale Invariant Feature Transform (SIFT) al-

gorithm (Lowe, 2004). The top left tile was set as the starting point for tile placement for each stitching iteration. This ensures stitched

images would not be shifted relative to each other along the z axis. Tiles were blended using sigmoidal function to maintain high im-

age contrast in overlapping regions. Spurious translations, defined as translations greater than 5 pixels in x or y from the previous

iteration, in images that lacked image content were replaced by translation results from the previous iteration.

Image registration to ARA using point correspondence
Volumetric image registration was performed using Elastix to measure the correspondence between the stitched TO-PRO-3 channel

in the tissue-cleared samples and the Nissl-stained Allen Reference Atlas (ARA) (Lein et al., 2007; Dong, 2008). The atlas and corre-

sponding volume annotations from Common Coordinate Framework v3 were downloaded using the Allen Software Development Kit

(SDK) (https://allensdk.readthedocs.io/en/latest/) at 10 mm/voxel resolution. In each registration procedure, the ARA was down-

sampled to 25 mm/voxel resolution to perform registration and the resulting transformation parameters were rescaled and applied

to the annotation volume at the native 10 mm/voxel resolution.

For registration without point guidance, an affine followed by B-spline transformation sequence was applied along 3 resolution

levels to each sample using advanced mattes mutual information (MMI) as the sole metric to estimate spatial correspondence (as

done previously in (Renier et al., 2016). This registration procedure allowed for direct mapping of ARA annotations to each registered

sample and was applied to all WT hemispheres in the Top1 study. Adding point guidance to WT samples resulted in similar registra-

tion accuracy but slightly higher variation in structure volumes between samples (Figure S3).

A modified version of the standard registration procedure without points was also used for mapping control and Nf1 cKO hemi-

spheres in the Nf1 study as this knockout model exhibited a lower degree of morphological variation compared to the Top1 cKO

model. However, to further improve registration accuracy, we incorporated additional spectra from tissue autofluorescence that

was mapped to the ARA average MRI template, in addition to the TO-PRO-3/Nissl mapping. The downsampled autofluorescence

channel in each sample was initially pre-aligned to the TO-PRO-3 reference using rigid registration and the standard B-spline regis-

tration with the ARA Nissl/MRI templates proceeded while maximizing the joint mutual information correspondence between the

channel pairs.

For points-guided registration in the Top1 cKOmodel, we first manually placed 200 landmarks within both the ARA and our to-be-

registered nuclei reference image, using the BigWarp plugin in Fiji (Bogovic et al., 2016). The majority of points were located within or

around the cortex, as this was our region of interest and contained the largest deformations in the Top1 cKO samples (Figure S4). The

same set of reference point coordinates in the ARA were selected for each sample and used as input points in Elastix for affine and

B-spline registration along 3 resolution levels. Estimates of spatial correspondence for points-guided registration was driven by a

hybrid metric based on (1) minimizing the point distances between two images and (2) maximizing the voxel-wise image similarity

between two images which is measured by mattes mutual information (MMI). For affine registration, voxel-wise similarity (based

on MMI) was ignored and only points distance was used to estimate global translation, rotation, and scaling transformations. For

B-spline registration, we gradually increased the influence of voxel-wise similarity in the hybrid metric during the registration

sequence from coarse to fine resolution (1:0.2, 1:0.4, 1:0.6; MMI:Point Distance weight). The inverse of the final transformation pa-

rameters was then calculated using a displacement magnitude penalty cost function (Metz et al., 2011) and applied to the Allen

Mouse Brain Common Coordinate Framework v3 annotation volume to assign anatomical labels for each voxel in the native sample

space.While amore direct approach would be to register the ARA to the sample, we found that registering the sample to the ARA and

calculating the inverse achieved slightly higher accuracy in Top1 cKO brains (data not shown).

To evaluate registration accuracy, 3Dmasks of the entire isocortex weremanually labeled for each sample in Imaris (Bitplane) using

the 3 acquired channels as markers to delineate cortex boundaries. Some cortical subplate structures, such as the claustrum, were

included in the final mask as these were difficult to distinguish from the isocortex. The DICE similarity score was then calculated be-

tween each mask and all cortical structures in the registered annotation volume (Figure S3B) as a metric of registration accuracy.
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Cortical volume, surface area, and thickness measurements
Quantitative measurements for the volume, surface area, and thickness of the isocortex and 43 cortical areas defined in (Harris et al.,

2019). Additionally, voxel-wise mapping of cortical structure was also performed. Volume, surface area, and thickness measure-

ments were normalized to the average measurement for the full isocortex in each sample.

For region-based analysis, the voxel sums (at 10 um3/voxel) represent the total volume of each structure. To calculate volumetric

displacement for each sample relative to the ARA, the spatial Jacobian was measured for each set of transformation parameters,

which ranges from�1 to 1, and represents voxel-wise local compression or expansion. Surface area for the isocortex was calculated

based onMATLAB’s implementation of Crofton’s formula (Lehmann and Legland, 2012). The fraction of layer 1 boundary voxels over

all boundary voxels was used to determine the area of only the outer cortical surface. This measurement was then further partitioned

by the number of layer 1 boundary voxels for each individual structure. To calculate thickness, the center of mass for layer 1 and layer

6b were first calculated for each structure. Thickness was then measured based on the euclidean distance between 2 points within

layer 1 and layer 6b that were nearest to the centers of mass. Average thickness of the full isocortex was weighted by the volume

contribution of each structure.

For voxel-wise analysis, the volumetric compression and expansion was calculated for each voxel in the ARA space. Surface area

was also calculated based on the compression and expansion of layer 1 boundary voxels. Thickness was then calculated for each

layer 1 voxel by measuring the euclidean distance to the nearest layer 6b boundary voxel.

Nuclei detection
Imaging data for training the 3D-Unet model was acquired from 3 separate imaging experiments of TO-PRO-3 labeled nuclei across 5

different regions from the cortex of 2WT brains. Images were captured at 0.75x0.75x2.5 mm/voxel for training a high resolution model

or 1.21x1.21x4 mm/voxel for training a low resolution model. A binary approximation of the nucleus volume was initially pre-traced

using the cell detection component of the CUBIC-informatics pipeline (Matsumoto et al., 2019). Specifically, the thresholded Hessian

determinant after Difference-of-Gassian filtering was used to create an initial 3Dmask of all nuclei in the image. Full images were then

divided into patches of 224x224x64 voxels and preprocessed using min/max normalization. The corresponding 3D mask for each

nucleus was reduced to its 2D component at the middle z position. Each patch was then manually inspected and corrected for seg-

mentation error or incorrect shapes using BrainSuite v17a (Shattuck and Leahy, 2002) by 1 rater (OK) to reduce person-to-person

variability. The corrected 2D nuclei masks were then eroded by removing 40% of the outer edge pixels. Each patch was then sub-

divided into 4 smaller patches of 112x112x32 voxels, with 1 out of the 4 patches being withheld for the validation set. The full dataset

(training + validation) contained 16 patches at 224x224x64 voxels for both the high (14,554 nuclei) and low resolution (53,993 nuclei)

models. Nuclei at the edge of an image stack were also included in the training. Manually labeled data are available at https://braini.

renci.org/ using the Download Image service.

A modified 3D-Unet architecture (Çiçek et al., 2016; Isensee et al., 2018) was used to identify the positions of cell nuclei in whole

cortex images. We built upon and modified a previous Keras implementation of 3D-Unet for volumetric segmentation in MRI (https://

github.com/ellisdg/3DUnetCNN) to detect binary masks of cell nuclei positions. As originally described (Isensee et al., 2018), the 3D-

Unet architecture contains a series of context modules during the contracting path that encodes abstract representations of the input

image, followed by a series of localization modules on the upscaling path to localize the features of interest (Figure S4A). We similarly

used a model with 5 context modules, residual weights, and deep supervision in the localization modules. The network was trained

using 32 base filters on image patches of size 112x112x32 voxels with a batch size of 2. Training presumed over�300 epochs using

an Adam optimizer with a dropout rate of 0.4 and an initial learning rate 0.002 that was reduced by a factor of 2 for every 10 epochs

without the loss improving. Additional image augmentations were implemented during the training tomake themodel more generaliz-

able. These include random image permutations, image blurring and sharpening, the addition of random noise, and intensity varia-

tions along x,y,z dimensions in the image patch. Random scaling was removed as we found that this decreased model performance.

Nuclei detection accuracy was evaluated using an independent set of 5 images patches of TO-PRO-3- labeled nuclei where the full

3D volume of each nucleus was fully manually drawn with a unique index at 0.75x0.75x2.5 mm/voxel resolution (�3,500 nuclei total).

Each patch was sampled from a unique region within 1WT cortex. Evaluation patches were initially delineated by 4 raters and further

refined by 1 rater to reduce between-rater variability. We compared our 3D-Unet detection method with those used in 2 previously

published pipelines for tissue-cleared image analysis: ClearMap and CUBIC-informatics (Renier et al., 2016; Matsumoto et al., 2019).

For ClearMap, we used voxel size and intensity thresholds after watersheding, as described in the published implementation. Param-

eters for cell size and intensity were scaled accordingly to achieve the most accurate average cell counting results possible for all the

patches tested. Similarly, intensity normalization and Difference-of-Gaussian scaling parameters used in CUBIC-informatics were

adjusted according to image resolution. Filtering by intensity and structureness was also performed as described in the previous

work (Matsumoto et al., 2019) .

In our evaluation of nuclei detection, precision is the proportion of nuclei correctly predicted out of all nuclei predictions in an image

patch. Precision is therefore calculated by counting the number of cells with multiple predicted centroids in 1 manually labeled nu-

cleus volume as well as false positives cells called in the image background divided by the total number of nuclei detected and sub-

tracting this number from 1. Recall is the proportion of all nuclei instances that were predicted. Recall was therefore calculated by
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counting the number of manually labeled cell volumes that lacked any predicted cell centroids divided by the total number of cells.

Themajority of false negative caseswere due to touching nuclei. Nuclei whose centroid werewithin 3 voxels of the image border were

excluded from the evaluation.

Whole-brain TO-PRO-3 images were divided into chunks of 112x112x32 voxels to be fed into the trained 3D-Unet model for pre-

diction of cell centroids. An overlap of 16x16x8 voxels was used between adjacent chunks to minimize errors from nuclei at chunk

edges. Centroid positions falling in a region less than half the overlap range (i.e., < 8 pixels from xy border or < 4 pixels from z border)

were assumed to be counted in the adjacent overlapping chunk andwere removed. Additionally, a nearest neighbor search using kd-

trees (Bentley, 1975) was performed to remove duplicate centroids within 1.5 voxels of each other, ensuring centroids in overlapping

regions were not countedmultiple times. Increasing overlap did not significantly affect the final cell counting results (data not shown).

Total computation time for detecting all cortical nuclei in 1 WT brain hemisphere was �2.5 hours using a single GPU.

Cell-type classification
To classify cell-types, we took a supervised approach by training a linear Support Vector Machine (SVM) classifier using MATLAB’s

Statistics and Machine Learning Toolbox on a set of intensity, shape, and annotation features within a 2D patch surrounding each

centroid. First, channel intensities were measured at centroid positions for each channel. Cells with intensities below the median

for both Ctip2 and Cux1 were presumed negative for both markers and removed from model training and classification (�25% of

cells). In the remaining cells, we took a uniform, random sample of 1,000 cells from each brain image dataset and retained 2D patches

(13x13 pixels) around centroid positions. Manual classification required > 1 hour per dataset using a custom NuMorph function that

allows fast navigation between cell patches. For each patch, we recorded several intensity measurements (max, mean, standard de-

viation, middle pixel, middle pixel/edge pixel) and applied Otsu thresholding to capture shape measurements (total filled area, inner

filled area) in each channel. These were also combined with categorical annotations for cortical layer (L1, L23, L4, L5, L6a, L6b) and

cortical area (Prefrontal, Lateral, Somatomotor, Visual, Medial, Auditory). Cells were then manually classified into 4 classes: (1)

Ctip2-/Cux1-, (2) Ctip2+/Cux1-, (3) Ctip2-/Cux1+, (4) Outlier. The outlier class was annotated according to 4 additional subdivisions

due to differences in intensity features: (1) Ctip2+/Cux1+, (2) Pial surface cell, (3) TO-PRO-3-/Ctip2-/Cux1- (4) Striatal cell (only pre-

sent in Top1 cKO from residual registration error near white matter boundary). The SVM model was then trained using all intensity,

shape, and annotation features. Model accuracy was evaluated using 5-fold cross-validation and applied to the remaining cells for

classification. Due to differences in labeling intensity between samples, we trained a new model for each sample instead of aggre-

gating annotation data.

We compared supervised cell classification with an unsupervised approach based on modeling fluorescence intensities at cen-

troids positions as Gaussianmixtures (GM) for Ctip2 andCux1. After Z normalization, high intensity cells (Z > 5 and Z <�5) winsorized

and outliers expressing both markers near the sample edge were removed. GM model fitting was then performed separately on

normalized Ctip2 andCux1 intensities using 2 or 3 components (whichever had higher accuracy by visual inspection) for 20 replicates

using parameters initialized by k-means++ (David Arthur, 2007). Due to spatial variation in gene expression, we stratified GMmodel

fitting to 6 general areas defined in (Harris et al., 2019) according to each cell’s structural annotation to further improve accuracy. We

then calculated posterior probabilities of each cell being positive for eithermarker. Cells with a posterior probability greater than 0.5 of

not being background were classified as positive. As the vast majority of neurons do not co-express Ctip2 and Cux1 (Molyneaux

et al., 2007), we filtered Ctip2+/Cux1+ cells according to their layer annotation. Cells in L1-L4 with P(Cux1) > P(Ctip2) were classified

as Cux1+ and cells in L5-L6b with P(Ctip2) > P(Cux1) were classified as Ctip2+. The remaining Ctip2+/Cux1+ cells were classified as

outliers.

3D quantification and visualization
For region-based analysis, final cell-type counts were summed for each annotation in the cortex according to its structure tree hier-

archy. In our analysis, we chose to compare 43 cortical areas defined in (Harris et al., 2019) or a lower level set of 17 cortical areas

(ARA structure depth = 6; Figure 6B). Structure volumes were also used to calculate cell density statistics.

For voxel-wise analysis, cell counts were binned to 100 mm3/voxel volumes that were mapped to the ARA space. We filtered out

voxels with less than 10 nuclei on average amongWT samples. Similarly, aminimum cell threshold of 3 and aminimum cell proportion

of 0.03 was used for filtering voxels with few Ctip2+ or Cux1+ cell counts. To project 3D voxel-wise data onto an isocortical flatmap,

we used a previously calculated set of paths tomap cell counts within voxel bins to a specific position along the cortical surface (Allen

Institute for Brain Science, 2017). This mapping associates each voxel to a streamlined path between the pial surface and the white

matter boundary according to Laplace’s equation. Cell counts were then summed for each voxel along the streamline path and sta-

tistical comparisons were performed for each pixel in the 2D flatmap projection.

2D slice visualizations were created using a custom MATLAB program based on the allenAtlasBrowser in the SHARP-Track tool

(Shamash et al., 2018). Structure annotations were downsampled along the anterior-posterior axis to reduce memory overhead for

smoother performance and colored by volume, cell count, or cell density statistics. Additional visualizations for point clouds, surface

volumes, and flattened isocortex plots were created using customMATLAB scripts and are available in the NuMorph package. Addi-

tional animations were generated in Imaris (Bitplane) after importing cell centroid positions.
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Spatial gene expression correlation
Fold change in cell counts between WT and Top1 cKO were correlated with spatial gene expression based on in situ hybridization

measurements from the Allen Mouse Brain Atlas (Lein et al., 2007). Expression grid data from sagittal and coronal sections were

downloaded using the Allen SDK. Expression energy for each gene was first Z-scored across all brain structures and cortical regions

were retained for analysis. Duplicate sections for the same genewere combined by taking themean Z score for each structure across

sections. We filtered out any gene that did not have expression data in all cortical structures and removed genes with Z scores less

than 1 in all structures as these represent genes with consistently low cortical expression or with low congruence between duplicate

sections. For the remaining genes, we applied a robust sigmoidal transformation as described in (Fulcher and Fornito, 2016) to ac-

count for the presence of outliers in ISH expression data. As certain cortical regions also have greater cell density and therefore

greater total ISH energy, we conducted an additional Z score normalization across cortical regions to have the same average total

gene expression.

To reduce known false positive associations fromgene-gene coexpression (Fulcher et al., 2021), we ran comparisons to ensemble-

based random null models generated using the Gene Category Enrichment Analysis toolbox (https://github.com/benfulcher/

GeneCategoryEnrichmentAnalysis). Null distributions were generated for GO categories containing between 10 and 200 genes by

10,000 random samples to create a Gaussian distribution estimate of each GO null distribution. In total, we used null models for

4,186 GO categories based on expression of 10,945 genes across 38 cortical structures. Correlations between spatial gene expres-

sion and relative cell count differences were tested and corrected for multiple-hypothesis testing using a false discovery rate of 0.05.

Additional annotations for gene length comparisons were downloaded from Ensembl (Cunningham et al., 2019). The Spearman cor-

relation between each gene’s expression and cell count or density differences across cortical regions was measured and grouped

into 200 gene bins according to gene length of the longest isoform. Binned gene correlations were then smoothed using a loess

curve. A list of differentially expressed genes in Top1 cKO cortex as measured by scRNA-seq was acquired from (Fragola et al.,

2020) for additional comparisons.

Brain section preparation and immunofluorescence staining
For histological studies, mice were anesthetized and perfused transcardially with 4% paraformaldehyde (PFA). Brains were

dissected and postfixed in 4% PFA for 16 hours. Brains were embedded in 4% low-melting point agarose and sectioned using a

Leica VT1200 vibratome. Sections were stored in 1x PBS at 4�C.
For immunohistology studies, sections were rinsed in PBS and incubated in blocking solution (5% normal serum, 0.3% Triton

X-100, 2% DMDO, 0.02% Sodium Azide, PBS) at room temperature. Primary antibodies were diluted in blocking solution and incu-

bated overnight at room temperature. The following antibodies were utilized for immunofluorescence: rabbit anti-Cux1 (Santa Cruz,

sc-13024; 1:500), rat anti-Ctip2 (Abcam, ab18465; 1:1000), rabbit anti-Satb2 (Abcam, ab51502; 1:1000), goat anti-GFAP (Abcam,

ab53554; 1:1000) and rabbit anti-Olig2 (Millipore, AB9610; 1:2000). Brain sections were rinsed in 0.1% Triton X-100 in PBS (PBS/

T) three times and incubated with secondary antibodies in blocking solution for 3 hours at room temperature. Secondary antibodies

utilized include donkey anti-rabbit IgG Alexa Fluor 568 (Thermo Fisher, A10042; 1:1000), goat anti-rat IgG Alexa Fluor 488 (Thermo

Fisher, A11006; 1:1000) and donkey anti-goat IgG Alexa 488 (Thermo Fisher, A11055; 1:1000). Sections were then stained with DAPI

(1:1000 in PBS/T) and rinsed with PBS/T three times for 20 minutes each. Sections were mounted onto Fisherbrand Superfrost/Plus

slides with an anti-fading Polyvinyl alcohol mounting medium with DABCO (Sigma-Aldrich, 10981). Images were collected with a

Zeiss LSM 780 laser scanning confocal microscope.

EdU labeling and detection
To permanently label newly generated cortical neurons, pregnant dams at E16.5 were single-dosed with 5–ethynyl–20–deoxyuridine
(EdU, Cayman Chem) in 1X PBS at 30mg/kg body weight via intraperitoneal injection. Pups were perfused at P14 and sectioned as

described above. EdU detection was conducted upon the completion of immunofluorescence labeling. After washing in PBS for

10 minutes, brains sections were incubated with Alexa 647-conjugated Azide (Biotium) at 1.6mM, in solution containing 0.1M Tris-

HCl (pH 8.8), 0.43 X PBS, 4 mM CuSO4, and 0.1M Ascorbate, for 20 minutes. Brains sections were washed with PBS/T three times

at 20 minutes each, stained with DAPI and mounted for confocal imaging.

2D confocal image analysis and quantification
Confocal images of barrel fields from 2D slices were collected for cortical thickness and cell number analysis. Images were acquired

from anatomically matched coronal sections along the rostro-caudal axis. The distribution of the cortical upper layer (layer 2-4)

marker, Cux1, was utilized to determine the boundaries separating layer 1, upper layers and lower layers (layer 5-6). The thickness

of an individual layer was measured along the middle segment of selected regions of interests (ROIs). For cell number assessment,

images were processed using ImageJ (https://imagej.net/software/imagej). Briefly, images were auto-thresholded at default setting

with manual adjustment to eliminate unfocused signals and binary images were watershedded. Numbers of Cux1, Ctip2 and Olig2

expressing cells were automatically determined using the Analyze Particles functionwith a cut off size at 17.5mm2. To determine EdU-

labeled cortical neurons, EdU and Satb2 co-labeled cells were extracted and cell numbers were automatically determined using the

Analyze Particles function with a cut off size at 35.0mm2. GFAP expressing cells in the cortical plate were counted manually in Photo-

shop after thresholding using ImageJ. Representative images were cropped and adjusted for brightness and contrast in Photoshop
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for presentation. Mice from aminimum of three litters were analyzed for each experiment. 2 to 3 ROIs were analyzed and results were

averaged from each animal. For all experiments, n represents the number of animals.

QUANTIFICATION AND STATISTICAL ANALYSIS

For 3D voxel-wise and region-based analyses, statistics, including mean counts, standard deviation, fold change, raw p values, and

false discovery rate (FDR) adjusted p values (Benjamini-Hochberg; FDR < 0.05), were calculated inMATLAB and exported for plotting

using custom R scripts and slice visualization. p values were calculated using Student’s t test and a Welch correction was applied in

cases where variances between 2 groups were statistically different. Unless stated otherwise, descriptive statistics in the main text

and error bars in figure plots represent mean ± standard deviation.

For 2D confocal image analysis, one-way ANOVA analyses with post hoc Tukey’s tests were performed in GraphPad Prism 9.
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D. Top1 cKO sample images of Ctip2 labeling with (right) or without (left) adjusting intensities for tile 
positions and light-sheet width. Scale bar = 1mm. 
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Figure S2. Iterative 2D Stitching of Multi-Tile Light Sheet Images, Related to Figure 1.
Sample results from 2D iterative stitching of WT mouse hemisphere compared with other dedicated 3D 
stitching software. Yellow lines indicate approximate stitching seams. Scale bar = 1mm; inserts = 100μm.
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Figure S3. Image Landmark Selection for Points-Guided Image Registration, Related to Figure 2. 
A. 1 mm thick sagittal maximum intensity projection displaying corresponding points positions in ARA, WT, 
and Top1 cKO brain hemispheres. Scale bar = 1mm.
B. DICE scores measuring cortical registration accuracy in WT and Top1 cKO samples based on the number 
of points used to guide registration. Measurements with no corresponding points were made using affine + 
b-spline registration without a points distance metric. Data represented as mean ± standard deviation.
C. Coefficients of variation (CoV) of structure volumes for all cortical annotations in the ARA after registration 
with or without corresponding points.
D. DICE scores and CoV metrics for indicated registration procedures. Data represented as mean (± stan-
dard deviation). CoV was calculated for individual ARA annotations (242 structures plotted in B) or the full 
isocortex after registration. These are compared with the CoV for the full cortex based on manual annotation. 
Bold value: Top1 MMI/Top1 MMI+ Pts, p < 0.001. 
E. Percent change in cortical region volumes in Top1 cKO samples compared to WT. Dashed line indicates 
average change across the entire cortex. Data represented as mean ± SEM. 
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Figure S4. 3D-Unet Training and Evaluation, Related to Figure 2.
A. 3D-Unet architecture adapted from (36).  
B. Approximate patch locations used for training the 3D-Unet nuclei detection model
C. Example images of nuclei detection results. Cross symbols indicate centroids in the displayed z slice 
whereas points indicate centroids in slices directly above or below. Arrows indicate detection errors in the full 
3D volume. Scale bar = 20μm.
D. Precision and recall of nuclei detection in non-cortical brain regions. Results plotted are as mean ± stan-
dard deviation of 3 samples in 242x242x200 μm patches. (DG: dentate gyrus). Scale bar = 20μm.
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Figure S5. Cell-type Classification using Supervised SVM Classifier, Related to Figure 3. 
A. Cell-type positions for upper and lower layer cortical neurons in a sagittal section for WT and Top1 cKO 
after SVM classifications. Scale bar = 1mm.
B. Representative images of Ctip2+ and Cux1+ cell-type classification using SVM. Cross symbols indicate 
centroids in the displayed z slice whereas points indicate centroids in slices directly above or below. 
Scale bar = 50μm.
C. Classification accuracies using a trained SVM (supervised) classifier or by Gaussian Mixture Modeling 
(unsupervised). Accuracy is measured as the fraction of 1,000 cells in each sample with the correct classifica-
tion based on manual identification. SVM accuracies determined based on 5-fold cross-validation. 
(***p < 0.001; McNemar test). 
D. Total counts for each cell-type classification in WT and Top1 cKO samples.
E. Distributions of Ctip2+ and Cux1+ cells across cortical layers (mean ± standard deviation). 
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Figure S6. Structural and Molecular Associations with Cell Loss in the Top1 cKO Model, Related to 
Figures 3 and 4. 
A. Heatmap displaying percent change in cortical cell count, volume, surface area, and thickness for each 
cortical region.
B-D. Correlation between total cell count difference and volume (B), surface area (C), and thickness (D) 
across cortical regions.
E. Comparison of cell-type counts or densities between WT and Top1 cKO across cortical regions and the full 
isocortex. Displaying the top 15 structures (FDR < 0.05) binned by significance level and sorted by absolute 
difference in count or density within each bin. Data represented as mean ± standard deviation and plotted on 
log10 scale. Structure name abbreviations provided in Table S1. 
F. Gene ontology showing the top 25 most significant categories correlated with neuron loss in Top1 cKO. 
Bolded categories contain at least 1 gene differentially expressed in Top1 cKO from scRNA-seq studies.
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Figure S7. Characterization of Nf1 cKO Models and Structural Associations with Cortical Cell-type 
Densities, Related to Figures 5-7. 
A. Representative images of P14 brains from Ctrl, Nf1fl/+;Emx1-Cre, and Nf1fl/fl;Emx1-Cre mice. 
Scale = mm/cm.
B-C. Brain and body weight measurements for Ctrl, Nf1fl/+;Emx1-Cre, and Nf1fl/fl;Emx1-Cre mice at multiple 
developmental time points (mean ± SEM; Nf1fl/fl;Emx1-Cre vs Ctrl: **, p<0.01, ***, p<0.001, ****, p<0.0001; 
Nf1fl/fl;Emx1-Cre vs Nf1fl/+;Emx1-Cre: ##, p<0.01, ###, p<0.001, ####, p<0.0001).  
D. Quantification of cortical layer thickness in Nf1 models from 2D sections of somatosensory cortex 
(mean ± SEM).
E.  Association between cortical thickness and relative change in Ctip2-/Cux1- cell counts in the 
Nf1fl/fl;Emx1-Cre model. (R: Pearson’s correlation coefficient).
F. Association between relative change in Cux1+ and Ctip2+ cell densities in the Nf1fl/fl;Emx1-Cre model. (R: 
Pearson’s correlation coefficient).
G. Differences in cell densities of Ctip2+ and Cux1+ cells across 43 cortical regions and the full isocortex after 
Nf1 deletion. The top 15 structures sorted by binned p-value and fold change are shown (Nf1fl/fl;Emx1-Cre vs. 
Ctrl, mean ± standard deviation, FDR<0.05). 
H. Optical sections of cleared tissue autofluorescence showing disorganization of cortical barrel fields in 
Nf1fl/fl;Emx1-Cre and reduced Cux1+ neuron density in surrounding upper layer regions. Scale = 500μm.
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