

Supporting Information

Klotho deficiency intensifies hypoxia-induced expression of IFN-α/β through upregulation of RIG-I in kidneys

Asako Urabe¹, Shigehiro Doi^{1*}, Ayumu Nakashima^{1,2}, Takeshi Ike¹, Kenichi Morii¹, Kensuke Sasaki¹, Toshiki Doi¹, Koji Arihiro³, Takao Masaki^{1*}

¹Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan; ²Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; ³Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan

S1 Fig. Erythropoietin expression is intensified under hypoxic conditions in WT and KI^{-/-} mice

Western blot analysis demonstrating erythropoietin (EPO) (66975-1-Ig; proteintech, Rosemont, IL, USA) expression in WT and KI^{-/-} mice. Protein levels were normalized to β -actin levels (n=5 in each group). Values are mean \pm SD. *P< 0.05, **P< 0.01.