Figure S1

Figure S1 (related to Figure 1 and 2). Characterization of the patients-derived dECs and dVSMCs, AADAC overexpression using lentivirus, and the Alterations of lipid metabolism in AADAC-overexpressing VSMCs.

(A and B) qPCR expression analyses of platelet endothelial cell adhesion molecule1 (PECAM1) (A), vWF (B), iPSCs: n = 4, CAEC: n = 4,

dECs from T2DM with CVD: n = 7, dECs from T2DM without CVD: n=7. CAEC: human primary coronary artery endothelial cells.

(C and D) qPCR expression analysis of αSMA (C), SM22 (D), iPSCs: n = 4, CAVSMC: n = 3, dVSMCs from T2DM with CVD: n = 7, dVSMCs from T2DM without CVD: n=7. CAVSMC: human primary vascular smooth muscle cells.

(E and F) qPCR expression analysis of AADAC (E), and MMP13 (F) in dVSMCs, dVSMCs from T2DM with CVD: n = 7, dVSMCs from T2DM without CVD: n=7, dVSMCs from healthy control: n = 4. Mann-Whitney test for each comparison.

(G and H) mRNA (G) and protein (H) expression of AADAC in CAVSMCs and T2DM patient-derived dVSMCs infected by Dox inducible AADAC overexpression lentivirus.

(I and J) Representative staining for neutral lipid droplets by BODIPY on culture day 7 in CAVSMCs (I) and dVSMCs (J) infected by AADAC-overexpressing lentivirus with or without Dox (Scale bar: 100 µm.), and number of the lipid droplets per cell in CAVSMCs (n = 4) and dVSMCs (n = 6). two-tailed unpaired *t*-test.

(K) A heatmap that shows mole percentage of saturated and unsaturated phospholipids in CAVSMCs, dVSMCs, and mpVSMCs (n = 6) in relation to the total number of lipid classes detected. Illustrations show lipid classes that achieved statistically significant increase (red) and decrease (blue). Welch' s two-sample *t*-test.

(L) Potential effects of AADAC involved in storage lipid metabolism and Kennedy pathway showing significant increases (red) and decreases (blue) in CAVSMCs, dVSMCs and mpVSMCs (n = 6). As for human VSMCs, light red and light blue mean metabolites that significantly increase and decrease either in CAVSMC or dVSMC. Welch' s two-sample *t*-test.

Data represent mean \pm SEM, *P < 0.05, **P < 0.01.

Figure S2

Figure S2 (related to Figure 2 and 3). AADAC knockout increases the number of lipid droplets, migration, proliferation in dVSMCs derived from the T2DM patient without CVD.

(A) Deletion of the exon 1 of human AADAC using CRISPR/Cas9 and gRNAs in the the hiPSC line from the T2DM patient without CVD.

A Primer set was designed to detect the deletion.

(B) Confirmation of the deletion of the exon 1 by PCR. KO: homozygous knockout cell line.

(C) qPCR expression analysis of AADAC in dVSMCs from wild type (WT) and AADAC-knockout hiPSC lines (KO1, KO2) (n = 3).

(D) Representative staining for neutral lipid droplets by BODIPY (Scale bar: 50 µm.) and number of the lipid droplets per cell of dVSMCs from wild type (WT) and AADAC-knockout hiPSC lines (KO1, KO2) (n = 6). one-way ANOVA with Sidak' s multiple comparisons test.

(E) Representative immunostaining (Scale bar: 50 μm.) and percentage of proliferating cell nuclear antigen (PCNA) positive cells in dVSMCs derived from wild type (WT; n = 8) and AADAC-knockout hiPSC lines (KO1; n = 8, KO2; n = 4). one-way ANOVA with Sidak' s multiple comparisons test.

(F) Representative images of cell migration (Scale bar: 100 μm.) and quantified cell migration area of dVSMCs differentiated from wild type (WT; n = 8) and AADAC-knockout hiPSC lines (KO1; n = 8, KO2; n = 4). Red lines represent the borders of cell migration. two-way ANOVA with Sidak' s multiple comparisons test.

(G) Representative images (Scale bar: 50 μm.) and percentage of Cleaved Caspase 3 (CC-3) positive cells in dVSMCs derived from wild type (WT) and AADAC-knockout hiPSC lines (KO1, KO2) (n = 6). one-way ANOVA with Sidak' s multiple comparisons test.

(H) Representative images (Scale bar: 50 μm.) and percentage of TUNEL positive cells of dVSMCs differentiated from wild type (WT) and AADAC-knockout hiPSC lines (KO1, KO2) (n = 6). one-way ANOVA with Sidak' s multiple comparisons test.

Data represent mean \pm SEM, ***P* < 0.01, *****P* < 0.0001.

Figure S3

Figure S3 (related to Figure 4). VSMC specific Aadac-knockout Apoe-/- mice show the aggravation of atherosclerosis.

(A) Strategy to generate VSMC specific Aadac-knockout (KO) mice with Apoe-/- background.

(B) Integration of two loxPs before and after Aadac exon 4 including the lipase active site in C57BL/6 mouse genome. Primer set was designed to detect the integration.

(C) Confirmation of the deletion of the exon 4 by PCR and sequencing in isolated mouse VSMCs.

(D) Representative H&E staining and quantification of plaque size at the aorta (left) and percent stenosis at branchiocephalic artery (right)

in Aadac^{flox/flox} mice (n = 9) and Aadac^{flox/flox}/ SM22-Cre mice (n = 10) (Scale bar: 500 µm.). two-tailed unpaired *t*-test.

(E) Representative staining for neutral lipid droplets by lipidTOX (Scale bar: 100 µm.) and number of the lipid droplets

per cell in mouse VSMCs isolated from Aadac^{flox/flox} and Aadac^{flox/flox}/ SM22-Cre (n = 3). two-tailed unpaired *t*-test.

(F) Representative immunostaining (Scale bar: 50 μm.) and percentage of PCNA positive cells in mouse VSMCs isolated from Aadac^{flox/flox} and Aadac^{flox/flox}/ SM22-Cre (n = 6). two-tailed unpaired *t*-test.

(G) Representative images (Scale bar: 100 µm.) of cell migration and quantified cell migration area of mouse VSMCs isolated from

Aadac^{flox/flox} and Aadac^{flox/flox}/ SM22-Cre (n = 3). two-way ANOVA with Sidak's multiple comparisons test.

(H) Representative images (Scale bar: 50 μm.) and percentage of TUNEL positive cells of mouse VSMCs isolated from Aadac^{flox/flox} and Aadac^{flox/flox}/ SM22-Cre (n = 6). two-tailed unpaired *t*-test.

Data represent mean ± SEM, **P* < 0.05, ***P* < 0.01, *****P* < 0.0001.

Figure S4 (related to Figure 4). Characterization of atherosclerotic plaques in Aadac-Tg and Aadac knockout mice.

(A) Representative images (Scale bars: 100 μm.) of the aorta and percentage of Oil red O positive area in atherosclerotic lesion of SM22-Cre (n = 9) and Aadac-Tg/ SM22-Cre (n = 5). two-tailed unpaired *t*-test.

(B) Representative confocal images (Scale bars: 20 µm.) and percentage of cholesterol crystal area in atherosclerotic lesion of SM22-Cre (n = 9) and Aadac-Tg/ SM22-Cre (n = 5). two-tailed unpaired *t*-test.

(C and D) Representative CD107b⁺ (C) and NIrp3⁺ (D) cell images (Scale bars: 20 μ m.) and the number of CD107b⁺ (C) and NIrp3⁺ (D) cells per area in atherosclerotic lesion of SM22-Cre (n = 9) and Aadac-Tg/ SM22-Cre (n = 5). two-tailed unpaired *t*-test.

(E and F) Representative Oil red O staining (Scale bar. 500 μ m.) at the aortic root, quantification of praque size, and percentage of Oil red O positive area in atherosclerotic lesion of SM22-Cre mice (n = 10) and Aadac-Tg/ SM22-Cre mice (n = 6) fed a high fat diet for 10 weeks (E) and Aadac^{flox/flox} mice (n = 9) and Aadac^{flox/flox}/ SM22-Cre (n = 9) fed a high fat diet for 8 weeks (F). two-tailed unpaired *t*-test.

(G) qPCR analysis of time-course Aadac expression in the aorta isolated from Apoe-/- mouse (n = 8) fed a high fat diet.

one-way ANOVA with Sidak' s multiple comparisons test.

(H) Representative pictures of the atherosclerotic lesions in the aortic root (Scale bar. 50 μm.) that include Oil red O positive cells stained with both αSMA (VSMC marker) and F4/80 (macrophage marker) in SM22-Cre mice, Aadac-Tg/ SM22-Cre mice, Aadac^{flox/flox} mice, and Aadac^{flox/flox}/ SM22-Cre. Consecutive slices from each aortic root were stained. Arrows indicate the Oil red O positive cells stained with both aSMA and F4/80.

Data represent mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001.

	Age	Gender	Hypertension	Hyperlipidemia -	Diabetes mellitus			Insulin	Family history of	Smoking	Surrow	Ejection	other
					History	Retinopahty	Nephropathy	therapy	Early-onset CVD	Smoking	Surgery	fraction	Immune defect?
DM without CVD	67	М	Yes	Yes	30 years	Yes	Transplantation	Yes	No	No		75%	No
	77	F	Yes	Yes	35 years	Yes (blind)	Severe	Yes	No	Past remote		70%	No
	71	М	Yes	Yes	17 years	Unknown	Mild	Yes	No	Past remote	NAFLD liver transplantation	63%	No
	63	F	Yes	Yes	37 years	Unknown	Slight	Yes	Father	Past remote		65%	No
DM with CVD	68	М	Yes	Yes	8 years	Unknown	Slight	Yes	No. Mother died at 39 due to blood cancer	No	CABG	NA	No
	60	м	Yes	Yes	12 years	Yes	Slight	No	Father and Mother	Past remote	Stenting	65%	No
	60	М	Yes	Yes	1 year	Unknown	Slight	Yes	Father	No	CABG	73%	No
	64	М	Yes	Yes	14 years	Unknown	Slight	Yes	No	No	CABG	NA	No

Table S1 (related to Figure 1). Clinical data of T2D patients without CVD and T2D patients with CVD