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This supplementary document provides a detailed description of the proposed algorithm, exam-
ples, and discussion of technical challenges for discovering closed-form partial differential equations
(PDEs) from scarce and noisy data.

1 Alternating Direction Optimization (ADO): Algorithm

The proposed ADO algorithm for training the network of PINN-SR with sparse regression is
outlined in Algorithm 1, where the STRidge sub-function (a sequential thresholding regression
process that serves as a proxy for `0 regularization [1, 2]) is given in Algorithm 2.
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Algorithm 1 The proposed ADO for network training: rθbest,Λbests “ ADO pDu,Dc, α, γ,∆δ, nmax, nstrq

1: Input: Measurement data Du, collocation points Dc “ txi, tiui“1,2,...,Nc , relative weighting of loss functions α
and γ, threshold tolerance increment ∆δ for STRidge, maximum number of ADO iterations nmax, and maximum
number of STRidge cycles nstr.
# we take a 2D system in a 2D domain as an example: u “ tu, vu and x “ tx, yu

2: Split measurement data Du into training-validation sets (ntr{nva “ 80{20): Dtr
u P Rntrˆ2 and Dva

u P Rnvaˆ2. #
Nm “ ntr ` nva

3: Split collocation points Dc into training-validation sets (mtr{mva “ 80{20): Dtr
c P Rmtrˆ3 and Dva

c P Rmvaˆ3. #
Nc “ mtr `mva

4: Initialize the Tensor Graph for the entire network.
5: Pre-train the network via combined Adam and L-BFGS with tDtr

u ,Dtr
c u, and validate the trained model with

tDva
u ,Dva

c u, namely,

tθ̂0, Λ̂0u “ arg mintθ,Λu
 

Ldpθ;Duq ` αLppθ,Λ;Dcq ` γ}Λ}1
(

. # pre-train the network; Λ̂0 “
 

λ̂
u

0 , λ̂
v

0

(

6: for k “ 1, 2, ..., nmax do
7: Assemble the system states over the collocation points Dtr

c and Dva
c :

9Utr
u “

ŤNtr
c

i“1 ut
`

θ̂k´1; xtr
i , t

tr
i

˘

and 9Uva
u “

ŤNtr
c

i“1 ut
`

θ̂k´1; xva
i , t

va
i

˘

9Utr
v “

ŤNva
c

i“1 vt
`

θ̂k´1; xtr
i , t

tr
i

˘

and 9Uva
v “

ŤNva
c

i“1 vt
`

θ̂k´1; xva
i , t

va
i

˘

.

8: Assemble the candidate library matrices over the collocation points Dc, Dtr
c and Dva

c :

Φ̃ “
ŤNc
i“1 φ

`

θ̂k´1; xi, ti
˘

, Φ̃
tr
“

ŤNtr
c

i“1 φ
`

θ̂k´1; xtr
i , t

tr
i

˘

and Φ̃
va
“

ŤNva
c

i“1 φ
`

θ̂k´1; xva
i , t

va
i

˘

.

9: Normalize candidate library matrices Φ̃, Φ̃
tr
and Φ̃

va
column-wisely (j “ 1, ..., s) to improve matrix condition:

Φ:,j “ Φ̃:,j

L

∥∥∥Φ̃:,j

∥∥∥
2
, Φtr

:,j “ Φ̃
tr
:,j

L

∥∥∥Φ̃
tr
:,j

∥∥∥
2

and Φva
:,j “ Φ̃

tr
:,j

L

∥∥∥Φ̃
tr
:,j

∥∥∥
2
.

10: Determine `0 regularization parameters βu “ κLup
`

θ̂0, λ̂
u

0 ;Dva
c

˘

and βv “ κLvp
`

θ̂0, Λ̂
v

0 ;Dva
c

˘

. # κ can be
determined via a Pareto front analysis, e.g., κ “ 1.

11: Initialize the error indices:

ε̂u “ Lup
`

θ̂k´1, λ̂
u

k´1;Dva
c

˘

` βu
›

›λ̂
u

k´1

›

›

0
and ε̂v “ Lvp

`

θ̂k´1, λ̂
v

k´1;Dva
c

˘

` βv
›

›λ̂
v

k´1

›

›

0
.

12: Set the initial threshold tolerance δ1 “ ∆δ.
13: for iter “ 1, 2, ..., nstr do
14: Run STRidge as shown in Algorithm 2 to determine:

λ̃
u
“ STRidge

`

9Utr
u ,Φ

tr, δiter
˘

and λ̃
v
“ STRidge

`

9Utr
v ,Φ

tr, δiter
˘

.

15: Update the error indices:

εu “ Lup
`

θ̂k´1, λ̃
u
;Dva

c

˘

` βu
›

›λ̃
u›
›

0
and εv “ Lvp

`

θ̂k´1, λ̃
v
;Dva

c

˘

` βv
›

›λ̃
v›
›

0
.

16: if εu ď ε̂u or εv ď ε̂v (run in parallel) then
17: Increase threshold tolerance with increment: δiter`1 “ δiter `∆δ.
18: else
19: Decrease threshold tolerance increment ∆δ “ ∆δ{1.618.
20: Update threshold tolerance with the new increment δiter`1 “ maxtδiter ´ 2∆δ, 0u `∆δ.
21: end if
22: end for
23: Return and re-scale the current best solution from STRidge cycles: Λ̂k “

 

λ̃
u
, λ̃

v(
. # re-scaling due to

normalization of Φ

24: Train the DNN via combined Adam and L-BFGS with tDtr
u ,Dtr

c u, and validate the trained model with
tDva

u ,Dva
c u, namely,

θ̂k “ arg minθ

 

Ldpθ;Duq ` αLp
`

θ, Λ̂k;Dc
˘(

. # train DNN given Λ̂k as known

25: end for
26: Output: the best solution θbest “ θ̂nmax and Λbest “ Λ̂nmax
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Algorithm 2 Sequential threshold ridge regression (STRidge): λ̂ “ STRidge
`

9U,Φ, δ
˘

1: Input: Time derivative vector 9U, candidate function library matrix Φ, and threshold tolerance δ.
2: Inherit coefficients λ̂ from the DNN pre-training or the previous update.
3: repeat
4: Determine indices of coefficients in λ̂ falling below or above the sparsity threshold δ:

I “ ti P I : |λ̂i| ă δu and J “ tj P J : |λ̂j | ě δu.

5: Enforce sparsity to small values by setting them to zero: λ̂I “ 0.
6: Update remaining non-zero values with ridge regression:

λ̂J “ arg minλJ

 ›

›ΦJλJ ´ 9U
›

›

2

2
` 1ˆ 10´5

›

›λJ
›

›

2

2

(

. # the parameter 1ˆ 10´5 is small and tunable

7: until maximum number of iterations reached.
8: Output: The best solution λ̂ “ λ̂I Y λ̂J

1.1 Selection of hyper-parameters

The criteria for selecting hyper-parameters tα, β, γ, nmaxu have been introduced in Main Text
(see Method). Other required hyper-parameters are selected based on the criteria below.

• Maximum Number of Epochs: Our intuition of selecting the number of epochs for DNN train-
ing follows the general practice: the network should be sufficiently trained. It depends on the
specific problem complexity and the number of trainable parameters. The pre-training typi-
cally consists of up to 104 „ 105 epochs for Adam and/or BFGS, while, in each ADO iteration,
103 epochs for Adam are used. Post-training might consist of up to 3ˆ 104 epochs for Adam
and/or BFGS.

• Maximum Number of STRidge Cycles (nstr): We set the number of STRidge cycles large
enough (e.g., 100) to allow the algorithm to heuristically locate an optimal threshold.

• Threshold Tolerance Increment (∆δ): The role of ∆δ is to adaptively determine δ that intro-
duces proper sparsity in the discovered equation. Since the optimal threshold is automatically
determined and normalized in STRidge, we take a small positive value (e.g., ∆δ “ 1) as
long as the number of STRidge cycles is sufficient. However, in the case of complex-value
systems (such as the nonlinear Schrödinger equation), since the threshold is compared with
the modulus of complex numbers, we find empirically setting ∆δ as 100 is more proper.

The list of hyper-parameters used in all examples in the paper is presented in Section 3.8.

2 Examples

We observe the efficacy and robustness of our methodology on a group of canonical PDEs
used to represent a wide range of physical systems with nonlinear, periodic and/or chaotic behav-
iors. In particular, we discover the closed forms of Burgers’, Kuramoto-Sivashinsky (KS), nonlinear
Schrödinger, Navier-Stokes (NS), and λ-ω Reaction-Diffusion (RD) equations from scarce and noisy
time-series measurements recorded by a number of sensors at fixed locations from a single I/BC.
Gaussian white noise is added to the synthetic response with the noise level defined as the root-mean-
square ratio between the noise and the exact solution. To demonstrate the “root-branch” network
for discovery of PDE(s) based on multiple independent datasets sampled under different I/BCs,
we consider (1) the 1D Burgers’ equation with light viscosity that exhibits a shock behavior, and
(2) a 2D Fitzhugh-Nagumo (FN) type reaction-diffusion system that describes activator-inhibitor
neuron activities excited by external stimulus. At last, we test our framework on the experimental
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data of cell migration and proliferation. Our method is also compared with SINDy (the PDE-FIND
approach presented in [2]) which is also presented herein. The identification error is defined as
the average relative error of the identified non-zero PDE coefficients with respect to the ground
truth, which is used to evaluate the accuracy of the discovered PDEs for the following examples.
Simulations in this paper are performed on a workstation with 28 Intel Core i9-7940X CPUs and 2
NVIDIA GTX 1080Ti GPU cards (otherwise, noted separately).

2.1 Discovery of benchmark PDEs with single dataset

2.1.1 Burgers’ equation

We first consider a dissipative system with the dynamics governed by a 1D viscous Burgers’
equation expressed as

ut “ ´uux ` νuxx

where u is a field variable, x and t are the spatial and temporal coordinates, and ν denotes the
diffusion coefficient. The equation describes the decaying stationary viscous shock of a system
after a finite period of time, commonly found in simplified fluid mechanics, nonlinear acoustics, gas
dynamics and traffic flow. In this work, solution for the Burgers’ Equation is from an open dataset
[2], in which the diffusion coefficient ν is assumed to be 0.1 and u is discretized into 256 spatial grid
points for 101 time steps with a Gaussian initial condition. In particular, 10 sensors are randomly
placed at fixed locations among the 256 spatial grid points to record the wave response for 101
time steps, leading to 3.19% of the dataset used in [2]. Among all the measurements, 80% are
allocated for training purpose and the rest 20% for validation. A total number of 5ˆ104 collocation
points, e.g., in the pair of tx, tu, are sampled by the Latin hypercube sampling [3]. A group of
16 candidate functions (φ P R1ˆ16) are used to reconstruct the PDE, consisting of polynomial
terms (u, u2, u3), derivatives (ux, uxx, uxxx) and their multiplications whose coefficient vector Λ is
initialized uninformatively as zeros. The fully connected DNN has 8 hidden layers and a width of 20
neuron nodes in each layer where activation functions are hyperbolic tangent, weights are initialized
based on Glorot normal distribution [4] and biases are initialized as zeros. The training efforts are
performed via up to 1 ˆ 104 epochs of L-BFGS for pre-training and 6 ADO iterations. In each
ADO iteration, we use 1000 epochs of Adam to train the DNN for alternation with STRidge. The
discovered equation for the dataset with 10 % noise reads:

ut “ ´1.009uux ` 0.099uxx

where the aggregated relative identification error for all non-zero elements in Λ is 0.88 ˘ 0.03%.
Despite that only 3.19% subsampled responses are measured, the PINN-SR approach can accurately
extrapolate the full-field solution with a `2 error of 1.32% (see Fig. 1A). Fig. 1B shows the
comparison of spatial and temporal snapshots between the predicted and the exact solutions which
agree extremely well.

2.1.2 Kuramoto-Sivashinsky equation

Another dissipative system with intrinsic instabilities is considered, governed by the 1D Kuramoto-
Sivashinsky (KS) equation:

ut “ ´uux ´ uxx ´ uxxxx

where the reverse diffusion term ´uxx leads to the blowup behavior while the fourth-order derivative
uxxxx introduces chaotic patterns as shown in Fig. 2B, making an ideal test problem for equation
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(A)

(B)

t x

Figure 1: Discovery of Burgers’ equation for data with 10% noise: (A) The predicted response in comparison with
the exact solution with the prediction error. (B) Comparison of spatial and temporal snapshots between the predicted
and the exact solutions. The relative full-field `2 error of the prediction is 1.32%.

discovery. Starting with a smooth initial condition, the KS system evolves to an unstable laminar
status due to the highly nonlinear terms including the high-order derivative. The KS equation is
widely used to model the instabilities in laminar flame fronts and dissipative trapped-ion modes
among others. We subsample the open dataset [2] by randomly choosing 320 points from the 1024
spatial grid nodes as fixed sensors and record the wave response for 101 time steps, occupying about
12.6% of the original dataset. The training/validation measurements are separated based on an 80-
20 principle. A set of 2ˆ104 collocation points, generated using the Latin hypercube sampling in the
spatiotemporal domain, are employed to evaluate the residual physics loss. A library of 36 candidate
functions are used to construct the PDE, consisting of polynomials (u, u2, u3, u4, u5), derivatives
(ux, uxx, uxxx, uxxxx, uxxxxx) and their multiplications, whose initial coefficients are uninformatively
chosen to be zeros. The DNN architecture has 8 hidden layers each with 40 nodes whose activation
functions and initialization are the same as the previous Burgers’ case. The training efforts are
performed via 8 ˆ 104 epochs of Adam and up to 8 ˆ 104 epochs of L-BFGS for pre-training and
6 ADO iterations. In each ADO iteration, we use 1000 epochs of Adam to train the DNN for
alternation with STRidge. As for post-training, 2 ˆ 104 Adam epochs and up to 2 ˆ 104 L-BFGS
epochs are used.

It is notable that the chaotic behavior poses significant challenges in approximating the full-
field spatiotemporal derivatives, especially the high-order uxxxx, from poorly measured data for
discovery of such a PDE. Existing methods (for example the family of SINDy methods [2, 5])
eventually fail in this case given very coarse and noisy measurements. Nevertheless, the PINN-SR
approach successfully distils the closed form of the KS equation from subsampled sparse data even
with 10% noise:

ut “ ´0.991uux ´ 0.990uxx ´ 0.990uxxxx

where the coefficients have an average relative error, for all non-zero elements in Λ, of 0.94˘0.05%.
Although the available measurement data are sparsely sampled in the spatiotemporal domain under
a high-level noise corruption, the predicted full-field wave by the trained PINN-SR also agrees well
with the exact solution with a relative `2 error of 2.14% (Fig. 2A). The spatial and temporal
snapshots of the predicted response match seamlessly the ground truth as shown in Fig. 2B.
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(A)

(B)

Figure 2: Discovery of the KS equation for data with 10% noise: (A) The predicted response compared with the
exact solution. (B) Comparison of spatial and temporal snapshots between the predicted and the exact solutions.
The relative full-field `2 error of the prediction is 2.14%.

2.1.3 Nonlinear Schrödinger equation

In the third example, we discover the nonlinear Schrödinger equation, originated as a classical
wave equation, given by

iut “ ´0.5uxx ´ |u|
2u

where u is a complex field variable. This well-known equation is widely used in modeling the
propagation of light in nonlinear optical fibers, Bose-Einstein condensates, Langmuir waves in hot
plasmas, and so on. The solution to this Schrödinger equation is simulated based on a Gaussian
initial condition with the problem domain meshed into 512 spatial points and 501 temporal steps,
while the measurements are taken from 256 randomly chosen spatial “sensors” for 375 time instants,
resulting in 37.5% data used in [2] for uncovering the closed form of the equation. A library of
40 candidate functions are used for constructing the PDE, varying among polynomial functions
(u, u2, u3), absolute values (|u|, |u|2, |u|3), derivatives (ux, uxx, uxxx) and their combination, whose
coefficients are initialized as zeros. Since the function is complex valued, we model separately the
real part (uR) and the imaginary part (uI) of the solution in the output of the DNN, assemble them
to obtain the complex solution u “ uR` iuI , and construct the complex valued candidate functions
for discovery. To avoid complex gradients in optimization, we compute the mean square error of
the modulus |u| for the residual physics loss Lp. The fully connected DNN has 8 hidden layers and
a width of 40 neuron nodes in each layer with the same activation functions and initialization for
network’s weights and biases as previous. The pre-training takes 8 ˆ 104 epochs of Adam (with
at most 1.6 ˆ 105 epochs of L-BFGS) followed by 6 ADO iterations. In each ADO iteration, we
use 1 ˆ 103 Adam epochs to train the DNN for alternation with STRidge. Afterwards, we further
conduct a post-training of 104 epochs of Adam and up-to 104 epochs of L-BFGS to tune the non-zero
PDE coefficients.
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(A)

(B)

(C)

(D)

Figure 3: Discovery of nonlinear Schrödinger equation for a dataset with 10% noise: (A) and B) The predicted
real-part (A) and imaginary-part (B) responses compared with the exact solution. (C and D) Comparison of spatial
and temporal snapshots between the predicted and the exact solutions for the real part (C ) and imaginary part (D).
The average relative full-field `2 error of the real and imaginary prediction is 0.26%.

The discovered equation under 10 % noise is written as

iut “ ´0.501uxx ´ 1.000|u|2u

where the average relative error for non-zero coefficients is 0.08 ˘ 0.03%. The predicted full-field
response, for both real and imaginary parts, matches well the exact solution with a slight relative
`2 error of about 0.26% (Fig. 3A and B). The comparison of spatiotemporal snapshots between the
predicted and the exact solutions for the real part (Fig. 3C ) and imaginary part (Fig. 3D) also
shows almost perfect agreement.

2.1.4 Navier-Stokes equation

We consider a 2D fluid flow passing a circular cylinder with the local rotation dynamics (see Fig.
4). For incompressible and isotropic fluids which also have conservative body forces, the well-known
Navier-Stokes vorticity equation reads

wt “ ´uwx ´ vwy ` 0.01wxx ` 0.01wyy

where w is the spatiotemporally variant vorticity, u “ tu, vu denotes the fluid velocities at Reynolds
number 100. The full-field solution to the NS vorticity equation is obtained using the immersed
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Figure 4: Vorticity field wpx, tq at t “ 0 for a steady flow passing a cylinder. Measurements are sampled from the
the boxed area surrounded by the dashed line.

boundary projection method [6]. The dimensionless domain is discretized into a 499ˆ199 spatial
grid and 151 time steps. The cylinder has a unit diameter and the input flow from the left side has
a unit velocity. Measurements of velocities tu, vu and vorticity w are taken at 500 random spatial
locations lasting 60 time steps in the boxed area behind the cylinder as shown in Fig. 4, namely
0.20% subsamples from the total dataset and 1/10 of the data used in [2]. The residual physics loss
is evaluated on 6ˆ104 collocation points randomly sampled in the spatiotemporal doamin using the
Latin hypercube sampling method. The library of candidate functions consists of 60 components
including polynomial terms (u, v, w, uv, uw, vw, u2, v2, w2), derivatives (wx, wy, wxx, wxy, wyy) and
their combination, whose coefficients are initialized as zeros. The latent output in the DNN contains
u, v and w. The DNN has 8 fully connected hidden layers and a width of 60 nodes in each layer
with the same activation functions and initialization methods as previous. The pre-training takes
5ˆ 103 epochs of Adam (with additional L-BFGS tuning up to 1ˆ 104 epochs) followed by 6 ADO
iterations. In each ADO iteration, we use the Adam optimizer with 1000 epochs to train the DNN
for each alternation within STRidge.

The discovered NS vorticity equation for the case of 10% noise is given as follows

wt “ ´0.996uwx ´ 0.991vwy ` 0.010wxx ` 0.010wyy

where the aggregated relative identification error for all non-zero elements in Λ is 1.22˘0.69%. It is
encouraging that the uncovered vorticity equation is almost identical to the ground truth, for both
the derivative terms and their coefficients, even under 10% noise corruption. The vorticity patterns
and magnitudes are also well predicted as indicated by multiple spatial snapshots at different time
instants (t “ 0.2, 7.6, 15, 22.4, 29.8) shown in Fig. 5A in comparison with the exact solution (Fig.
5B, with small errors as depicted in Fig. 5C ). Note that the response in these snapshots is not used
in training the network. The `2 error of the predicted full-field vorticity response is about 2.58%.
This example provides a compelling test case for the proposed PINN-SR approach which is capable
of discovering the closed-form NS equation with scarce and noisy data.

2.1.5 λ-ω type Reaction-Diffusion equations

The examples discussed previously are low-dimensional (1D) models with limited complexity.
We herein consider a λ-ω reaction-diffusion (RD) system in a 2D domain with the pattern forming
behavior governed by two coupled PDEs:

#

ut “ 0.1uxx ` 0.1uyy ´ uv
2 ´ u3 ` v3 ` u2v ` u

vt “ 0.1vxx ` 0.1vyy ´ uv
2 ´ u3 ´ v3 ´ u2v ` v

8



Time
(A)

(B)

(C)

Figure 5: Discovery of NS equation for data with 10% noise: (A-C ) Vorticity snapshots at different time instants
(t “ 0.2, 7.6, 15, 22.4, 29.8) for the prediction (A), the exact solution (B) and the prediction error (C ). Note that
response at these time instants are not included in dataset for training the PINN-SR model and equation discovery.
The relative full-field `2 error of the prediction ŵ is about 2.58%.

where u and v are two field variables. The λ-ω equations are typically used to describe the multi-
scale phenomenon of local reactive transformation and the global diffusion in chemical reactions,
with wide applications in pattern formation [7], biological morphogenesis [8], and ecological inva-
sions [9], among others. The λ-ω equations exhibit a wide range of behaviors including wave-like
phenomena and self-organized patterns found in chemical and biological systems. The binomial
system is also called an activator-inhibitor system because one state variable encourages the in-
crease of both states while the other state component inhibits their growth. The particular λ-ω
equations in this test example display spiral waves subjected to periodic boundary conditions. The
domain for generating the solution is divided into 65,536 (256ˆ256) spatial points with 201 time
steps. We take randomly 2,500 spatial points as fixed sensors recording the wave response for 15
randomly sampled time steps, leading to 1/4 of the subsampled dataset used in [2] and 0.29%
of the total data. We sample 8 ˆ 104 collocation points using the Latin hypercube sampling to
evaluate the residual physics loss. A total of 110 candidate functions are employed, including
polynomials up to the 3rd order (u, v, u2, v2, uv, u3, u2v, uv2, v3), derivatives up to the 2nd order
(ux, uy, vx, vy, uxx, uxy, uyy, vxx, vxy, vyy) and their combination, for the sparse discovery of the two
PDEs, whose coefficients are initialized as zeros. Since the system dimension is relatively high,
we enhance the discovery by post-training (post-tuning) of the DNN and the uncovered non-zero
PDE coefficients, after the ADO stage, resulting in refined/improved discovery. The DNN has 8
fully connected hidden layers and a width of 60 nodes in each layer, whose activation functions and
initializations are the same as previous case studies. Due to the high dimensionality of the system
and a large candidate library, we run this case on a workstation with an NVIDIA Tesla V100 GPU
card (32 GB). The pre-training takes 1ˆ 104 epochs of Adam (with additional L-BFGS tuning up
to 4 ˆ 104 epochs) followed by 6 ADO iterations. In each ADO iteration, we use 1 ˆ 103 Adam
epochs to train the DNN for each alternation within STRidge. After discovering the PDE equation
structure, we further use 1 ˆ 104 Adam and up to 1 ˆ 104 L-BFGS to refine DNN and equation
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Figure 6: Discovery of λ-ω equations for a dataset with 10% noise: (A and B) The response snapshots u (A) and v
(B) at different time instants (t “ 0.5, 2.15, 4.35, 5.45, 7.2, 9.65), showing the predictions and the exact solutions, as
well as the prediction error maps. The average relative full-field `2 error of the predicted û and v̂ is about 2.14%.

coefficients.
The reconstructed equations for the case of 10% noise are given by

#

ut “ 0.097uxx ` 0.097uyy ´ 0.955uv2 ´ 0.964u3 ` 0.997v3 ` 0.997u2v ` 0.964u

vt “ 0.099vxx ` 0.101vyy ´ 1.009uv2 ´ 1.002u3 ´ 0.982v3 ´ 0.989u2v ` 0.982v

where the the average relative error for all non-zero coefficients is 1.84˘ 1.48%. The predicted re-
sponse snapshots by the trained PINN-SR at different time instants, e.g., t “ t0.5, 2.15, 4.35, 5.45, 7.2,
9.65u, are shown in in Fig. 6A and B, which are very close to the ground truth (the errors are dis-
tributed within a small range). This example shows especially the great ability and robustness of
our method for discovering governing PDEs for high-dimensional systems from highly noisy data.
The average relative full-field `2 error of the predicted û and v̂ is 2.14%.
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2.2 Comparison with SINDy

We have performed the comparison study between the proposed PINN-SR approach and the
state-of-the-art PDE-FIND method (an extended version of SINDy) [2], in the context of different
levels of data size and noise. We test the five PDEs described previously and summarize the
discovery errors for the sparse coefficients in Table 1. The error is defined as the average relative
error of the identified non-zero PDE coefficients with respect to the ground truth. If the terms
in the PDEs are discovered incorrectly, we mark it as “Fail”. It is seen from Table 1 that the
proposed PINN-SR approach is capable of correctly uncovering the closed-form PDEs for all cases,
regardless of the varying levels of data size and noise, which demonstrates excellent robustness.
Although PDE-FIND shows great success in PDE discovery with negligible error for large and
clean (or approximately noise-free) measurement data, this method eventually fails when the level
of data scarcity and/or noise increases. In general, PDE-FIND relies on the strict requirement of
measurement quality and quantity. However, PINN-SR is able to alleviate and resolve this limitation
thanks to the combination of the strengths of DNNs for rich representation learning of nonlinear
functions, automatic differentiation for accurate derivative calculation as well as `0 sparse regression.
In addition, the use of collocation points introduces additional “pseudo datasets”, compensates
indirectly the scarcity of measurement data, and enriches the constraint for constructing the closed
form of PDEs.

We must admit that, since our method involves DNN training, the computational cost is much
higher compared with SINDy (e.g., 553 seconds for ours vs. 2 seconds for SINDy, in the Burgers’
example). However, the critical bottleneck of SINDy lies in its requirement of large high-quality
(clean) structured measurement data, owing to its use of numerical differentiation, which poses

Table 1: Summary of the PINN-SR discovery results in comparison with PDE-FIND [2] for canonical models.

PDE name Method Error (noise 0%) Error (noise 1%) Error (noise 10%) # of Measurement points

Burgers’ PINN-SR 0.01˘0.01% 0.19˘0.11% 0.88˘ 0.03% „1k

PDE-FIND Fail Fail Fail „1k
0.15˘0.06% 0.80˘0.60% Fail „26k

KS PINN-SR 0.07˘0.01% 0.61˘0.04% 0.94˘ 0.05% „32k

PDE-FIND 35.75˘16.30% Fail Fail „32k
1.30˘1.30% 52.00˘1.40% Fail „257k

Schrödinger PINN-SR 0.09˘0.04% 0.65˘0.29% 0.08˘0.03% „96k

PDE-FIND Fail Fail Fail „96K
0.05˘0.01% 3.00˘1.00% Fail „257k

NS PINN-SR 0.66˘0.72% 0.86˘0.63% 1.22˘0.69% „30k

PDE-FIND Fail Fail Fail „30K
1.00˘0.20% 7.00˘6.00% Fail „300k

λ-ω RD PINN-SR 0.07˘0.08% 0.25˘0.30% 1.84˘ 1.48% „37.5k

PDE-FIND Fail Fail Fail „37.5k
0.02˘0.02% Fail Fail „150k

Note: KS, NS and RD refer to the Kuramoto-Sivashinsky, Navier-Stokes and λ-ω Reaction-Diffusion PDEs. Gaussian white
noise is added to the synthetic response with the noise level defined as the root-mean-square ratio between the noise and
exact solution. “Fail” denotes failure in discovery of the sparse PDE coefficients. The identification error is defined as the
average relative error of the identified non-zero PDE coefficients with respect to the ground truth.
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critical limitation of SINDy in practical applications where data is sparse and noisy (e.g., the
experimental data in the cell migration and proliferation example, discussed in Section 2.4). While
PINN-SR is more computationally costly, it is capable of producing accurate discovery even in
the presence of sparse and noisy datasets. There is obviously a trade-off between computational
efficiency and need of high-quality data. Furthermore, this issue of longer computational time can be
well managed through parallel computing on a powerful GPU platform and remains a less important
concern compared to the aim for successful discovery of correct underlying PDEs.

2.3 Discovery of PDEs with multiple independent datasets

2.3.1 Burgers’ equation with shock behavior

We consider to discover the previously discussed Burgers’ equation (see Section 2.1.1) with a
small diffusion/viscosity parameter, expressed as

ut “ ´uux `
0.01

π
uxx

based on datasets generated by imposing three different I/BCs. The small diffusion coefficient
0.01{π « 0.0032 creates creates shock formation in a compact area with sharp gradient and poses
notorious difficulty for many numerical methods to resolve, which could challenge the DNN’s ap-
proximation ability and thus affect the discovery. The three I/BCs used for data generation include:

I/BC 1: upx, 0q “ ´ sinpπxq, up´1, tq “ up1, tq “ 0

I/BC 2: upx, 0q “ Gpxq, up´1, tq “ up1, tq “ 0

I/BC 3: upx, 0q “ ´x3, up´1, tq “ 1, up1, tq “ ´1

where G denotes a Gaussian function. The ground truth solution is simulated by MATLAB function
pdede in a spatiotemporal domain Ωˆr0, T s “ r´1, 1sd“200ˆr0, 1sd“1000. For all I/BCs, we assume
that there are 30 sensors randomly deployed in space measuring the wave traveling (e.g., u) for
500 time instants (7.5% of the total grid points). A denser sensor grid is needed herein, compared
with the previous Burgers’ example, in order to capture the shock behaviors. All measurements are
polluted with 10% Gaussian noise. The noisy measurements are depicted in Fig. 7A for the three
datasets. For visualization purpose, we only draw a handful of signals out of a total of 30 time series
for each I/BC.

We design a “root-branch” DNN: the root takes the spatiotemporal coordinates tx, tu as input
followed by 4 hidden layers of 20 nodes, while each of the three branches is separately connected
to the last hidden layer of the root followed by 4 hidden layers of 30 nodes before the output layer,
whose activation functions and initializations are the same as the previous. The motivation for this
design is that the branch nets can capture the solution difference due to different I/BCs while the
shared root net learns the common response patterns that obey the unique Burgers’ equation. Note
that although we have three distinctive solution approximations, we stack them into one candidate
library followed by a unified form of PDE. Therefore, we can combine the information from three
datasets to discover one physics equation. A group of 4.5 ˆ 104 collocation points are generated
by the Latin hypercube sampling strategy [3] for determining the residual physics loss. The PDE
library consists of 16 candidate functions, exactly the same as the Burgers’ case in Section 2.1.1,
whose coefficients are initialized as zeros. Due to the size of the composite deep neural networks, we
run this case on a workstation with an NVIDIA Tesla V100 GPU card (32 GB). The training efforts
include up to 8 ˆ 104 epochs pretraining by L-BFGS followed by 6 ADO iterations. In each ADO
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Figure 7: Discovery of Burgers’ equation with small viscosity based on datasets sampled under three I/BCs with
10% noise: (A) Visualization of noisy measurements for the three datasets. Note that there are 30 sensors and only
a few are illustrated in this figure. (B-D) The predicted response in comparison with the exact solution for three
I/BCs. The relative full-field `2 error of all the stacked predictions is 0.65%.

iteration, we use 1ˆ 103 Adam epochs to train the DNN in synergy with STRidge. The discovered
PDE is given by

ut “ ´1.002uux ` 0.0032uxx

which shows great agreement with the ground truth. The trained “root-branch” network can
accurately reproduce distinctive system responses even with limited measurements under 10% noise,
giving a full-field `2 error of 0.65%, as shown in Fig. 7B-D.

2.3.2 Fitzhugh-Nagumo type of Reaction-Diffusion equations

We consider the Fitzhugh-Nagumo (FN) type reaction-diffusion system, in a 2D domain Ω “

r0, 150s ˆ r0, 150s with periodic boundary conditions, whose governing equations are expressed by
two coupled PDEs [10, 11]:

ut “ γu∆u` u´ u3 ´ v ` α

vt “ γv∆v ` βpu´ vq

where u and v represent two interactive components/matters (e.g., biological), γu “ 1 and γv “ 100
are diffusion coefficients, α “ 0.01 and β “ 0.25 are the coefficients for reaction terms, and ∆ is the
Laplacian operator. The FN equations are commonly used to describe biological neuron activities
excited by external stimulus (α), which exhibit an activator-inhibitor system because one equation
boosts the production of both components while the other equation dissipates their new growth. The
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Figure 8: A few typical snapshots of low-resolution noisy measurements (10% noise) sampled from the system
response under three different initial conditions (ICs) for discovering Fitzhugh-Nagumo equations. Note that the
measurement data consists of 31 low-resolution noisy snapshots (with a grid size of 31 ˆ 31) for each IC uniformly
sampled within the time range of [0 28.8].

ground truth data is generated by the finite difference method (dx “ dy “ 0.5 and dt “ 0.0002) for
the time period of r0, T s “ r0, 36s, with three random fields as initial conditions. Three measurement
datasets are then generated, each of which consists of 31 low-resolution snapshots (projected into a
31ˆ 31 grid) uniformly down-sampled from full-field synthetic data during the period of r7.18, 36s
under a 10% noise condition (see Fig. 8). Similar to the previous example in Section 2.3.1, we
design a “root-branch” DNN with three branches: the root net has 2 hidden layers of 60 nodes
while each of the three branch nets has 3 hidden layers of 60 nodes, whose activation functions and
initializations are the same as previous. We sample 5ˆ 104 spatiotemporal collocation points using
Latin hypercube sampling [3] to construct the physics residuals.

We assume the diffusion terms (∆u and ∆v) are known in the PDEs, whose coefficients (γu and
γv) yet need to be identified. We employ the bounds to these two positive coefficients to speed up
the convergence, namely, γu P r0, 5s and γv P r0, 150s. We design 70 candidate functions, composed
of up to third-order polynomials (including the constant term “1” as the zero order), derivatives
tux, uy, uxy, vx, vy, vxyu and their mutual multiplication, to reconstruct the nonlinear reaction terms
in the PDEs. Hence, the final library has 72 candidate terms, whose initial coefficients are randomly
chosen between ´1 and 1. To account for the small stimulus term (e.g., 0.01 in the first equation),
we increase the sensitivity of the constant candidate “1” in the library by down-scaling its magnitude
to the order of 10´5 and 5 ˆ 10´4 for u and v equations respectively. Due to the memory issue,
we run this case on a workstation with an NVIDIA Tesla V100 GPU card (32 GB). The training
efforts include the pretraining stage with 2 ˆ 103 Adam epochs and 2 ˆ 104 L-BFGS epochs, 6
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Figure 9: Discovery of the Fitzhugh-Nagumo equations based on measurements sampled under three initial con-
ditions (ICs) with 10% noise: (A-B) Snapshots of predicted response, ground truth and error distributions for all
three ICs at two unmeasured time instances (t “ 9.12 and t “ 18.72). The relative `2 error for the predicted full-field
response (stacked u and v) is 5.02%.

ADO iterations, and an extra post-training with 2ˆ 104 Adam epochs and 2ˆ 104 L-BFGS epochs.
In each ADO iteration, we use 1 ˆ 103 Adam epochs in synergy with STRidge. To deal with the
aforementioned bounds for γu and γv in an unconstrained optimization process, we set γu “ 5σpγ̃uq
and γv “ 150σpγ̃vq and take tγ̃u, γ̃vu as trainable variables, where σp¨q denotes the Sigmoid function.
The discovered equations under 10 % noise is

ut “ 0.975∆u` 0.871u´ 0.847u3 ´ 0.924v ` 0.010

vt “ 84.339∆v ` 0.225u´ 0.229v

It is seen that the form of the PDEs is precisely uncovered with all correct active terms (including
the unknown external stimulus in the first equation). The corresponding identified coefficients are
generally close to the ground truth (error of non-zero coefficients: 9.05˘5.66%) except the diffusion
coefficient for v (i.e., γv) which seems to be a less sensitive parameter according to our test. It should
be noted that, given very scarce and noisy measurement datasets in this example, the “root-branch”
DNN is faced with challenges to accurately model the solutions with sharp propagating fronts (see
Fig. 9C -D). The less accurate solution approximation by DNN then affects the discovery precision.
This issue can be naturally alleviated by increasing the spatiotemporal measurement resolution

15



Position x

Cell 
Counting

Horizontal Grid

Time [h]

(A)

(B) (C)

(D) (E)

Figure 10: Measurement datasets of cell densities, ρ, based on scratch assays [12]. (A) Example scratch assay
imaging of 16,000 cells in the test well with a width of 1,900 µm (the images are reproduced from Jin et al. [12]).
The images are taken at different time instants (0h, 12h, 24h, 36h, 48h). The dashed lines show the approximate
location of the positions of the leading edge. These images are then evenly divided into 38 segments (50 µm each)
horizontally, where the cells are counted in each segment to determine the horizontal cell densities. (B-E) the cell
densities at different time instants for 14,000, 16,000, 18,000 and 20,000 cells, respectively.

(even still under fairly large noise pollution, e.g., 10%). Nevertheless, the exact form of the PDEs
is successfully discovered in this challenging example, which is deemed more important since the
coefficients can be further tuned/calibrated when additional data arrives. The evolution of the
PDE coefficients corresponding to 72 candidate functions for û and v̂ is illustrated in Fig. 9A and
B, respectively. Note that, for visualization purpose, we re-scale the identified coefficients of the
constant stimulus term “1” in the u-equation by multiplying 100 in Fig. 9A and the diffusion term
∆v in the v-equation by dividing 50 in Fig. 9B. The trained network is finally used to predict the
full-field responses under three I/BCs (see the snapshots in Fig. 9C -D at two unmeasured time
instants). The stacked full-field `2 error is 5.02%.

2.4 Experimental discovery of cell migration and proliferation

In this example, we consider to discover a biological system based on scratch assay experiments
[12] investigating the cell migration and proliferation process. The 1D cell density distributions at
different time instants (0h, 12h, 24h, 36h, 48h) were extracted and simplified from high-resolution
imaging via image segmentation and cell counting (see Fig. 10). A series of assays were performed
under different initial cell densities (e.g., the total number of cells spans from 10,000 to 20,000 follow-
ing the designated initial distribution in the test well. More detailed description of the experiment
setup and datasets can be found in [12].

Our objective herein is to uncover a parsimonious PDE for modeling the dynamics of cell density
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ρpx, tq. Here, we consider four scenarios with the initial number of cells ranging from 14,000, 16,000,
18,000 to 20,000. We take the mean of the test data from three identically-prepared experimental
replicates for each scenario for PDE discovery. Each mean dataset has a total of 38ˆ5 measurement
points for five time instances. To improve the optimization condition, all measurements are upscaled
by 1000 before being used in network training. Given our prior knowledge that the cell dynamics
can be described by a diffusion (migration) and reaction (proliferation) process, we assume the
PDE holds the form of ρt “ γρxx ` Fpρq, where γ is the unknown diffusion coefficient and F
denotes the underlying nonlinear reaction functional. We use 8 additional candidate terms (e.g.,
t1, ρ, ρ2, ρ3, ρx, ρρx, ρ

2ρx, ρ
3ρxu) to reconstruct F , whose coefficients are sparse. Hence, the total

number of trainable coefficients remains 9 (e.g., Λ P R9ˆ1), whose initial values are randomly
sampled from [´1, 1]. We believe incorporating our domain-specific prior knowledge is reasonable
and should be encouraged in interpretable model discovery, which could help improve our solution
confidence when available data is very sparse and noisy (e.g., in this example).

We sample 1 ˆ 104 collocation pairs using Latin hypercube sampling [3] in the spatiotemporal
domain of Ωˆr0, T s “ r0, 1900sµmˆr0, 48sh. The DNN has 3 hidden layers of 30 nodes activated by
by the tanh function (see Fig. 1 in the Main Text). Considering that the cell density is constantly
positive, we impose a softplus function (e.g., lnp1`ezq) in the output layer to curb the final output of
ρ. To account for potential large magnitude variation of the candidate term coefficients, we apply the
tanh function to squash magnitude gaps. Specifically, we set γ “ 1000tanhpγ̃q and λ “ 50tanhpλ̃q,
where γ̃ and λ̃ are trainable “proxies” for diffusion coefficient γ and other 8 coefficients λ (note:
Λ “ tγ,λu P R9ˆ1). The training efforts include the pretraining stage with 8 ˆ 103 Adam epochs
and up to 8ˆ103 L-BFGS epochs, 6 ADO iterations, and an extra post-training with 2ˆ104 Adam
epochs and up to 2ˆ 104 L-BFGS epochs. In each ADO iteration, we use 1ˆ 103 Adam epochs in
synergy with STRidge. The discovered underlying PDEs under different initial cell states are given
as follows:

14k cells: ρt “ 530.39ρxx ` 0.066ρ´ 46.42ρ2

16k cells: ρt “ 484.74ρxx ` 0.065ρ´ 43.15ρ2

18k cells: ρt “ 636.68ρxx ` 0.070ρ´ 45.48ρ2

20k cells: ρt “ 982.26ρxx ` 0.078ρ´ 47.65ρ2

which share a unified form of ρt “ γρxx ` λ1ρ ` λ2ρ
2 which exactly matches the famous Fisher-

Kolmogorov model [13, 14]. The rates of migration (diffusion) and proliferation (reaction) generally
increase along with the number of cells, as seen from the identified coefficients. Fig, 11A-D depict the
learned cell density profiles by the trained DNN, which capture the critical patterns of the measure-
ment while showing little evidence of overfitting. With the discovered PDEs, we simulate/predict the
evolution of cell densities at different time instants (12h, 24h, 36h and 48h) presented in Fig. 11E -H,
where the measurement at 0h is used as the initial condition while ρxpx “ 0, tq “ ρxpx “ 1900, tq “ 0
is employed as the Neumann boundary condition. The satisfactory agreement between the predic-
tion and the measurement provides a clear validation of our discovered PDEs.

3 Discussion

In this section, we discuss several other features, influence factors and limitations of the proposed
PINN-SR method for data-driven discovery of PDEs, and highlight the potential future work.
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Figure 11: Experimental discovery of cell migration and proliferation: (A)-(D) Predicted cell densities (represented
by solid curves) by the trained DNNs in comparison with the measurement data (denoted by markers) for 14,000,
16,000, 18,000 and 20,000 cells, respectively. (E)-(H ) Simulated cell densities, represented by solid curves, at different
time instants based on the discovered PDEs for 14,000, 16,000, 18,000 and 20,000 cells, respectively, where the
measurement at 0h is used as the initial condition while ρxpx “ 0, tq “ ρxpx “ 1900, tq “ 0 is employed as the
Neumann boundary condition. The simulation result is represented by solid curves while the markers denote the
measurement data.

3.1 Simultaneous identification of unknown source

In practical applications, the physical system might be subjected to spatiotemporal source input
(p) which is unknown and can be only sparsely measured. When discovering the underlying gov-
erning equation for such a system, the source should be considered and reconstructed concurrently.
In this case, we incorporate the source candidate functions into the library φ for simultaneous dis-
covery of the PDE and reconstruction of the unknown source. Thus, the sparse representation of
the PDE(s) can be written as

ut “ rφ
u φpsrΛu ΛpsT

where φu and φp denote the libraries of candidate functions, while Λu and Λp are the corresponding
sparse coefficients, for the field variable u and the source p, respectively. To demonstrate this
concept, we test the Burgers’ equation driven by a source term, expressed as

ut ` uux ´ 0.1uxx “ sinpxq sinptq.
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To generate the solution, the problem domain is meshed into 201 spatial grid points for x P r´5, 5s
and 101 time steps for t P r0, 10s. We use 20 fixed sensors randomly selected from the spatial grid
points to record the wave response (u) for 50 time steps, polluted with 10% noise. Note that the
source is not measured and regarded as unknown.

The following libraries of candidate function are used to reconstruct the PDE and the source:

φu “ t1, u, u2, u3, ux, uux, u
2ux, u

3ux, uxx, uuxx, u
2uxx, u

3uxx, uxxx, uuxxx, u
2uxxx, u

3uxxxu

φp “ ta, b, c, d, a2, b2, c2, d2, ac, ab, ad, bc, bd, cdu

where a “ sinptq, b “ sinpxq, c “ cosptq and d “ cospxq. The hyperparameters for the PINN-SR
network are similar those used in the previous Burgers’ example. The pre-training takes up to
15ˆ 103 epochs of Adam and about 1ˆ 103 epochs of L-BFGS, followed by 20 ADO iterations. In
each ADO iteration, we use the Adam optimizer with 1 ˆ 103 epochs and the L-BFGS with up to
1ˆ 103 epochs to train the DNN for each alternation within STRidge. The discovered PDE along
with the uncovered source term is given by

ut ` 1.002uux ´ 0.088uxx “ 0.995 sinpxq sinptq.

It can be seen by comparing the above two equations that both the sparse terms and the corre-
sponding coefficients are accurately identified, despite only scarce and noisy measurement of the
system response is supplied. Although only 4.9% subsampled responses are measured while the
source information is completely unknown, the PINN-SR approach can reasonably well extrapolate
the full-field solution with a `2 error of 13.8% (see Fig. 12A). The major errors are mostly dis-
tributed close to the boundaries due to scarce training data. Fig. 12B shows the comparison of
spatial and temporal snapshots between the predicted and the exact solutions which match well
with each other.

Nevertheless, if the source is very complex with its general expression or form completely un-
known, distinct challenges arise when designing the source library of candidate functions φp. This
may require an extraordinarily large-space library to retain diversifying representations, and thus
pose additional computational complexity for accurate discovery of the PDEs. In some specific
cases, the unknown source term can probably be approximated by the combination of continuous
basis functions such as the Fourier series and the Lagrange polynomials, instead of finding its closed
form. These open questions will be addressed in our future work.

3.2 Effect of missing candidate terms

Since the majority of well-known first-order PDEs w.r.t. time can be represented by linear
combination of several active linear/nonlinear terms, we try to include as many as possible commonly
seen terms following polynomial basis. Failing to include essential candidate functions will lead to
false-positive discovery of parsimonious closed form of PDEs, despite that a “best-of-fit” form can
be found. To investigate the effect of missing candidate term(s), we consider a special case where
the actual candidate uwx is intentionally ignored from the original library for discovery of the NS
equation, leading to an inadequate library with 59 candidate functions. All hyper-parameters and
training efforts are the same as those in Section 2.1.4. The discovered equation is given by:

wt “ ´0.253wx`0.008wyy`0.035uwxx´0.782u2wx´0.026u2wxx´0.616vwy´0.155v2wx´0.526uvwy

It can be seen that the discovered equation is less parsimonious and has much more terms compared
with the ground truth. The predicted full-field error for w increases from 2.58% (see Section 2.1.4)
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Discovered: ut + 1.002uux � 0.088uxx = 0.995 sin(x) sin(t)
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Ground truth: ut + uux � 0.1uxx = sin(x) sin(t)

Figure 12: Discovery of Burgers’ equation and source term for measurement data with 10% noise: (A) Evolution
of the sparse coefficients Λ P R30ˆ1 for 30 candidate functions φ P R1ˆ30 used to form the PDE and the unknown
source term, where the color represents the coefficient value. The predicted response in comparison with the exact
solution with the prediction error. (B) Comparison of spatial and temporal snapshots between the predicted and the
exact solutions. The relative full-field `2 error of the prediction is 13.8%. The major errors are mostly distributed
close to the boundaries due to scarce training data.

to 5.25%. We observe that given an insufficient library, the discovery is likely to result in a non-
parsimonious equation, where redundant terms are found to replenish the lost pattern of uwx, and
consequently yields less accurate response prediction.

3.3 Noisy measurements and collocation points

The total loss function is evaluated on the measurement data (for Ld) and the collocation points
(for Lp). Therefore, the availability of noisy measurement data and the number of collocation
points sampled from the spatiotemporal space will affect the convergence of the PINN-SR model
and thus the PDE discovery accuracy. We herein study the sensitivity of PINN-SR to these factors
in the context of discovery accuracy based on the Burgers’ equation example. In particular, we
use the relative `2-norm error to reflect the global accuracy of of the identified sparse coefficients,
defined as eλ “ ||Λ̂´Λtrue||2{||Λtrue||2 where Λ̂ denotes the identified coefficients and Λtrue is the
ground truth. Fig. 13 shows the error metrics for discovering the Burgers’ equation under different
quantities of measurement points and collocation points and noise levels. Increasing the number
of data points in the measurement (e.g., recorded by more sensors) can well compensate the noise
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Figure 13: Error eλ for discovery of Burgers’ equation under different measurement points, collocation points and
noise levels. Numbers in each cell denote the percentage error of eλ for a specific condition, which is the relative `2
norm error between the identified coefficients Λ and the ground truth Λtrue. The color also indicates the error level.
The collocation points are fixed at 1.6ˆ 105 in (A), while the measurement points are always 1ˆ 103 in (B).

Table 2: On the extrapolation (generalization) ability of PINN-SR

Case Meas. points Collocation points Noise level Training error Validation error Full-field error `2 error of Λ

1 1.5ˆ 103 8ˆ 104 0 0.03% 0.04% 2.41% 0.02%
2 1.5ˆ 103 8ˆ 104 10% 5.73% 5.95% 4.50% 0.79%
3 1.5ˆ 103 0 0 58.79% 60.19% 144.99% 142.66%
4 3ˆ 103 0 0 0.10% 0.10% 14.36% 0.38%

Note: The training error, validation error and full-field error are calculated in the form of }û ´ utrue}2{}utrue}2, where û
denotes the DNN-predicted response and utrue is the reference ground truth solution.

effect as shown in Fig. 13A (the number of collocation points is fixed at 1.6ˆ105), which agrees with
our common sense. Although optimal sensor placement might alleviate the need of large datasets
[15], this is out of the scope of this work. The use of more collocation points can mitigate the noise
effect and improve the discovery accuracy as illustrated in Fig. 13B (the number of measurement
points is fixed at 1 ˆ 103). For this specific case, 2 ˆ 104 (or more) collocation points are able to
maintain a satisfactory discovery accuracy for measurements under noise corruption at a realistic
level (e.g., ď 20%). When the data are sampled under a very noisy condition (e.g., 40% noise level),
the proposed method is still robust if a larger number of collocation points are used (e.g., ě 8ˆ104).

It is noteworthy that the collocation points require no correlation with the measurement data.
In particular, we use the Sobol sequence [16] (or Latin hypercube sampling [3] which is also appli-
cable) to simulate a finer uniform partitions of the problem domain, making the random sampling
of collocation points more representative. Intuitively, the more the collocation points are used,
the more generalizable the trained network will be and the more accurate the discovered PDE is.
However, a large number of collocation points also impose heavy computational burden, limited by
hardware resources. A fairly large amount of collocation samples (e.g., on the order of magnitude
of ą 104), comparable to the complexity and dimension of the discovery problem, are suggested in
practical applications meanwhile considering the memory of the computing machine.

We further conduct a comparative study on the role of collocation points and seek for numerical
understanding of how much they can help for extrapolation. Taking the Burgers’ equation for
instance, we define an enclosed area, part of the full-field response, as shown in Fig. 14, and sample
the measurement data only within such an area. We intend to reconstruct the full-field response
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Enclosed Area

Figure 14: Parametric study on the effect of collocation points for discovering the Burgers’ equation. The measure-
ments are only taken from the enclosed area, while the collocation points are sampled across the full field.

beyond the enclosed area and discover the PDE taking advantage of collocation points. More
specifically, the enclosed area is meshed by 100 ˆ 50 spatiotemporal points. We take 30 randomly
selected spatial locations as fixed sensors recording the dynamic response of the system, resulting in
1.5ˆ103 data points. Additionally, we sample 8ˆ104 collocation points from the full spatiotemporal
field for evaluating the residual physics loss during model training. Four cases are considered to
demonstrate the function of collocation points with measurements sampled in the enclosed area (see
Table 2).

Provided with clean measurements from the enclosed area and global collocation points, PINN-
SR does an impressive job on both full-field response reconstruction and sparse coefficients iden-
tification (see Case 1 in Table 2). When the measurements become noisy (e.g., 10% noise level),
despite the response prediction errors increase, the PDE can still be accurately discovered (see Case
2 in Table 2). If we consider removing all collocation points and only train the network with clean
measurements, the response prediction errors (even during the training and validation stage) all
remain over 50%, meanwhile the PDE is also completely misidentified (see Case 3 in Table 2).
Once we double the clean measurement points to 3ˆ103, the trained DNN has strong interpolation
and discovery abilities; however, the trained network does a poor job in extrapolating the full-field
response (see Case 4 in Table 2). Concluding from this parametric test, we can see that the collo-
cation points can render PINN-SR tolerable to scarce and noisy measurements, making the DNN
generalizable.

3.4 On the effect of non-Gaussian noise

To explore the effect of non-Gaussian noise, we test our algorithm on discovery of the FN
equations based on a series of low-resolution snapshots blurred/smoothed by a 2D Gaussian filter
(e.g., the resulting noise in the measurement data is always positive). In particular, the original
high-resolution data for the case of IC3 (see Section 2.3.2) is firstly smoothed by two 2D Gaussian
filters, of standard deviation 2 and 12.5 and of spatial size 9ˆ9 and 51ˆ51 for u and v, respectively.
Afterwards, we uniformly sub-sample 31 low-resolution snapshots (projected into a 31ˆ 31 spatial
grid) from the blurred dataset and take them as our measurement data. The rest algorithm settings
are the same as those in Section 2.3.2. The discovered equations are given as follows:

ut “1.164∆u` 0.911u´ 0.912u3 ´ 0.939v ` 0.011

vt “102.648∆v ` 0.245u´ 0.244v
(1)

It is seen that the discovered PDEs bear high resemblance to the ground truth. Fig. 15 displays
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Prediction Ground Truth Error

Figure 15: Discovery of Fitzhugh-Nagumo equations based on dataset corrupted by non-Gaussian-type noise:
snapshots of the predicted response, ground truth and error at an unmeasured time instance (t “ 23.4).

the evolution of 72 library coefficients Λ. We further predict the full field response of u and v at
a high-resolution grid 151 ˆ 151 for 241 snapshots uniformly distributed in r0, T s “ r0, 28.8s. The
predicted solution field at one unmeasured time instance t “ 23.4 is visualized in Fig. 15 which
shows the sporadic evolution of this system with sharp propagating fronts. The error contours at the
same time instance mainly appear in the propagation fronts. The overall error for all 241 predicted
high-resolution images is about 3.71%. We can conclude that the proposed method is also capable
of handling non-Gaussian-type noises.

3.5 Optimal sensor placement

In fact, optimal placement of sensors is very important in inverse problems, which could provide
informative datasets facilitating discovery. Ideally, sensors should be efficiently installed in the
most representative region of the system with sharp gradients (such as Fig. 14), even though such
a deployment will require a stronger foresight of how the system will behave. There are active
learning strategies similar to [17] that can place new sensors in an online manner to minimize large
physics residue in some local areas. Nevertheless, such an investigation is out of the scope of this
work. In our present study, since we assume that we have little prior knowledge on the system
response, it is infeasible to proactively deploy sensors in specific regions (e.g., the shock developing
regions). In particular, when multiple I/BCs are considered, these regions might vary case by case.
For instance, in the example of Burgers’ equation with shock behavior (see Section 2.3.1), the shock
developing regions are very different. Therefore, we choose to randomly place the sensors in space
to cover various possibility.

3.6 Convergence history

As an example, the total loss history for the NS example (see Section 2.1.4) is shown in Fig.
16, where the loss decreases remarkably during pre-training when both DNN’s parameters and
the PDE candidate term coefficients are trained to model the paramount patterns revealed by the
noisy data (e.g., 10% noise). The switch between Adam and L-BFGS occurs at the Epoch 5000.
In the ADO stage, the parsimonious equation structure is adaptively extracted while the model
carefully maintains prediction ability, where in consequence the loss doesn’t drop too much. The
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Pre-train ADO Post-train

Figure 16: The history of the total loss for Navier-Stokes vorticity equation. The loss decreases remarkably during
pre-training, where both DNN’s weights and biases and library coefficients learn the paramount patterns in the
data. In ADO stage, the parsimonious equation structure is adaptively extracted while the model carefully maintains
prediction ability, in consequence the loss doesn’t drop too much. The loss mildly declines in the end due to the
refinement of DNN parameters’ and non-zero equation coefficients in particular.

Table 3: Results for different settings of network size in Burgers’ equation.

Model No. of hidden layers No. of nodes Full-field `2 error Equation coefficient error Time

1 4 20 0.19% 0.35˘0.28% 381 s

2 4 40 0.89% 0.53˘0.37% 594 s

3 6 20 0.49% 0.36˘0.12% 583 s

4 6 40 0.88% 0.72˘0.21% 1055 s

5 8 20 0.51% 0.36˘0.33% 553 s

6 8 40 1.12% 0.54˘0.31% 1034 s

jump at the beginning of ADO is due to the update and pruning of Λ̂ in the STRidge. The loss
mildly decreases in the post-training stage due to the refinement of DNN parameters’ and non-zero
equation coefficients.

3.7 A parametric study on network size

The network configurations are adopted based on common practices in popular PINN literature
[18–22] and our empirical observations. We found that networks with 4-8 hidden layers, each
having 20-60 nodes, are generally sufficient for accurate modeling the system behaviors in our
discovery problems, depending on the problem complexity. To further show the effect of the network
configuration, we perform a parametric studies in one typical example (e.g., the Burgers’ equation)
on the number of hidden layers {4, 6, 8} with the number of nodes {20, 40} in each hidden layer.
In all cases, we use the same hyper-parameters as those in 2.1.1 except that the measurements are
noise-free here. The analyses are performed on a workstation with 28 Intel Core i9-7940X CPUs and
2 NVIDIA GTX 1080Ti GPU cards. Results of 6 different network configurations are shown in Table
3, where it is clear that as long as the layers and nodes are sufficient for solution approximation,
it ensures a successful discovery. However, a deeper or wider network requires more training effort
and results in longer computational time. Furthermore, a bigger network is more susceptible to
overfitting, as the full-field prediction error increases with the growth of network width.
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(A)

(B)

Figure 17: Pareto front analysis for determining the value of β balance model accuracy and sparsity/parsimony for
datasets with 10% noise: (A) Burgers’ equation and (B) nonlinear Schrödinger equation. The proper value of β should
be selected in the Optimal Region as shown in the plots. For example, we select κ “ 1 and κ “ 100 for discovery of
the Burgers and Schrödinger equations, respectively, as shown in Table 4. Note that β “ κLp

`

θ̂0, Λ̂0;Dva
c

˘

.

3.8 List of hyper-parameters used in the examples

Following the consistent criteria discussed in Main Text Method and Section 1.1, the list of
hyper-parameters used in the above examples is summarized in Table 4. Here, we illustrate how
β is selected based on Pareto front analysis. In particular, we take the Burgers’ and nonlinear
Schrödinger equations as an example. We firstly construct the sparse regression problem solved by
STRidge, where 9U and Φ are evaluated based on the pre-trained DNN (with the trained network
parameters denoted by θ0). A grid search for β is then performed by running only the first (or
two) ADO iterations to obtain the graphical representation of the Pareto set (e.g., Lppθ0,Λ;Dcq vs.
}Λ}0). The optimal range of β can then be determined. Fig. 17 summarizes the analysis results.

3.9 Other limitations

We also observe some other limitations of our proposed method in its current version. For
example, we failed to discover the Gray-Scott reaction-diffusion equation [23] (with several false-
positives) whose PDE coefficients have orders of magnitude difference (e.g., diffusion coefficient
10´5 vs. reaction term coefficient 1). While such a magnitude difference can be solved by applying
activation functions to equation coefficients (e.g. the FN case and the cell case), such a treatment
requires extra prior knowledge. In addition, there are other factors that could bring challenges
to our current framework, such as extremely low-quality measurements and pathology in PINN’s
gradient [21], which will be investigated in our future studies.
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