Supplemental Information

Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases

Vishnu Raman^{*,1,2}, Nele Van Dessel^{*,1,2}, Christopher L. Hall^{1,2}, Victoria E. Wetherby², Samantha A. Whitney¹, Emily L. Kolewe¹, Shoshana M.K. Bloom¹, Abhinav Sharma¹, Jeanne A. Hardy^{3,4,5}, Mathieu Bollen⁶, Aleyde Van Eynde⁶, Neil S. Forbes^{1,2,4,5,†}

* Both authors contributed equally to this manuscript

¹Department of Chemical Engineering University of Massachusetts, Amherst Amherst, MA, USA

²Ernest Pharmaceuticals, LLC Hadley, MA, USA

³Department of Chemistry University of Massachusetts, Amherst Amherst, MA, USA

⁴Molecular and Cell Biology Program University of Massachusetts, Amherst Amherst, MA, USA

⁵Institute for Applied Life Science University of Massachusetts, Amherst Amherst, MA, USA

⁶Laboratory of Biosignaling & Therapeutics Department of Cellular and Molecular Medicine KU Leuven Leuven, Belgium

[†]Corresponding author

Correspondence to: Professor Neil S Forbes Department of Chemical Engineering University of Massachusetts, Amherst 159 Goessmann Laboratory 686 North Pleasant St. Amherst, Massachusetts 01003, USA Email: <u>forbes@umass.edu</u> Tel.: +1 413 577 0132

Supplementary Figure 1. Additional measures of blood or liver toxicity. A,B) Tumor-free BALB/c mice were injected with 1×10^7 ID Salmonella, and control mice were injected with saline (n = 4). After 14 days, whole blood was isolated by percutaneous cardiac puncture. Comprehensive hematology (A) and chemistry profiling (B) was conducted by *Idexx Laboratories* (Grafton, MA). No differences were detected for any measurement of blood or liver toxicity. Abbreviations are BUN, blood urea nitrogen; HCT, hematocrit; HGB, hemoglobin; and MCHC, mean corpuscular hemoglobin concentration. Data are shown as means ± SEM.

Supplementary Figure 2. Biodistribution of *CT* **Casp-3 Salmonella at 6 hours and 7 days.** Tumor-free male C57BL/J mice were intravenously injected at 22 weeks of age with either saline (control), 1×10^7 CFU/mouse of ID Salmonella, or 1×10^7 CFU/mouse of *CT Casp-3* Salmonella with (n = 10 for both time points). **A)** After 6 h, tissues were excised and weighed: spleen, liver, lung, kidney, heart, brain and serum. Organs were minced and cultured on agar plates. The bacterial density in the tumors of tumor-bearing mice (from Figure 5b) at 72 h is provided as a reference. No bacteria were detected in saline controls. **B)** After 7 days, bacterial density was determined from an additional set of identically treated mice. No bacteria were detected in most of the organs. The bacterial density in the spleens of mice treated with *CT Casp-3* Salmonella was close to the detection limit. The presence of bacteria in healthy organs is common six hours after intravenous injection (as seen in *a*). At this time, bacteria are still present in the blood in these organs. Because the bacteria do not interact with the tissues, no adverse effects were seen (as shown in Figures 5c-e, S1 and S4). With time, the immune system clears the bacteria from the blood and organs, typically within 24 h, as can be seen by the lack of bacteria in most organs after 7 days (*b*). Data are shown as means \pm SEM.

Supplementary Figure 3. Efficacy of ID Salmonella delivery of NIPP1-CD. *NIPP1-CD* Salmonella $(1 \times 10^7 \text{ CFU/mouse})$ were administered to BALB/c mice with subcutaneous 4T1 tumors by intravenous injection. No difference in tumor volume was observed between NIPP1-CD (n = 5) and saline controls (n = 4). Data are shown as means ± SEM.

Supplementary Figure 4. Toxicity of ID Salmonella with CT Casp-3. A) Chemistry profiling of the blood drawn from tumor-free male C57BL/J mice (n = 4). Mice were intravenously injected at 22 weeks of age with either saline (control), $1x10^7$ CFU/mouse of ID Salmonella, or $1x10^7$ CFU/mouse of ID Salmonella with CT Casp-3. Sera were collected seven days after injection and chemistry profiling was conducted by *IDEXX Laboratories* (Grafton, MA). No differences were detected for any measurement of liver toxicity. Markers of liver damage are ALP, alkaline phosphatase; ALT, alanine transaminase; and AST, aspartate transaminase. **B)** Additional measures of liver toxicity of the blood from the mice in (A). No differences were detected for any measurement. BUN is blood urea nitrogen. Data are shown as means ± SEM.

Supplementary Figure 5. *CT Casp-3* Salmonella prevented growth of metastases in individual mice. Lung metastases were formed in BALB/c mice by intravenous injection of 5×10^4 luciferase-expressing 4T1 cells (see Figure 7G). Mice were treated with either 1×10^7 CFU of *CT Casp-3* Salmonella or 10 mg/kg paclitaxel (n = 6). Metastatic volume was measured with bioluminescence imaging after IP injection of 100 µl of 30 mg/ml D-luciferin, and is reported relative to initial volume. Metastases grew exponentially in three mice treated with paclitaxel, but did not grow in any mice treated with CT Casp-3.

Supplementary Figure 6. Tumor growth rate. In C57L/J mice with subcutaneous Hepa 1-6 liver tumors (Figure 7I-J), treatment with *CT Casp-3* Salmonella significantly reduced tumor growth rate compared to both saline and bacterial (ID Salmonella) controls (*, P = 0.027; n = 3). Data are shown as means ± SEM. The statistical comparison is a two-tailed, unpaired Student's t test. The asterisk (*) indicates significance of P < 0.05.

Supplementary Figure 7. Flow cytometry gating strategy. IDf+ Salmonella were administered to 4T1 cancer cells (see Figure 4B). Four different conditions were investigated: IDf+ Salmonella without *Pssej-LysE* and without arabinose induction of *PBAD-flhDC* (*Pssej-LysE* -, *flhDC* -); without *Pssej-LysE* and with induction of *PBAD-flhDC* with 20 mM arabinose (*Pssej-LysE* -, *flhDC* +); with *Pssej-LysE* and without induction (*Pssej-LysE* +, *flhDC* -); with *Pssej-LysE* and with induction (*Pssej-LysE* +, *flhDC* -); with *Pssej-LysE* and with induction (*Pssej-LysE* +, *flhDC* -); with *Pssej-LysE* and with induction (*Pssej-LysE* +, *flhDC* +). After invasion and delivery, the 4T1 cells were harvested, fixed and stained for *Salmonella* (FITC) and myc-tagged GFP (Dylight 755; APC-CY7). The gating strategy for each condition is shown. Cells were first gated to exclude debris and then gated on single cells. FITC and APC-CY7 gates were used to quantify the percentage of cells with intracellular Salmonella and released GFP-myc, respectively. The four rightmost plots are the images in Figure 4B of the manuscript.

Supplementary Table 1. Bacterial strains

	Background /	Plas	Genetic	
Strain	Knockouts	mid	functions	Description
				Non-pathogenic therapeutic
				Salmonella; deletion of asd
	ΔmsbB, Δpurl,			enables balanced lethal system
Parental (Par)	Δxyl, Δasd	-	-	to maintain plasmids in vivo
				Parental Salmonella with flhD
<i>∆flhD</i> Sal	∆flhD Par	-	-	deletion; non-motile
Intracellular				
reporting	Par	P1	PsseJ-GFP	Intracellularly inducible GFP
				Re-expresses <i>flhDC</i> after
			PBAD-flhDC	induction with arabinose
flhDC Sal	∆flhD Par	P2	Plac-GFP	Constitutively expresses GFP
				Re-expresses <i>flhDC</i> after
			PBAD-flhDC	induction with arabinose
flhDC reporting	∆flhD Par	P4	PsseJ-GFP	Intracellularly inducible GFP
				Expresses GFP after activation
PsifA	Par	P5	PsifA-GFP	of <i>PsifA</i> promoter
				Bacteria lyse after activation
PBAD-LysE	Par	P6	PBAD-LysE	with arabinose
				Bacteria lyse after activation of
			PsseJ-LysE	PsseJ promoter
ID Sal	Par	P7	Plac-GFP	Constitutively expresses GFP
				Predominantly accumulates in
				the cytoplasm of cells
			PsseJ-LysE	Lyses after invasion
<i>∆sifA</i> ID Sal	∆sifA Par	P7	Plac-GFP	Constitutively expresses GFP
				Predominantly accumulate in
				SCVs
			PsseJ-LysE	Lyses after invasion
∆ <i>sseJ</i> ID Sal	∆sseJ Par	P7	Plac-GFP	Constitutively expresses GFP
				Re-expresses <i>flhDC</i> after
			Plac-GFP	induction with arabinose
			PBAD-flhDC	Lyses after invasion
IDf+ Sal	∆flhD Par	P8	PsseJ-LysE	Constitutively expresses GFP
				Bacteria lyse after activation of
			PsseJ-LysE	PsseJ promoter
			Plac-GFP	Constitutively expresses GFP
ID Sal-luc	Par	P9	Plac-luc	and luciferase
			PsseJ-LysE	Lyses after invasion
			PBAD-nano	Controllably expresses
NB	Par	P10	Plac-GFP	nanobody against β-actin

				Constitutively expresses GFP
			PsseJ-LysE	Lyses after invasion
			Plac-NIPP1	Constitutively expresses NIPP1-
NIPP1-CD Sal	Par	P11	Plac-GFP	CD and GFP
			PsseJ-LysE	Lyses after invasion
			PBAD-	Controllably expresses CT
			Casp3	Casp-3
CT Casp-3 Sal	Par	P12	Plac-GFP	Constitutively expresses GFP

Supplementary Table 2. Plasmids

			Gene		
			Main-	Gene	
No.	Name	Origin	tenance	Circuits	Purpose
	Intracellular		Chlor ^a		Expresses GFP after cell
P1	reporting	CoIE1	ASD ^b	PsseJ-GFP	invasion
					Re-expresses flhDC;
	flhDC re-		Amp	PBAD-flhDC	Constitutively expresses
P2	expressing	CoIE1	ASD	Plac-GFP-myc	GFP
P3	PBAD-flhDC	ColE1	Amp ^c	PBAD-flhDC	Used in construction of P2
				PBAD-flhDC	Measures invasion after
P4	flhDC reporting	CoIE1	Amp	PsseJ-GFP-myc	flhDC re-expression
					Expresses GFP after
	PsifA reporter		Chlor		activation of <i>PsifA</i>
P5	plasmid	CoIE1	ASD	PsifA-GFP	promoter
			Chlor		Lyses after activation with
P6	Inducible lysis	CoIE1	ASD	PBAD-LysE	arabinose
					Bacteria lyse after
			Chlor	PsseJ-LysE	invasion; Constitutively
P7	Intracellular lysis	CoIE1	ASD	Plac-GFP-myc	expresses GFP
					Lyses after invasion; Re-
	Intracellular lysis			PsseJ-LysE	expresses flhDC;
	and induced		AMP	PBAD-flhDC	Constitutively expresses
P8	invasion	CoIE1	ASD	Plac-GFP-myc	GFP
					Bacteria lyse after
				PsseJ-LysE	invasion; Constitutively
			Chlor	Plac-GFP-myc	expresses GFP and
P9	Luciferase	CoIE1	ASD	Plac-luc	luciferase
					Lyses after invasion;
			AMP	PsseJ-LysE	Expresses flag-tagged
P10	Nanobody	ColE1	ASD	PBAD-nano-flag	nanobody against β-actin
			Chlor	PsseJ-LysE Plac-	Lyses after invasion;
P11	NIPP1-CD	ColE1	ASD	NIPP1	Expresses NIPP1-CD
					Lyses after invasion;
				Plac-GFP	Constitutively expresses
			AMP	PsseJ-LysE	GFP; Expresses CT Casp-
P12	CT Casp-3	CoIE1	ASD	PBAD-Casp-3	3

^aChloramphenicol

^bASD (aspartate-semialdehyde dehydrogenase) is an essential enzyme for lysine synthesis and is necessary for the synthesis of peptidoglycan⁴. It is the key gene in the balanced lethal system developed by Nakayama et al.⁵ to maintain genes in Salmonella after injection in vivo.

^cAmpicillin

Name	Primer sequence	Gene	Template
	FOFZCACGGGGTGCGGCTACGTCGCACAAAAATAA		
vr121	AGTTGGTTATTCTGGGTCTTGAGCGATTGTGTAGGC	flhD forward	pkd4
	EOEFATCCTGAGTCAAACGGGTGATCGTCTGATGAT		
	CGTCAAACCGGAAAAATTAGCCATGGTCCATATGAA		
vr309	TATC	flhD reverse	pkd4
	FZEFAAAATGTTGGTTTTATCGGCTGGCGCGGAATG		
vr266	GTCGGCTCTGTTCTGTCTTGAGCGATTGTGTAGGC	asd forward	pkd3
	OZFOGCCAACTGGCGCAGCATTCGACGCAGCGGCT		
	CGGCGGCGCCCCATAAATTAGCCATGGTCCATATG		
vr268	AATATC	asd reverse	pkd3
	FZEOCATTGAGTGTTGGACAGGGTTATTTCACATCA		
vr432	TCTATCAGTTCTGAGTCTTGAGCGATTGTGTAGGC	sseJ forward	pkd4
	ZZFZTCAGTGGAATAATGATGAGCTATAAAACTTTCT		
	AACATTATGGCAAAATTAGCCATGGTCCATATGAAT		
vr433	ATC	sseJ reverse	pkd4
	FZEOCGATTACTATAGGGAATGGTTTTTTAAAAAGTG		
vr434	AAATCCTTACCAAGTCTTGAGCGATTGTGTAGGC	<i>sifA</i> forward	pkd4
	ZZFZAAAAAACAACATAAACAGCCGCTTTGTTGTTCT		
	GAGCGAACGTGTAAATTAGCCATGGTCCATATGAAT		
vr435	ATC	sifA reverse	pkd4

Supplementary Table 3. Primers used for gene deletions

Name	Sequence	Description
nd1	AAAAAAACATGTGTGGAATTGTGAGCGGATAAC	Plac-GFP forward
nd2	AAAAAAGACGTCTTATTTGTATAGTTCATCCATGCC	Plac-GFP reverse
nd3	AAAAAAACATGTCACATAAAACACTAGCACTTT	PsseJ forward
nd4	AAAAAATCTAGACCTCCTTACTTTATTAAACAC	PsseJ reverse
nd5	AAAAAAACATGTTATAAGCGATTAATTGCGCAA	PsifA forward
nd6	AAAAAATCTAGATAATCTCACTTATACTGGAGT	PsifA reverse
nd7	AAAAAACCATGGTTTAAGAAGGAGATATACATATGG	LysE forward (into PBAD)
nd8	AAAAAAGGTACCTCACTCCTTCCGCACGTAATT	<i>LysE</i> reverse (into PBAD)
nd9	AAAAAATCTAGATTTAAGAAGGAGATATACATATGG	LysE forward
nd10	AAAAAAGACGTCTCACTCCTTCCGCACGTAATT	LysE reverse
nd11	AAAAAA GAGCTC GACTGGAAAGCGGGCAGTGA	Plac-GFP forward
nd12	AAAAAA GAGCTC AAGCTTGCATGCCTGCAGGAG	Plac-GFP reverse
nd13	TTTAAGAAGGAGATATACATATGGGTGGAGAGGATGATG	NIPP1 forward
	CTTGCATGCCTGCAGGAGATTTACAGATCCTCTTCTGAGAT	
nd14	GAGTTTTGTTCGTTCCGAAAGCGACCAAC	NIPP1 forward
nd15	ATGTATATCTCCTTCTTAAATCTAGAGGTC	forward
	GAACAAAAACTCATCTCAGAAGAGGATCTGTAAATCTCCTG	Plac-GFP backbone
nd16	CAGGCATGCA	reverse
nd17	AAAAAA GAGCTC GTTAGCAATTTAACTGTGATAAAC	Plac-NIPP1-CD reverse
	TCAATCTCCTGCAGGCATGCTTTACACTTTATGCTTCCGGC	
ah 1		Luciforaça forward
Chi		Lucilerase forward
ch2	G	Luciferase reverse
ch3	AGCTTGATATCAAATTACGCCCC	P6 backbone forward
ch4	GCATGCCTGCAGGAGATTGA	P6 backbone reverse
	AAAAAACCATGGGTTAATAAAAGGAGGAATATATATGCATA	
vr46	CATCCGAGTTGCTAAAACA	flhDC forward
vr47	AAAAAACTCGAGAAAAATTAAACAGCCTGTTCGATCTGTTCA	flbDC reverse
V147		
		Plac-GEP backbone
vr394	AGGAGAAGAACTTTTCA	forward
	TCACGTAGCGATAGCGGAGTTACAGATCCTCTTCTGAGATG	Plac-GFP backbone
vr395	AGTTTTTGTTCTTTGTATAGTTCATCCATGCCAT	reverse
vr385	CTCCGCTATCGCTACGTGA	P3 backbone forward
vr386	TGTATACTGGCTTAACTATGCGG	P3 backbone reverse

Supplementary Table 4. Primers used for plasmid construction

vr424	GCTTGTCTGCTCCCGGCATCGTACGTTTTCGTTCCATTGG	asd forward
	AGACGGTCACAGCTTGTCTGTATCTGCGTTTACTCCTGTAT	
vr425	TAC	asd reverse
vr426	ACAGACAAGCTGTGACCGTCT	backbone forward
vr427	ATGCCGGGAGCAGACAAGC	backbone reverse
	CGCAGCGAGTCAGTGAGCACATGTCACATAAAACACTAGC	
vr269	ACT	Pssej-GFP-myc forward
	CGCACAGATGCGTAAGGAGAATTACAGATCCTCTTCTGAGA	
vr270	TGAGTTTTTGTTCTTTGTATAGTTCATCCATGCCATG	Pssej-GFP-myc reverse
vr271	GCTCACTGACTCGCTGCG	P3 backbone reverse
vr272	TTCTCCTTACGCATCTGTGCG	P3 backbone forward
	ATCTGTGCGGTATTTCACACCACATGTCACATAAAACACTA	
vr398	GCACT	<i>Pssej-LysE</i> forward
	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT	
vr399	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT	Pssej-LysE reverse
vr399 vr396	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA	<i>Pssej-LysE</i> reverse P2 backbone forward
vr399 vr396 vr397	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA GGTGTGAAATACCGCACAGAT	<i>Pssej-LysE</i> reverse P2 backbone forward P2 backbone reverse
vr399 vr396 vr397	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA GGTGTGAAATACCGCACAGAT GGGCTAACAGGAGGAATTAACCATGGCTCAGGTGCAGCTG	<i>Pssej-LysE</i> reverse P2 backbone forward P2 backbone reverse
vr399 vr396 vr397 vr466	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA GGTGTGAAATACCGCACAGAT GGGCTAACAGGAGGAATTAACCATGGCTCAGGTGCAGCTG G	Pssej-LysE reverse P2 backbone forward P2 backbone reverse Actin nanobody forward
vr399 vr396 vr397 vr466	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA GGTGTGAAATACCGCACAGAT GGGCTAACAGGAGGAATTAACCATGGCTCAGGTGCAGCTG G TACCAGCTGCAGATCTCGAGTTACTTGTCGTCATCGTCTTT	Pssej-LysE reverse P2 backbone forward P2 backbone reverse Actin nanobody forward
vr399 vr396 vr397 vr466 vr467	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA GGTGTGAAATACCGCACAGAT GGGCTAACAGGAGGAATTAACCATGGCTCAGGTGCAGCTG G TACCAGCTGCAGATCTCGAGTTACTTGTCGTCATCGTCTTT GTAGTCCATGCTTCTTGAGGAGACGGTGA	Pssej-LysE reverseP2 backbone forwardP2 backbone reverseActin nanobody forwardActin nanobody reverse
vr399 vr396 vr397 vr466 vr467 vr448	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA GGTGTGAAATACCGCACAGAT GGGCTAACAGGAGGAATTAACCATGGCTCAGGTGCAGCTG G TACCAGCTGCAGATCTCGAGTTACTTGTCGTCATCGTCTTT GTAGTCCATGCTTCTTGAGGAGACGGTGA CTCGAGATCTGCAGCTGGTA	Pssej-LysE reverseP2 backbone forwardP2 backbone reverseActin nanobody forwardActin nanobody reverseP8 backbone forward
vr399 vr396 vr397 vr466 vr467 vr448 vr449	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA GGTGTGAAATACCGCACAGAT GGGCTAACAGGAGGAATTAACCATGGCTCAGGTGCAGCTG G TACCAGCTGCAGATCTCGAGTTACTTGTCGTCATCGTCTTT GTAGTCCATGCTTCTTGAGGAGACGGTGA CTCGAGATCTGCAGCTGGTA GGTTAATTCCTCCTGTTAGCCC	Pssej-LysE reverseP2 backbone forwardP2 backbone reverseActin nanobody forwardActin nanobody reverseP8 backbone forwardP8 backbone reverse
vr399 vr396 vr397 vr466 vr467 vr448 vr449	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA GGTGTGAAATACCGCACAGAT GGGCTAACAGGAGGAATTAACCATGGCTCAGGTGCAGCTG G TACCAGCTGCAGATCTCGAGTTACTTGTCGTCATCGTCTTT GTAGTCCATGCTTCTTGAGGAGACGGTGA CTCGAGATCTGCAGCTGGTA GGTTAATTCCTCCTGTTAGCCC GGGCTAACAGGAGGAATTAACCATGGACTACAAAGACGAT	Pssej-LysE reverseP2 backbone forwardP2 backbone reverseActin nanobody forwardActin nanobody reverseP8 backbone forwardP8 backbone reverseN-term FLAG-Casp
vr399 vr396 vr397 vr466 vr467 vr448 vr449 vr450	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA GGTGTGAAATACCGCACAGAT GGGCTAACAGGAGGAATTAACCATGGCTCAGGTGCAGCTG G TACCAGCTGCAGATCTCGAGTTACTTGTCGTCATCGTCTTT GTAGTCCATGCTTCTTGAGGAGACCGGTGA CTCGAGATCTGCAGCTGGTA GGTTAATTCCTCCTGTTAGCCC GGGCTAACAGGAGGAATTAACCATGGACTACAAAGACGAT GACGACAAGATGGAGAACACTGAAAACTCAGTG	Pssej-LysE reverseP2 backbone forwardP2 backbone reverseActin nanobody forwardActin nanobody reverseP8 backbone forwardP8 backbone reverseN-term FLAG-Caspforward
vr399 vr396 vr397 vr466 vr467 vr448 vr449 vr450	TACTGAGAGTGCACCATATGCTCACTCCTTCCGCACGTAAT TT GCATATGGTGCACTCTCAGTA GGTGTGAAATACCGCACAGAT GGGCTAACAGGAGGAATTAACCATGGCTCAGGTGCAGCTG G TACCAGCTGCAGATCTCGAGTTACTTGTCGTCATCGTCTTT GTAGTCCATGCTTCTTGAGGAGACGGTGA CTCGAGATCTGCAGCTGGTA GGTTAATTCCTCCTGTTAGCCC GGGCTAACAGGAGGAATTAACCATGGACTACAAAGACGAT GACGACAAGATGGAGAACACTGAAAACTCAGTG TACCAGCTGCAGATCTCGAGTTACAGATCCTCTTCTGAGAT	Pssej-LysE reverseP2 backbone forwardP2 backbone reverseActin nanobody forwardActin nanobody reverseP8 backbone forwardP8 backbone reverseN-term FLAG-CaspforwardC-term myc-Casp3

Supplementary References

- 1 Mosberg, J. A., Lajoie, M. J. & Church, G. M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. *Genetics* **186**, 791-799, doi:10.1534/genetics.110.120782 (2010).
- 2 Swofford, C. A., Van Dessel, N. & Forbes, N. S. Quorum-sensing Salmonella selectively trigger protein expression within tumors. *Proceedings of the National Academy of Sciences of the United States of America* **112**, 3457-3462, doi:10.1073/pnas.1414558112 (2015).
- 3 Vaidya, S., Velazquez-Delgado, E. M., Abbruzzese, G. & Hardy, J. A. Substrate-induced conformational changes occur in all cleaved forms of caspase-6. *J Mol Biol* **406**, 75-91, doi:10.1016/j.jmb.2010.11.031 (2011).
- 4 Yan, Y. *et al.* Asd-based balanced-lethal system in attenuated Edwardsiella tarda to express a heterologous antigen for a multivalent bacterial vaccine. *Fish & shellfish immunology* **34**, 1188-1194, doi:10.1016/j.fsi.2013.01.027 (2013).
- 5 Nakayama, K., Kelly, S. M. & Curtiss, R. Construction of an ASD+ expression-cloning vector stable maintenance and high-level expression of cloned genes in a Salmonella vaccine strain. *Bio-Technol* **6**, 693-697, doi:10.1038/nbt0688-693 (1988).