SUPPLEMENTARY INFORMATION

Regulation of Plant Phototropic Growth by NPH3/RPT2-like Substrate Phosphorylation and 14-3-3 Binding

Stuart Sullivan, Thomas Waksman, Dimitra Paliogianni, Louise Henderson, Melanie Lütkemeyer, Noriyuki Suetsugu and John M. Christie

Supplementary Figures 1-7

Supplementary Table 1

Supplementary Figures

Supplementary Figure 1. Mutational analysis of NPH3 phosphorylation sites. **a** Amino acid alignment of the C-terminus of NPH3 from *Arabidopsis thaliana (A. tha), Amborella trichopoda (A. tri), Beta vulgaris (B. vul), Prunus persica (P. per), Vitis vinifera (V. vin), Theobroma cacao (T. cac), Brachypodium distachyon (B. dis), Hordeum vulgare (H. vul) Triticum aestivum (T. aes) and Oryza sativa (O. sat). The two conserved serine residues (A. tha, S744 and S746) are indicated by arrowheads. b Confocal images of GFP-NPH3 (NPH3) and phosphorylation site mutants S744D S746D, S744D and S746D transiently expressed in leaves of <i>N. benthamiana*. Plants were dark-adapted before confocal observation and images acquired immediately (scan 1) and after repeat scanning with the 488 nm laser (scan 5). Bar, 50 µm. **c** Immunoblot analysis of protein extracts from leaves of *N. benthamiana* transiently expressing GFP-NPH3 (NPH3) and phosphorylation site mutants S744D S746D, S744D S746D, S744D S746D, S744D and S746D, S744D and S746D. Plants were dark-adapted before confocal observation and images acquired immediately (scan 1) and after repeat scanning with the 488 nm laser (scan 5). Bar, 50 µm. **c** Immunoblot analysis of protein extracts from leaves of *N. benthamiana* transiently expressing GFP-NPH3 (NPH3) and phosphorylation site mutants S744D S746D, S744D and S746D. Plants were dark-adapted and maintained in darkness (D) or irradiated with 20 µmol m⁻² s⁻¹ of blue light for 15 min (L). Protein extracts were probed with anti-GFP antibodies. Experiments were repeated at least twice with similar results.

Supplementary Figure 2. Phot1 phosphorylation of NPH3 promotes functionality. Box-andwhisker plots showing the final angle of hypocotyl curvature after 240 min of irradiation. **a** Data taken from Figure 6a of seedlings irradiated with 0.5 μ mol m⁻² s⁻¹ unilateral blue light. **b** Data taken from Figure 6b of seedlings irradiated with 0.5 μ mol m⁻² s⁻¹ unilateral blue light. **c** Data taken from Figure 6c of seedlings irradiated with 0.05 μ mol m⁻² s⁻¹ unilateral blue light. **d** Data taken from Figure 6d of seedlings irradiated with 20 μ mol m⁻² s⁻¹ unilateral blue light. **d** Data taken from Figure 6d of seedlings irradiated with 20 μ mol m⁻² s⁻¹ unilateral blue light. For the box plots, the centre line indicates the median, the bounds of the boxes indicate the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile range and outliers are represented by dots. Different letters denote significant differences (P < 0.01, one-way ANOVA with Tukey post-test). Exact P-values are provided in the Source data file.

Supplementary Figure 3. Phot1 phosphorylation of NPH3 promotes functionality. Petiole positioning of *nph3* mutant and *nph3* seedlings expressing GFP-NPH3 (NPH3) or phosphorylation site mutants S744A S746A and S744D S746D. Plants were grown under 80 μ mol m⁻² s⁻¹ white light for 9 d before transfer to 10 μ mol m⁻² s⁻¹ white light for 5 d. Box-and-whisker plots show petiole angle from the horizontal measured for the first true leaves. The centre line indicates the median, the bounds of the boxes indicate the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile range and outliers are represented by dots (n = 60 seedlings, from three independent biological replicates). Different letters denote significant differences (P < 0.01, one-way ANOVA with Tukey post-test). Exact P-values are provided in the Source data file. Representative images for each genotype are shown on the right. Bar, 5 mm.

Supplementary Figure 4. Analysis of a constitutive 14-3-3 binding NPH3 variant. Box-andwhisker plots showing the final angle of hypocotyl curvature after 240 min of irradiation. **a** Data taken from Figure 7f of seedlings irradiated with 0.05 µmol m⁻² s⁻¹ unilateral blue light. **b** Data taken from Figure 7g of seedlings irradiated with 0.5 µmol m⁻² s⁻¹ unilateral blue light. **c** Data taken from Figure 7h of seedlings irradiated with 20 µmol m⁻² s⁻¹ unilateral blue light. For the box plots, the centre line indicates the median, the bounds of the boxes indicate the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile range and outliers are represented by dots. Different letters denote significant differences (P < 0.01, one-way ANOVA with Tukey post-test). Exact P-values are provided in the Source data file.

Supplementary Figure 5. Analysis of a constitutive 14-3-3 binding NPH3 variant. Circular histograms depicting hypocotyl orientation after 240 min of irradiation with 0.05 μ mol m⁻² s⁻¹, 0.5 μ mol m⁻² s⁻¹ or 20 μ mol m⁻² s⁻¹ unilateral blue light. Angles were grouped into 15° classes and expressed as percentages of the number of seedlings.

Supplementary Figure 6. Conservation of the phot1 phosphorylation sequence of NPH3. a Amino acid sequence alignment of the phototropin 1 substrate phosphorylation sites in BLUS1 (Takemiya et al., 2013), CBC1 (Hiyama et al., 2017), PKS4 (Schumacher et al., 2018) and NPH3. The amino acid residues are numbered relative to the phosphorylated serine residue and the PKA-like phosphorylation motif is indicated below. b Amino acid alignment of the last 10 residues of the Arabidopsis NRL protein family. The position of S744 is indicated by an arrow and sequences containing a RxS phosphorylation motif denoted with an asterisk. c Thiophosphorylation analysis of in vitro kinase assays containing gatekeeper engineered phot1 (phot1^{GK}) and RPT2 or RPT2-S591A. Reactions were performed in the absence (D) or presence of 20 s of white light (L), and thiophosphorylation was detected using anti-thiophosphoester antibody (α-TPE). Blots were probed with anti-GST antibody to detect GST-RPT2 and phot1^{GK}-GST. d Thiophosphorylation analysis of in vitro kinase assays containing phot1^{GK} and GST-DOT3, GST-NPY1 OR GST-NRL1. Reactions were performed in the absence (D) or presence of 20 s of white light (L), and thiophosphorylation was detected using α -TPE. Blots were probed with anti-GST antibody to detect NRL proteins and anti-HA to detected HA-phot1^{GK}. The experiments in (c) and (d) were preformed twice with similar results.

Supplementary Figure 7. Analysis of quadruple 14-3-3 mutants. **a** Phototropism of etiolated wild-type (WT) seedlings or *kappa lambda phi chi* (KLPC), *kappa lambda upsilon nu* (KLUN) and *upsilon nu phi chi* (UNPC) quadruple mutant seedlings irradiated with 0.5 μmol m⁻² s⁻¹ unilateral blue light. Hypocotyl curvatures were measured every 10 min for 3 h, and each value is the mean ± SE of 10 independent seedlings from two biological replicates. **b** Immunoblot analysis of total protein extracts from etiolated WT or KLPC, KLPC and UNPC quadruple mutant seedlings irradiated with 15 μmol m⁻² s⁻¹ of blue light for the time indicated. Blots were probed with anti-NPH3 antibodies. This experiment was repeated twice with similar results.

Primer Name	Primer Sequence (5' to 3')	Description
NPH3_S744A-F	CAAGACGATGGAGGAACGCAATTTCATGAGGATCC	Site directed mutagenesis of NPH3 serine 744 to
NPH3_S744A-R	GGATCCTCATGAAATIGCGTTCCTCCATCGTCTTG	alanine
NPH3_S746A-F	GATGGAGGAACTCAATTGCATGAGGATCCTGGGC	Site directed mutagenesis
		of NPH3 serine 746 to
NPH3_3740A-R		alanine
	CAGACGATGGAGGAGGAACGATATTTCATGAGGATCCTG	Site directed mutagenesis of NPH3 serine 744 to aspartic acid
101113_3744D-1		
NPH3 S744D-B	G	
NPH3 S746D-F	GGCACG	Site directed mutagenesis
	CGTGCCCAGGATCCTCAATCAATTGAGTTCCTCCATC	of NPH3 serine 746 to
NPH3_S746D-R	GTCTTG	aspartic aciu
	AAGACGATGGAGGAACGCAATTGCATGAGGATCCTG	Site directed mutagenesis
NPH3-S744A_S746A-F	GGC	of NPH3 serine 744 and
	GCCCAGGATCCTCATGCAATTGCGTTCCTCCATCGTC	746 to alanine
NPH3-S744A_S746A-R	TT	
		Site directed mutagenesis
NPH3-S744D_S746D-F		of NPH3 serine 744 and
		746 to aspartic acid
NPH2 Mul E		
	GTCCAGCCATGACAGGTCCCTTGGAACGCAATGTGG	Amplification of NPH3 with
NPH3-B18-BamHI-B	GTTCCTCCATCGTCTTGGTTTCC	a C-terminal B18 or mB18
	TTATGGATCCTCATGGCAAACACATGTTAGCTTTCAG	peptide sequence
	CTTCAGCCATGACAGGTCCCTTGGAACGCAATGTGG	
NPH3-mR18-BamHI-R	GTTCCTCCATCGTCTTGGTTTCC	
	GAGATATCGGGTCCCGGTACCTTATGATGTGGGAATC	Gibson cloning primers to create NPH3-pUCSP
NPH3-pUCSP-KpnI-F	TGAG	
	CTGTGTTCTCGTCGTGCCCAGGATCCTCATGAAATTG	
NPH3-pUCSP-BamHI-R	AGTTC	pideimid
		Gibson cloning primers to
GST-BamHI-DOT3-F		create pSP64-GST-DOT3 plasmid
DOTS-ECONI-N		
GST-BamHI-NPY1-F	AAGCTAGGG	Gibson cloning primers to
		create pSP64-GST-NPY1
NPY1-EcoRI-R	ATGTCTGC	plasmid
	ATCGGATCTGGTTCCGCGTGGATCCATGGGACTTGTT	
GST-BamHI-NRL1-F	ACAGTCGG	Gibson cloning primers to
	CAGCTATGACCATGATTACGAATTCTCAAGAAACAGA	create pSP64-GST-NRL1 plasmid
NRL1-EcoRI-R	GTGTCGTC	
	ATCGGATCTGGTTCCGCGTGGATCCATGGCAACAGA	Gibson cloning primers to
RPT2_pSP64-GST_F	AGGAAAAAAC	
	CAGCTATGACCATGATTACGAATTCTTAAGAGATTGA	create pSP64-GST-RPT2
RP12_pSP64_R		plasmid
HA-NPH3 nSP64 F	GAG	Gibson cloning primers to create pSP64-HA-NPH3 plasmid
por o'_'	CAGCTATGACCATGATTACGAATTCATGAAATTGAGTT	
NPH3_pSP64_R	ССТС	
	CAGCTATGACCATGATTACGAATTCATGAAATTGCGTT	
NPH3_S744A_pSP64_R	CCTC	

GST-P1-pSP64-GB-F GST-P1-pSP64-GB-R	GTGACACTATAGAATACAAGCTTAACAATGTCCCCTAT ACTAGGTTATTG CTAGAGTCGACCTGCAGTTAAGCATAATCTGGAACAT CGTAAGGATAAAAAACATTTGTTTGCAGATC	Gibson cloning primers to create pSP64-GST-phot1- HA plasmid
phot1-pSP64-F phot1-BamHI-R	AGTCAGAAGCTTAACAATGGAACCAACAGAAAAACCA TCGAC TCAGTCGGATCCTTAAAAAACATTTGTTTGCAGATCTT CTAG	Gibson cloning primers to create pSP64-phot1 or
phot1-pSP64-R	TCAGTCCTGCAGTTAAGCATAATCTGGAACATCGTAA GGATAAAAAACATTTGTTTGCAGATCTTCTAGCTC	Site directed mutagenesis
PHOT1_1740G-F PHOT1_T740G-R	CCTGGATAGTAATCTCCCTATAAGACATATATGTG	of PHOT1 tyrosine 740 to glycine

Supplementary Table 1. Sequences of DNA primers used for cloning and site directed mutagenesis.