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Nash equilibrium solutions in the continuous match-

ing pennies games

Let the actions of player 1 and player 2 be two independent random variables X1

and X2 on Ω = [0, 1] and let M ∈ R2×2 be the payoff matrix for the continuous

(asymmetric) matching pennies game, i.e.

(Mi,j,1) =

(
a 0

0 1

)

(Mi,j,2) =

(
0 1

1 0

)

where a is a constant. Then every pair of proper probability distributions of X1 and

X2 such that E[X1] = 1
2

and E[X2] = 1
a+1

is a Nash equilibrium.

Proof. The continuous payoff Uk for player k is given by the payoff interpolation

Uk(x1, x2) = (1− x1) (x2M1,1,k + (1− x2)M1,2,k) + x1 (x2M2,1,k + (1− x2)M2,2,k) ,

Then the expected payoff of player k is

E[Uk] =

∫
Ω2

p(X1 = x1, X2 = x2)Uk(x1, x2)dx,

where p is the joint distribution of X1 and X2. Since X1 and X2 are assumed to be

independent p factorizes into p(X1 = x1, X2 = x2) = p1(x1)p2(x2) and it follows that

E[U1] =

∫
Ω

∫
Ω

p1(x1)p2(x2) ((1− x1)(x2a) + x1(1− x2)) dx2 dx1

=

∫
Ω

p1(x1)

(∫
Ω

p2(x2)x1 dx2 +

∫
Ω

p2(x2)x2a dx2 −
∫

Ω

p2(x2)(1 + a)x1x2 dx2

)
dx1

=

∫
Ω

p1(x1) (x1 + aE[X2]− (1 + a)x1E[X2]) dx1

= aE[X2] +

∫
Ω

p1(x1)(1− (1 + a)E[X2])x1 dx1,
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which is independent of p1(x1) whenever E[X2] = 1
1+a

. In that case player 1 is

indifferent about the distribution of his actions, making it a Nash-strategy for player

2.

Similarly, it is

E[U2] =

∫
Ω

∫
Ω

p1(x1)p2(x2) ((1− x1)(1− x2) + x1x2) dx2 dx1

=

∫
Ω

p2(x2)

(∫
Ω

p1(x1) dx1 −
∫

Ω

p1(x1)x1 dx1 −
∫

Ω

p1(x1)x2 dx + 2

∫
Ω

p(x1)x1x2 dx1

)
dx2

= (1− E[X1]) +

∫
Ω

p2(x2)(2E[X1]− 1)x2 dx2,

which is independent of p2(x2) whenever E[X1] = 1
2
.
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Categorical Analysis

Figure 1: Entropy of the joint action distribution. The joint entropy is comput-
ed over the categorized experimental data and the binary models on blocks of 10 trials
each, for A) prisoners’ dilemma, B) asymmetric matching pennies, and C) symmetric
matching pennies. Created using MATLAB R2021a (https://www.mathworks.com).
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Continuous Analysis

Figure 2: Prisoner’s dilemma, logit normal. (A), (E), and (I) show scatter plots
of final decisions in the x1x2-plane, where subjects’ actions are expected to cluster
around the single pure Nash equilibrium located in the top-right corner at position
(1,1). (B), (F), and (J) show two-dimensional histograms binning the experimental
scatter plots. (C), (G), and (K) represent the change of the mean endpoints (averaged
for both players) for each trial across the block of 40 trials. (D), (H), and (L) show
the direction of adaptation in the endpoint space. The experimental data is shown
at the top, the two continuous models are shown below. Created using MATLAB
R2021a (https://www.mathworks.com).
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Figure 3: Asymmetric matching pennies, logit normal. (A), (E), and (I) show
final decisions as a scatter plot in the x1x2-plane, where subjects’ actions are expected
to cluster in top quadrants along each mini-block of 10 trials. (B), (F), and (J) show
a two-dimensional histogram binning of the experimental scatter plots. (C), (G), and
(K) present the change over the mean endpoint (averaged for both players) for each
trial across the block of 40 trials. (D), (H), and (L) show the direction of adaptation
in the endpoint space. The experimental data is shown on the top, the two continuous
models are below. Created using MATLAB R2021a (https://www.mathworks.com).
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Figure 4: Symmetric matching pennies, logit normal. (A), (E), and (I) show
final decisions as a scatter plot in the x1x2-plane, where subjects’ actions are expected
to cluster around the center of the workspace along each mini-block of 10 trials. (B),
(F), and (J) show a histogram binning of the experimental scatter plots. (C), (G), and
(K) present the change over the mean endpoint (averaged for both players) for each
trial across the block of 40 trials. (D), (H), and (L) show the direction of adaptation
in the endpoint space. The experimental data is shown in the top, the two continuous
models are below.Created using MATLAB R2021a (https://www.mathworks.com).
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Game Euclidean distance Mean-squared error

PG PGIC QL QLIC PG PGIC QL QLIC

Prisoners’ dilemma 0.14 0.11 0.14 0.08 0.011 0.005 0.014 0.001
Asymmetric MP 0.13 0.15 0.12 0.09 0.002 0.005 0.001 0.001
Symmetric MP 0.13 0.13 0.08 0.08 0.0003 0.0003 0.0002 0.0001

Table 1: Models evaluation. Euclidean distance and mean-squared error between
the two-dimensional histograms of the subjects’ data and the simulated histograms for
all games and learning algorithms (PG: Policy Gradient, QL: Q-learning, IC: Intrinsic
Costs).
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