Supporting Information

Chemical Hybridization of Sulfasalazine and Dihydroartemisinin Promotes Brain Tumor Cell Death

Annemarie Ackermann¹, Aysun Çapcı², Michael Buchfelder³, Svetlana B. Tsogoeva^{2,*} and Nicolai Savaskan^{1,3,4,*}

¹Translational Cell Biology & Neurooncology Lab, Department of Neurosurgery, Universitätsklinikum Medical School Erlangen, Friedrich Alexander University of Erlangen – Nürnberg (FAU), Erlangen, Germany; ²Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus Fiebiger-Straße 10, 91058 Erlangen, Germany; ³Department of Neurosurgery, Universitätsklinikum Medical School Erlangen, Friedrich Alexander University of Erlangen – Nürnberg (FAU), Erlangen, Germany; ⁴BiMECON Ent. Berlin, Germany

Table 1S. Properties of investigated parent compounds and hybrid AC254.

Compound	Molecular Formula	MW (g/mol)	Melting Point	Rf ^[c]	Color	Purity ^[d]
					White	
Dihydroartemisinin	$C_{27}H_{29}NO_{11}$	284.35	164-165 °C ^[a]	0.46	crystalline	+
					powder	
AC254	C ₃₃ H ₃₆ N ₄ O ₉ S	664.73	148-150 °C	0.24	Yellow	+
					powder	
SAS	C ₁₈ H ₁₅ N ₄ O ₅ S	398.39	220 °C ^[b]		Yellow	+
JAS	O ₁₈ 1 1 ₁₅ 1N ₄ O ₅ S	J90.J9	220 °C 1°1	_	powder	

 $^{[a]}$ Ref. 1. $^{[b]}$ Ref. 2 $^{[c]}$ R_f values were determined in the solvent mixture of hexane : ethylacetate (6:4) $^{[d]}$ DHA and SSZ were commercially supplied > 95 grade. Purity of hybrid was confirmed by Elemental Analysis.

- 1. National Center for Biotechnology Information. PubChem Compound Summary for CID 3000518. https://pubchem.ncbi.nlm.nih.gov/compound/3000518. Accessed Sept. 11, 2020.
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5339, Sulfasalazine. https://pubchem.ncbi.nlm.nih.gov/compound/Sulfasalazine. Accessed Sept. 11, 2020.