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1 Stochastic model description

We are interested in a batch culture of an E. coli strain growing on glucose and xylose.
We assume that for any individual, the consumption of xylose is initiated by the binding
of the xylR protein to DNA. We thus split the whole population into the following
classes.

• Glucose consumers with a basal level of xylR protein. We denote by X1(t) the
number of such individuals at time t. We call this class “Class X1”.

• Glucose consumers with a high level of xylR protein. We denote by X2(t) their
number at time t. This class contains individuals that have already grown on
xylose and thus have an over-expressed xylR protein that can be progressively
lost in divisions. We call this class “Class X2”.

• Xylose consumers, with always a high level of xylR protein. We denote by Y(t)
their number at time t. We call this class “Class Y”.

The ressource concentrations are described by the process

S(t) = (S1(t), S2(t))

in which the first component represents glucose and the second one, xylose.
In order to investigate this, we introduce a Markovian model evolving according to

the following three mechanisms.

1. Cell division. Each individual divides at rate b1(S1(t)) if it consumes glucose,
and b2(S2(t)) if it consumes xylose. In addition, a glucose consumer with an
over-expressed xylR level (Class X2) gives birth to a cell with a basal xylR level
(Class X1) with probability α ∈ (0, 1) due to xylR dilution during cell division.
This description corresponds to the following transitions.

• Births in Class X1:

(X1, X2, Y) −→ (X1 + 1, X2, Y) at rate b1(S1)X1 .
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• Births in Class X2, taking into account xylR dilution:

(X1, X2, Y) −→ (X1 + 1, X2, Y) at rate αb1(S1)X2 ,
(X1, X2, Y) −→ (X1, X2 + 1, Y) at rate (1− α)b1(S1)X2 .

• Births in Class Y:

(X1, X2, Y) −→ (X1, X2, Y + 1) at rate b2(S2)Y .

In this model we consider that the division rates are of Monod type:

b1(S1) = µ1
S1

k1 + S1
, b2(S2) = µ2

S2

k2 + S2
. (1)

2. State transitions. For each glucose consumer, a copy of xylR protein must bind
to DNA in order to initiate the switch toward xylose consumption. This event
occurs at rate λ(S) when the bacterium has a low level of xylR protein and at rate
(1 + θ)λ(S) when it has a high level, in which θ > 0 is an increase coefficient due
to the abundance of xylR copies. This rives rise to the following transitions.

• Transitions from Class X1 to Class Y:

(X1, X2, Y) −→ (X1 − 1, X2, Y + 1) at rate λ(S)X1 .

• Transitions from Class X2 to Class Y:

(X1, X2, Y) −→ (X1, X2 − 1, Y + 1) at rate (1 + θ)λ(S)X2 .

The transition rate λ(S) is inhibited by glucose, and is modeled using a Monod-
type rate function and a classic inhibition function as

λ(S) =
λ̄S2

k f + S2
· ki

ki + S1
. (2)

Likewise, in presence of glucose, a xylose consumer switches toward glucose con-
sumption at rate η(S1), giving rise to the transition

(X1, X2, Y) −→ (X1, X2 + 1, Y− 1) at rate η(S1)Y ,

and we take
η(S1) =

η̄S1

kd + S1
.

3. Resource dynamics. It is driven by a continuous consumption of each sugar by
cells in order to create biomass and divide. This is modeled for a batch of volume
V by the equations

dS1(t)
dt

= − 1
YGV

b1(S1(t))(X1(t) + X2(t)) ,

dS2(t)
dt

= − 1
YXV

b2(S2(t))Y(t) ,
(3)

in which the yield coefficients YG and YX are expressed in terms of individuals
per mass of glucose and xylose, respectively.

2



2 Large population approximation

2.1 Convergence of the stochastic model to a deterministic limit model

During experiments, broth contains more than a billion individuals. We thus need to
rescale the population as well as the yield coefficients by considering that the popula-
tion size at time 0 is of order of magnitude K, where K > 0 is large.

The subpopulation sizes and concentrations are now parameterized by K which can
be seen as the carrying capacity of the system (in the ecological terminology). Moreover,
we assume that each individual is weighted by 1/K so that the quantities

xK
1 (t) =

XK
1 (t)
VK

, xK
2 (t) =

XK
2 (t)
VK

, yK(t) =
YK(t)

VK
,

represent the mass densities of each class. We assume that the initial conditions are
given in terms of (x1(0), x2(0), y(0), s1(0), s2(0)) not depending on K in the form

XK
1 (0) = bKVx1(0)c , XK

2 (0) = bKVx2(0)c , YK(0) = bKVy(0)c ,

(where bxc is the integer part of x) and

SK
1 (0) = s1(0) , SK

2 (0) = s2(0) .

We also assume that the yield coefficients are proportional to K: for fixed yG and yX,

YG = yGK , YX = yXK .

When K is very large (tends to infinity), one can prove that the stochastic process

(xK
1 (t), xK

2 (t), yK(t), SK
1 (t), SK

2 (t))t≥0

is well approximated by the differential system

dx1

dt
= (b1(s1)− λ(s)) x1 + αb1(s1)x2 ,

dx2

dt
= ((1− α)b1(s1)− (1 + θ)λ(s)) x2 + η(s1)y ,

dy
dt

= (b2(s2)− η(s1)) y + λ(s) (x1 + (1 + θ)x2) ,

ds1

dt
= − 1

yG
b1 (s1) (x1 + x2) ,

ds2

dt
= − 1

yX
b2 (s2) y ,

(4)

with initial condition (x1(0), x2(0), y(0), s1(0), s2(0)). The proof of this fact is based on
classical arguments of tightness and identification (see Ethier and Kurtz (1986) for an
abstract exposition, and Anderson and Kurtz (2015) and Bansaye and Méléard (2015)
for a pedagogical treatment).
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2.2 Identifiability of the model

Let us first recapitulate the different parameters involved in the system (4).

Parameter Signification
µ1 maximal growth rate for glucose consumers
k1 Michaelis–Menten coefficient for glucose
µ2 maximal growth rate for xylose consumers
k2 Michaelis–Menten coefficient for xylose
λ̄ maximal transition rate from glucose to xylose consumption
k f regulating coefficient for xylR protein activation and binding
ki inhibition coefficient of switches from glucose to xylose consumption
η̄ maximal transition rate from xylose to glucose consumption
kd regulating coefficient of switches from glucose to xylose consumption
α xylR protein dilution coefficient per cellular division
θ xylR fixation’s amplification coefficient

yG yield coefficient for glucose consumers
yX yield coefficient for xylose consumers

Table 1: Parameters of the differential system.

Roughly speaking, the identifiability of a model is defined as the ability to identify
a unique set of its parameters from the available data (see Walter and Pronzato (1997)).
Since we are not able to distinguish experimentally the sub-populations x1 and x2 in the
model (4), we can show that this model is not actually identifiable from the available
data. In a general situation, as a first attempt and although it cannot be presented as a
rigorous proof, a practical way to test identifiability is to carry out parametric identi-
fication from varied initial conditions. If the optimization algorithm always converges
towards approximately the same set of parameters, then we may have some faith in this
estimation. If the optimization algorithm fails do do so, then it is likely that the model
is not identifiable. To overcome this last difficulty, we can try to obtain new data, fix
certain parameters of which the values can be found in the literature or obtained from
experts, or even modify the structure or the dimension of the model. In order to solve
our problem, we have adopted the last solution, as will be described hereafter.

For the data collected during the experiments, the whole initial population is com-
posed of glucose consumers with a basal level of xylR protein (hence, x2(0) = y(0) = 0).
Since the transition rate from glucose to xylose consumption is very small when glucose
is abundant (see xylose variations in data), one can conclude that the class of glucose
consumers with high level of xylR protein is insignificant at the observation size scale.
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Hence, we propose in this case the following approximation of model (4):

dx̃
dt

= [b1(s̃1)− λ(s̃))] x̃ ,

dỹ
dt

= b2(s̃2)ỹ + λ(s̃)x̃ ,

ds̃1

dt
= − 1

yG
b1 (s̃1) x̃ ,

ds̃2

dt
= − 1

yX
b2 (s̃2) ỹ ,

(5)

where (x̃t)t≥0 represents the global subpopulation of glucose consumers, b1 and b2 are
defined in (1), and λ is defined in (2).

Remark. This model reduction imposes the following limitation. Since the compartment x2 of
model (4) has been omitted in model (5), the latter will not be able to predict the dynamics of
experiments for which the dilution of xylR may play an important role, in which cells starting
in the y compartment may switch to the x2 compartment to grow on glucose while still having
a high level of xylR.

2.3 Parameter estimation

We use a least-square method to estimate the parameters

Θ =
(
µ1, k1, µ2, k2, λ̄, k f , ki, κ1, κ2

)
by minimizing the distance between the model (5) and the data by implementing the
tool CMA_Evolution_Strategy developed on Python by the INRIA team RandOpt (see
Hansen and Ostermeier (2001)). We will denote by (x̄, ȳ, s̄) the experimental data.

1. The strain with the plasmid. We use the cost function given by

J1(Θ) =
N1

∑
i=1

∑
t∈T

(1)
i

{
c1

(
x̃i,Θ(t)− x̄i(t)

)2
+ c2

(
ỹi,Θ(t)− ȳi(t)

)2

+ c3

(
s̃i,Θ

1 (t)− s̄i
1(t)

)2
+ c4

(
s̃i,Θ

2 (t)− s̄i
2(t)

)2
}

.

2. The wild type. In this case, the subpopulations are indistinguishable. The cost
function will then be given by

J2(Θ) =
N2

∑
i=1

∑
t∈T

(2)
i

{
c′1
(

x̃i,Θ(t) + ỹi,Θ(t)− x̄i(t)− ȳi(t)
)2

+ c′2
(

s̃i,Θ
1 (t)− s̄i

1(t)
)2

+ c′3
(

s̃i,Θ
2 (t)− s̄i

2(t)
)2
}

.
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For j = 1, 2 indexing the strain type, Nj is the number of experiments and T
(j)
i the time

mesh for the i-th experiment. We assume that both strains share the same values of
some parameters, and that the other parameters are influenced by the plasmid. The
corresponding mean values of the estimations are given in the following table.

Parameter Estimation Estimation Unit
(with plasmid) (empty plasmid)

µ1 6.50e-01 7.68e-01 h−1

k1 5.70e-03 5.70e-03 g/L
µ2 5.41e-01 5.87e-01 h−1

k2 1.33e-01 1.33e-01 g/L
λ̄ 2.02e-04 2.09e+00 h−1

k f 6.71e-01 1.59e-08 g/L
ki 4.98e+00 8.57e-16 g/L
yG 5.70e-01 5.70e-01 gbiomass/gglucose
yX 4.00e-01 4.50e-01 gbiomass/gxylose

Table 2: Parameter estimation. Parameters under plasmid influence appear in bold.

These values reveal that the strain with plasmid grows slower than the one with an
empty plasmid, whatever the substrat. In addition, their inability to switch immedi-
ately toward xylose consumption is strongly due to the plasmid that traps xylR copies
(for the strain with plasmid) and the catabolic repression which induces an important
inhibition of glucose on this transition (for the strain with an empty plasmid). In this
last case, the switching rate is very high after glucose exhaustion. Many individuals are
thus able to switch per time unit and hence the lag phase is very short.

Specifically, after glucose exhaustion at time t0 a proportion

p(t) = 1− exp
(
−λ̄

∫ t

t0

s2(u)
k f + s2(u)

du
)

(6)

of the resident population that had grown on glucose will have switched before time
t ≥ t0. Hence, on a high xylose medium, the proportion 1− e−λ̄ of the resident popula-
tion switches toward xylose consumption per hour:

Strain 1− e−λ̄ Observation
With plasmid 2.02e-04 In this case p(t) ≤ 1− e−λ̄(t−t0) and then

less than 2 individuals over 10.000 can
switch per hour

Empty plasmid 8.76e-01 In this case p(t) ≈ 1− e−λ̄(t−t0) and then
about 8760 individuals over 10.000 can
switch per hour

Table 3: Proportion of individuals that switch per hour.
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