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Supplementary Figure 1 

The accuracy of FEAST and SourceTracker using data-driven synthetic mixtures 

The accuracy of FEAST and SourceTracker on simulated data. Each simulation was performed using 10 real 
source environments and simulated sinks. The x-axis is average Jensen-Shannon divergence value across 
known sources. The y-axis represents correlation across all source environments between true and estimated 
mixing proportions, measured by (a) the squared Pearson correlation coefficient averaged across sources, 
and (b) the squared Spearman correlation coefficient averaged across sources. 

 

 
 

  



 
 
 

  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Supplementary Figure 2 

Evaluation of FEAST and SourceTracker through varying levels of sequencing depth 

 
Evaluation of FEAST and SourceTracker through varying levels of sequencing depth. Similarity of 
sequences remained constant (Jensen-Shannon divergence = 0.95, trivial to disambiguate), while 
sequencing depth was set to vary in the range 100-10,000. 



 

Supplementary Figure 3 

The expected variance in FEAST's output 

The expected variance in FEAST's output using the dataset from McDonald et al. We used the gut microbiome 
of one, randomly selected, ICU patient as a sink, and the sources considered by McDonald et al. : 126 healthy 
controls, 126 samples of mammalian corpse decomposition, 126 samples of the gut from healthy children, and 
126 samples from indoor house surfaces. By repeating this analysis 100 times and calculating the standard 
deviation of each source we demonstrate that the variance in FEAST’s output is very small (i.e., sd(dust) = 
7.7e-05, sd(healthy adults' feces) =  0.01,  sd(healthy children's feces) = 0.01,sd(soil) = 5e-05, sd(unknown) = 
8.5e-05). 

 
  



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Supplementary Figure 4 

The effect of noisy samples among sources on prediction accuracy 

The effect of noisy samples among sources on prediction accuracy (i.e., estimation of the known and unknown 
sources). As we increase the number of samples per source, FEAST’s prediction accuracy improves, however 
this effect is moderate (squared Pearson correlation ranges from 0.9 - 0.99, Jensen-Shannon divergence 
values range from 0.87-0.92). 

 
 

 
 
  



 

Supplementary Figure 5 

The source proportions using SourceTracker 

SourceTracker estimations of source contribution (the gut microbiome of mother, infant at 4 months and infant 
at birth) to the gut microbiome of 12-month-old infants. According to SourceTracker differences between C-
section (n = 15) and Vaginally-delivered (n = 83) infants in terms of maternal contribution are not significant 
(two-sided t-test p-value = 0.6408). Box plots indicate the median (central lines), interquartile range (hinges), 
and the 5th and 95th percentiles (whiskers).   

 
 

  



 

Supplementary Figure 6 

Detecting contamination in lab-settings 

FEAST and SourceTracker report consistent proportions of contamination, despite minor discrepancies in a 
lab-setting (left: keyboard, right: Counter). Estimates on the top row were reported by SourceTracker and 
estimates on the bottom row were reported by FEAST. 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 



 

Supplementary Figure 7 

Gut microbiome samples from ICU patients are not reminiscent of gut samples from healthy 
individuals 

Gut samples from ICU patients are not reminiscent of gut samples from healthy individuals. We used the gut 
microbiome of each ICU patient (at discharge or after 10 days) as a sink, and the sources considered by the 
original study (McDonald  et al. 2016): 126 samples from the American Gut Project (healthy controls), 126 
samples of mammalian corpse decomposition, 126 samples of the gut from healthy children (Global Gut 
study) , and 126 samples from indoor house surfaces. 

 
 
 

  



 
 

 
 

Supplementary Figure 8 

Unknown source distribution across sink samples (ICU patients vs. healthy individuals) 

The distribution of the unknown source across sink samples - healthy individuals and ICU patients (n = 100). 

  



 

Supplementary Figure 9 

Distinguishing between ICU patients and healthy individuals 

The receiver operating characteristic curve (ROC curve) using FEAST, Weighted UniFrac, Bray-curtis and 
Jensen Shannon divergence to classify healthy individuals and ICU patients with dysbiosis. FEAST AUC = 
0.91, Weighted UniFrac AUC = 0.78, Jensen Shannon divergence AUC = 0.87, Bray-curtis AUC = 0.86. 

 

 
 
  



 
 

 
 

Supplementary Figure 10 

The source contribution across maternal samples 

Distribution of the median random maternal rank in two scenarios: (a) all maternal and early infant samples 
(from all the infants in the study) were considered as potential sources (n = 293 sources), and (b) only the 
maternal samples were considered as potential sources (n = 98 sources). In both scenarios samples taken 
from infants at age 12 months were considered as sinks (n = 98 sinks). The red vertical line in each figure 
corresponds to the actual median rank of the maternal contribution.  
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Supplementary Information

Supplementary Table: Running time comparison

Number of sources 5 10 50 100 500 1000
SourceTracker 00 : 05 : 18 00 : 09 : 06 05 : 39 : 00 11 : 43 : 02 54 : 34 : 02 71 : 07 : 00

FEAST 00 : 00 : 09 00 : 00 : 36 00 : 07 : 42 00 : 15 : 54 00 : 47 : 46 01 : 35 : 30

Table S1. Running time (hh:mm:ss) comparison across multiple source environments, randomly
sampled from the Earth Microbiome Project. Sequencing depth is 10,000 reads per source.

Supplementary Note: Main simulation study In order to examine the accuracy of FEAST,

we used multiple source environments with varying degrees of overlap in their distribution by

randomly sampling from the Earth Microbiome Project. Each source environment was sub-sampled

to contain 10, 000 reads. In each iteration of our simulation we sampled K+1 known environments

and used them to build a synthetic sink, with different mixing proportions. In order to simulate

an unknown source, we use only K source environments as our sources.

The simulation procedure was as follows. For each l = 1 : T1 (different Jensen Shannon

divergence values):

1. Draw K + 1 samples S1, . . . , SK+1, from a selected data set.

2. Draw noisy realization of S1, . . . , SK+1 from the Multinomial distribution (denoted S̃k).

3. For each i = 1 : T2 (different mixing proportions):

(a) Generate random mixing m ∼ Pareto(α > 0), where
∑
m = 1.

(b) Set the sink sample abundances to
∑K+1

k=1 mkSk per taxa.

(c) Estimate the known source proportions in the sink using S̃1, . . . , S̃K .

(d) Estimate the unknown source proportions in the sink.

4. Calculate the squared Pearson correlation (r2) between the estimated and the true mixing

proportions per source and average across sources.
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5. Calculate the average Jensen-Shannon divergence ofm (based on the pairwise Jensen-Shannon

divergence).

In the simulations presented we used T1 = 10, T2 = 30, K = 20.

Supplementary Note: Sequencing depth simulations In order to examine the robustness

of FEAST to varying levels of sequencing depth, we used multiple source environments from the

Earth Microbiome Project while varying their sequencing depth. In each iteration of our simulation

we sampled environments (with median Jensen-Shannon divergence of 0.95) and used them to build

a synthetic sink, with different mixing proportions and a set sequencing depth ranging from 100

through 10,000. Notably, by choosing a median Jensen-Shannon divergence of 0.95 we wanted to

emphasize that even under the scenario in which the sources are non-overlapping and thus trivial

to disambiguate, the sequencing depth will have an effect. Additionally, in these simulations, we

only varied the sequencing depth of the sources. However, since the sink samples are a linear

combination of the sources, these samples are also, indirectly, affected. To simulate an unknown

source, only K source environments are designated as known sources.

The simulation procedure was as follows. For each l = 1 : D1 (different sequencing depth

values):

1. Draw K + 1 samples S1, . . . , SK+1, from a selected data set.

2. Draw noisy realization of S1, . . . , SK+1 from the Multinomial distribution (denoted S̃k).

3. For each i = 1 : D2 (different mixing proportions) :

(a) Generate random mixing m ∼ Pareto(α > 0), where
∑
m = 1.

(b) Set the sink sample abundances to
∑K+1

k=1 mkSk per taxa.

(c) Estimate the known source proportions in the sink using S̃1, . . . , S̃K .

(d) Estimate the unknown source proportions in the sink.
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4. Calculate the squared Pearson correlation (r2) between the estimated and the true mixing

proportions per source and average across sources.

5. Calculate the average Jensen-Shannon divergence ofm (based on the pairwise Jensen-Shannon

divergence).

In the simulations presented we used D1 = 19, D2 = 30, K = 20.

Supplementary Note: Unknown source simulations In order to evaluate FEAST’s ability

to estimate the contribution of the unknown source, we used real source environments from Lax et

al. (2014) [1] where disambiguation of sources is challenging, and created synthetic sink commu-

nities. Given that any source not sampled should, theoretically, be accounted for in the unknown

source, realistic values of the unknown source can therefore span the range of percentages occupied

by the observed sources. Specifically, there are scenarios in which the known sources comprise

the entirety of the sink (unknown source contribution = 0), or on the other hand, scenarios in

which the known sources did not contribute any taxa to the sink (unknown source contribution

= 1). Therefore, the unknown source contribution values in our simulation ranges from 0 to 1.

As a measure of accuracy, we used the squared Pearson correlation between the estimated mixing

proportions and the true mixing proportions for each individual source across repeated simulation

runs for the same scenario as the measure of accuracy.

The simulation procedure was as follows. For each l = 1 : U1 (different unknown source

proportions):

1. Set the unknown proportion u to U1[l].

2. Generate random mixing m− 1 ∼ Pareto(α > 0), where
∑
m− 1 = 1− u.

3. For each i = 1 : U2 (different Jensen-Shannon divergence ∈ (0.5 + ε, 0.5− ε) :

(a) Draw K + 1 samples S1, . . . , SK+1, from a selected data set.



5

(b) Draw noisy realization of S1, . . . , SK+1 from the Multinomial distribution (denoted S̃k).

(c) Set the sink sample abundances to
∑K

k=1mkSk + Sk per taxa Draw K + 1 samples

S1, . . . , SK+1, from a selected data set.

(d) Estimate the unknown source proportions in the sink.

4. Calculate the squared Pearson correlation (r2) between the estimated and the true mixing

proportions of the unknown source.

In the simulations presented we used U1 ∈ (0, 1), T2 = 30, K = 4, ε = 0.2

Supplementary Note: The effect of noisy samples among sources on prediction accu-

racy We used K+1 distinct source environments randomly sampled from the Earth Microbiome

Project (i.e., soil, fresh water, feces etc.), where each source was represented by 10 different samples

(e.g., soil1, soil2, etc). We then amalgamated these 10 samples (per source environment) and used

them to build a synthetic sink, with different mixing proportions. In each iteration of our simu-

lation we sampled k ∈ 1, · · · , 10 samples from each source environment in order to estimate the

corresponding mixing proportions of the amalgamated sources. To simulate an unknown source,

we use only K source environments as our known sources. Indeed, we observed that as we increase

the number of samples per source, FEASTs prediction accuracy improves, however this effect is

moderate (squared Pearson correlation ranges from 0.9− 0.99, Jensen-Shannon divergence values

range from 0.87− 0.92).

The simulation procedure was as follows. Draw 11 sources S1, . . . , SK , from the Earth Micro-

biome Project. From each source Si draw 10 different samples.

1. Draw K sources S1, . . . , SK+1, from the Earth Microbiome Project. From each source Si

draw 10 different samples.

2. Amalgamate the 10 samples per source environment and create new sources S̃1, . . . , S̃K+1

3. Generate random mixing m ∼ Pareto(α > 0), where
∑
m = 1.
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4. Set the sink sample abundances to
∑K+1

k=1 mkS̃k per taxa.

For each L = 1 : 10 (different number of samples representing the sources):

1. Draw L samples from each source SL1, . . . , SL(K+1),

2. Draw noisy realization of SL1, . . . , SL(K+1) from the Multinomial distribution (denoted S̃Lk).

3. For each i = 1 : T2 (different mixing proportions) :

(a) Estimate the known source proportions in the sink using S̃L1, . . . , S̃LK .

(b) Estimate the unknown source proportions in the sink.

4. Calculate the squared Pearson correlation (r2) between the estimated and the true mixing

proportions per source and average across sources.

5. Calculate the average Jensen-Shannon divergence ofm (based on the pairwise Jensen-Shannon

divergence).

In the simulations presented we used K = 10, T2 = 30;

Supplementary Note: Using all maternal and early infant samples as potential sources

In this analysis we used the infants at their last time point as sink samples i.e., infant i ∈ {1, . . . , 98}

at 12 months of age. First, we considered all maternal and early infant samples (from all the in-

fants in the study) as potential sources. We used FEAST to rank the contribution of each source

as compared to all other sources and found that the median contribution of the corresponding

maternal sample across all sinks is 1. We performed a permutation test in which the ranks are

randomly assigned for each sink, and the p-value is calculated as the number of permutations in

which the median of the maternal contributions rank is smaller than the original median. We

used 100,000 iterations and obtained a p-value < 0.0001 (Figure S10 (a)). Notably, the top 5

contributing sources included the corresponding infants family 83% of the time (43% of the cases,
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the corresponding family ranked 1st, in 21% it ranked 2nd, 4% 3rd, 10% 4th and in 5% it ranked

5th). Next, We repeated these experiments by considering only the maternal samples as potential

sources. In this set of sinks (i.e., infants at 12 months of age), the median maternal contribution

was 14, and a similar permutation test as the one described above shows that this finding is sta-

tistically significance (p-value = 0.00017, Figure S10 (b)). Notably, the gut microbiome of healthy

individuals is relatively similar. We therefore removed the samples with low Jensen Shannon diver-

gence value to reduce noise in our estimations. To do this, for each sinkj , we calculated the Jensen

Shannon divergence values (1) between motherj and all other mothers (2) infant-at-birthj and all

other infants at birth (3) infant-at-4-monthsj and all other infants at 4 months, and calculated

the median Jensen Shannon divergence for each of these source environments. We then removed

samples whose Jensen Shannon divergence fell below their respective median.

Supplementary Note: Expectation-Maximization - derivation Here we derive the full

EM algorithm for FEAST in detail. Recall that the observed data consist of the sink vector

x = (x1, x2..., xN ), and source vectors yi = (yi1, yi2, ..., yiN ). for 1 ≤ i ≤ K. The j-th component

of each vector denotes the observed abundance of taxa j in the sink and sources respectively. Denote

the total number of observations in each source by Ci :=
∑N

j=1 yij and total number of observations

in the sink by C :=
∑N

j=1 xj . For each source, we have a vector γi = (γi1, γi2, ..., γiN ) denoting the

unobserved relative abundances of each source yi. Further, there is assumed to be one unknown,

unsampled, source–say K + 1–with relative abundances γK+1 = (γ(K+1)1, γ(K+1)2, ..., γ(K+1)N ).

Based on the source proportions, each source observation is assumed to have been generated

by drawing a random sample from the source with replacement. Thus,

yij ∼ Multinomial(Ci, γi) (1)

For the sink we assume the following generative model. We draw C observations. For each

observation c = 1, ..., C, we pick a source zc with the probability of choosing source i given by αi.
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The vector α = (α1, α2, ..., αK+1) gives the proportion of the sink derived from each source. Once

the source is chosen, we pick taxa xc from source zc based on the relative abundances γzc . Hence

zc ∼ Multinomial(1, α) (2)

xc|zc ∼ Multinomial(1, γzc) (3)

where we denote zc = i as having drawn sample c from source i, indicating that the multinomial

observation zc = (0, ..., 1, ..., 0) has 1 in its i-th component and 0s elsewhere. If we marginalize out

source assignments zc, we obtain

p(xc = j) =

K+1∑
i=1

p(xc = j|zc = i)p(zc = i) =

K+1∑
i=1

γijαi.

Hence the marginal distribution of xc is Multinomial(1, (β1, ..., βN )), where βj =
∑K+1

i=1 αiγij .

We can therefore rewrite the model as:

βj =

K+1∑
i=1

αiγij for j = 1, ..., N (4)

yi ∼ Multinomial(Ci, (γi1, . . . , γiN )) for i = 1, ...,K (5)

x ∼ Multinomial(C, (β1, . . . , βN )) (6)

The expected complete log likelihood As demonstrated above, the log likelihood is given by

log p(x, y1, y2, ..., yK |α, γ) =

N∑
j=1

xj log

(
K+1∑
i=1

αiγij

)
+

K∑
i=1

N∑
j=1

yij log(γij) + const (7)

Using the notation separating each draw from the sink, the complete log likelihood is given by

log p(x1, ..., xC , z1, ..., zC , y1, ..., yK |α, γ) =

C∑
c=1

K+1∑
i=1

zci (log γixc + logαi) +

K∑
i=1

N∑
j=1

yij log(γij) + const

(8)
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where xc = j denotes that observation c corresponds to taxa j. Taking expectations and collecting

terms, the expected complete log likelihood is given by

Q =

K+1∑
i=1

N∑
j=1

xjp(i|j) · log(αiγij) +

K∑
i=1

N∑
j=1

yij log(γij) + const (9)

where

p(i|j) =
α
(t)
i γ

(t)
ij∑K+1

i=1 α
(t)
i γ

(t)
ij

(10)

The remainder of the derivation follows the main text.

Table S2. An example of FEAST’s output, using the infants dataset from Bäckhed et al. 2015 [2], which

includes the top 50 pairs of taxa shared between a vaginally-delivered infant at 12 months of age (sample ERR525717,

sink) and its corresponding maternal sample (sample ERR525720, source) (an optional setting)

Class Order Family Genus Species Sink Source

Acidimicrobiia Acidimicrobiales AKIW874 NA NA 0.19639 0.06038

Bacilli Lactobacillales Lactobacillaceae Lactobacillus coleohominis 0.17838 0.07551

Bacilli Bacillales Staphylococcaceae Staphylococcus equorum 0.11066 0.01407

GammaproteobacteriaAlteromonadales 211ds20 NA NA 0.10158 0.01238

Bacilli Bacillales Planococcaceae Lysinibacillus odysseyi 0.06719 0.10009

Bacilli Bacillales Bacillaceae Bacillus horneckiae 0.04117 0.10399

Bacilli Bacillales Planococcaceae Planococcus maitriensis 0.02739 0.0308

Bacilli Lactobacillales Enterococcaceae Melissococcus plutonius 0.0245 0.11209

Actinobacteria Actinomycetales Actinosynnemataceae Actinokineospora diospyrosa 0.02243 0.00341

Actinobacteria Actinomycetales NA NA NA 0.01857 0.00605

Bacilli Bacillales Sporolactobacillaceae Bacillusracemilacticus 0.01553 0.02153

Actinobacteria Actinomycetales Actinomycetaceae NA NA 0.01425 0.01886

Acidimicrobiia Acidimicrobiales koll13 NA NA 0.01308 0.00929

Bacilli Lactobacillales Lactobacillaceae Lactobacillus mucosae 0.01271 0.04955

Bacilli BacillalesThermoactinomycetaceae Mechercharimyces mesophilus 0.01264 0.00328

Bacilli Bacillales Listeriaceae Brochothrix NA 0.01232 0.00968

GammaproteobacteriaOceanospirillales Oleiphilaceae NA NA 0.011656.00E-05



10

Bacilli Bacillales [Exiguobacteraceae] Exiguobacterium NA 0.01011 0.01914

Actinobacteria Actinomycetales Corynebacteriaceae Corynebacterium variabile 0.00981 0.00441

Actinobacteria Actinomycetales Actinosynnemataceae NA NA 0.00662 0.00128

Bacilli Bacillales Staphylococcaceae Jeotgalicoccus NA 0.00641 0.02238

Solibacteres Solibacterales SolibacteraceaeCandidatusSolibacter NA 0.00609 0.00239

Actinobacteria Actinomycetales Frankiaceae NA NA 0.00558 0.00175

Actinobacteria Actinomycetales Dermabacteraceae Dermabacter NA 0.00521 0.00388

Actinobacteria Actinomycetales Brevibacteriaceae Brevibacterium aureum 0.00331 0.00185

GammaproteobacteriaAlteromonadales Alteromonadaceae ND137 NA 0.00255 0.00028

Bacilli Lactobacillales Lactobacillaceae Lactobacillus pontis 0.0025 0.00418

Acidimicrobiia Acidimicrobiales Microthrixaceae NA NA 0.00209 0.00043

Clostridia Clostridiales Peptococcaceae Desulfosporosinus NA 0.00202 0.01059

Bacilli Lactobacillales Lactobacillaceae Lactobacillus delbrueckii 0.00198 0.01541

Actinobacteria Actinomycetales Brevibacteriaceae Brevibacterium casei 0.00182 0.00058

GammaproteobacteriaOceanospirillales Oceanospirillaceae Nitrincola NA 0.001724.00E-05

Actinobacteria Actinomycetales Actinospicaceae NA NA 0.00142 0.00083

Bacilli Bacillales Bacillaceae Geobacillus NA 0.0014 0.00512

Bacilli Lactobacillales Leuconostocaceae Weissella NA 0.00136 0.0013

Clostridia Clostridiales Clostridiaceae Caminicella NA 0.00136 0.00034

Acidimicrobiia Acidimicrobiales Acidimicrobiaceae NA NA 0.00135 0.00017

Bacilli Bacillales Planococcaceae Planomicrobium NA 0.00133 0.00341

Gammaproteobacteria Chromatiales Ectothiorhodospiraceae Thioalkalivibrio NA 0.00133 0.00015

Bacilli Bacillales Bacillaceae Bacillus marisflavi 0.00129 0.01611

GammaproteobacteriaAlteromonadales Shewanellaceae Shewanella benthica 0.001279.00E-05

Clostridia Clostridiales Ruminococcaceae Oscillospira guilliermondii 0.0012 0.00124

Actinobacteria Actinomycetales Actinomycetaceae Mobiluncus NA 0.001066.00E-05

Clostridia Clostridiales Clostridiaceae Caloranaerobacter NA 0.001014.00E-05

Bacilli Bacillales Bacillaceae Bacillus badius 0.00099 0.05367

GammaproteobacteriaAlteromonadales Alteromonadaceae Marinimicrobium NA 0.00096 0.00015

Actinobacteria Actinomycetales Dietziaceae Dietzia NA9.00E-04 0.00047

Bacilli Lactobacillales Aerococcaceae Lacticigenium naphtae 0.00089 0.00543

Bacilli Bacillales [Exiguobacteraceae] NA NA 0.00081 0.00661

Bacilli Bacillales Planococcaceae Solibacillus NA 0.00078 0.00077
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[2] Fredrik Bäckhed, Josefine Roswall, Yangqing Peng, Qiang Feng, Huijue Jia, Petia Kovatcheva-Datchary, Yin Li,

Yan Xia, Hailiang Xie, Huanzi Zhong, et al. Dynamics and stabilization of the human gut microbiome during

the first year of life. Cell host &amp; microbe, 17(5):690–703, 2015.


	SpringerNature_NatMeth_431_ESM.pdf
	ESM1_ISI
	ESM1_to_merge




