Online Appendix

"Risk Avoidance, Offsetting Community Effects, and COVID-19: Evidence from an Indoor Political Rally"

Journal of Risk and Uncertainty

Dhaval Dave Center for Health Economics & Policy Studies Bentley University, IZA & NBER Email: <u>ddave@bentley.edu</u>

Andrew Friedson Center for Health Economics & Policy Studies University of Colorado, Denver Email: <u>andrew.friedson@ucdenver.edu</u>

Kyutaro Matsuzawa Center for Health Economics & Policy Studies San Diego State University Email: <u>qmatsuzawa@gmail.com</u>

Drew McNichols Center for Health Economics & Policy Studies University of California, San Diego and San Diego State University Email: dmcnichols@ucsd.edu

> Connor Redpath Center for Health Economics & Policy Studies University of California, San Diego Email: <u>credpath@ucsd.edu</u>

> Joseph J. Sabia Center for Health Economics & Policy Studies San Diego State University & IZA Email: jsabia@sdsu.edu

Appendix Figure 1. Distribution of Home Counties for Absolute Inflows to Treatment Census Block Groups on June 6, 2020

Panel (a): Home Counties Across U.S.

Panel (b): Home Counties Across Oklahoma

Panel (c): Home Counties Across Oklahoma and Border States

Appendix Figure 2. Synthetic Control Estimates of Effect of Tulsa Rally on Foot Traffic in Tulsa County

Note: The donor pool is comprised of primary counties (and their border counties) with urbanicity of ± 2.5 Tulsa County's urbanicity rate (95.2%) or weighted population density of $\pm 1,000$ Tulsa County's density (3,250) and excludes counties in Oklahoma and in Oklahoma's border states, as well as counties where a home resident was detected (via smartphone using SafeGraph data) in the treatment CBGs on June 20, 2020.

Appendix Figure 2, Continued

Note: The donor pool is comprised of primary counties (and their border counties) with urbanicity of ± 2.5 Tulsa County's urbanicity rate (95.2%) or weighted population density of $\pm 1,000$ Tulsa County's density (3,250) and excludes counties in Oklahoma and in Oklahoma's border states, as well as counties where a home resident was detected (via smartphone using SafeGraph data) in the treatment CBGs on June 20, 2020.

Appendix Figure 3. Synthetic Control Estimates of Effect of Tulsa Rally on Foot Traffic in Tulsa Cluster

Note: The donor pool is comprised of primary counties (and their border counties) with urbanicity of ± 2.5 Tulsa County's urbanicity rate (95.2%) or weighted population density of $\pm 1,000$ Tulsa County's density (3,250) and excludes counties in Oklahoma and in Oklahoma's border states, as well as counties where a home resident was detected (via smartphone using SafeGraph data) in the treatment CBGs on June 20, 2020.

Appendix Figure 3, Continued.

Note: The donor pool is comprised of primary counties (and their border counties) with urbanicity of ± 2.5 Tulsa County's urbanicity rate (95.2%) or weighted population density of $\pm 1,000$ Tulsa County's density (3,250) and excludes counties in Oklahoma and in Oklahoma's border states, as well as counties where a home resident was detected (via smartphone using SafeGraph data) in the treatment CBGs on June 20, 2020.

Appendix Figure 4. Sensitivity of Synthetic Control Estimates of Effect of Tulsa Rally on COVID-19 Cases in Tulsa County to Alternate State Testing Rate Matching

Panel (c): Matching on pre & post-treatment testing trend

Panel (*d*): *Matching on pre & post-treatment testing trend (More Days)*

Note: The donor pool is comprised of primary counties (and their border counties) with urbanicity of ± 2.5 Tulsa County's urbanicity rate (95.2%) or weighted population density of $\pm 1,000$ Tulsa County's density (3,250) and excludes counties in Oklahoma and in Oklahoma's border states, as well as counties where a home resident was detected (via smartphone using SafeGraph data) in the treatment CBGs on June 20, 2020. Panel (b) matches on COVID-19 testing rate on 6/6, 6/8, 6/10, 6/14, 6/16, and 6/18. Panel (c) matches on COVID-19 testing rate on 6/6, 6/14, 6/22, 6/28, 7/4, 7/12, and 7/20. Panel (d) matches on COVID-19 testing on 6/6, 6/12, 6/18, 6/24, 6/30, 7/6, 7/12, 7/18, and 7/24.

Appendix Figure 5. Sensitivity of Synthetic Control Estimates of Effect of Tulsa Rally on COVID-19 Cases in Tulsa County Cluster to Alternate State Testing Rate Matching

Panel (c): Matching on pre & post-treatment testing trend

Panel (*d*): *Matching on pre & post-treatment testing trend (More Days)*

Note: The donor pool is comprised of primary counties (and their border counties) with urbanicity of ± 2.5 Tulsa County's urbanicity rate (95.2%) or weighted population density of $\pm 1,000$ Tulsa County's density (3,250) and excludes counties in Oklahoma and in Oklahoma's border states, as well as counties where a home resident was detected (via smartphone using SafeGraph data) in the treatment CBGs on June 20, 2020. Panel (b) matches on COVID-19 testing rate on 6/6, 6/8, 6/10, 6/14, 6/16, and 6/18. Panel (c) matches on COVID-19 testing rate on 6/6, 6/14, 6/22, 6/28, 7/4, 7/12, and 7/20. Panel (d) matches on COVID-19 testing on 6/6, 6/12, 6/18, 6/24, 6/30, 7/6, 7/12, 7/18, and 7/24.

Appendix Figure 6. Sensitivity of Synthetic Control Estimates of Effect of Tulsa Rally on COVID-19 Cases in Oklahoma to Alternate State Testing Rate Matching

Panel (c): Matching on pre & post-treatment testing trend

Panel (*d*): *Matching on pre & post-treatment testing trend (More Days)*

Note: The donor pool is comprised of states with urbanicity of \pm 15 Oklahoma's urbanicity rate (65%) or with weighted population density \pm 750 Oklahoma's Population Density (2,150) and excludes counties in Oklahoma and in Oklahoma's border states. Panel (b) matches on COVID-19 testing rate on 6/6, 6/8, 6/10, 6/14, 6/16, and 6/18. Panel (c) matches on COVID-19 testing rate on 6/6, 6/14, 6/22, 6/28, 7/4, 7/12, and 7/20. Panel (d) matches on COVID-19 testing on 6/6, 6/12, 6/18, 6/24, 6/30, 7/6, 7/12, 7/18, and 7/24.

Panel (c): <u>Tulsa County Cluster</u> – Matching on Six days of Pre-Treatment COVID-19 Case Rates, Pre-Treatment Stay-at-Home Behavior, Mask Wearing Policy, and COVID-19 Reopening Policy

Panel (b): <u>Tulsa County</u> – Matching on Six days of Pre-Treatment COVID-19 Case Rates, Pre-Treatment Stay-at-Home Behavior, COVID-19 Testing Rate, COVID-19 Reopening Policy, and Mask Wearing Policy

Panel (d): <u>Tulsa County Cluster</u> – Matching on Six days of Pre-Treatment Log(COVID-19 Case Rates), Pre-Treatment Stay-at-Home Behavior, COVID-19 Testing Rate, COVID-19 Reopening Policy, and Mask Wearing Policy

Note: The donor pool is comprised of primary counties (and their border counties) with urbanicity of ± 2.5 Tulsa County's urbanicity rate (95.2%) or weighted population density of $\pm 1,000$ Tulsa County's density (3,250) and excludes counties in Oklahoma and in Oklahoma's border states, as well as counties where a home resident was detected (via smartphone using SafeGraph data) in the treatment CBGs on June 20, 2020.

Appendix Figure 7, Continued

Panel (f): <u>State of Oklahoma</u> – Matching on Six days of Pre-Treatment COVID-19 Case Rates, Pre-Treatment Stay-at-Home Behavior, COVID-19 Testing Rate, COVID-19 Reopening Policy, and Mask Wearing Policy

Note: The donor pool is comprised of states with urbanicity of ± 15 Oklahoma's urbanicity rate (65%) or with weighted population density ± 750 Oklahoma's Population Density (2,150) and excludes counties in Oklahoma and in Oklahoma's border states.

Appendix Figure 8. Event-Study Analyses of Effect of Tulsa Rally on COVID-19 Deaths Per 100,000 Population in Oklahoma and Border States, by Dose (Absolute Inflow)

Note: Estimate is generated using weighted least squares estimate. All estimates include county and day fixed effects as well as county specific linear time trend. State policy controls include COVID-19 testing, an indicator for whether a state reopened restaurant or bars, an indicator for whether a state reopened restaurant or bars, an indicator for whether a state reopened personal or pet care services, an indicator for whether a state reopened entertainment business, an indicator for whether a state reopened gyms or parks, and an indicator for whether a state paused reopening. County weather controls include average temperature and an indicator for whether any measurable precipitation fell.

	COVID-19 Cases			COVID-19 Deaths		
	(1)	(2)	(3)	(4)	(5)	(6)
			Panel I: Tu	lsa County		
	La Crosse, WI (.430) Clark, OH (.150) Lafayette, LA (.143) Jefferson, AL (.122) Dorchester, SC (.116) Pottawattamie, IA (.029)	La Crosse, WI (.356) Jefferson, AL (.231) Clark, OH (.140) Dorchester, SC (.133) Lafayette, LA (.074) Story, IA (.064)	La Crosse, WI (.394) Weber, UT (.157) Tulare, CA (.12) Alachua, FL (.107) Lafayette, LA (.102) Charleston, SC (.056) Story, IA (.031) Pottawattamie, IA (.019)	La Crosse, WI (.428) Linn, IA (.172) Jefferson, AL (.166) Story, IA (.125) Wayne, NE (.045) Outagamie, WI (.043)	La Crosse, WI (.421) Jefferson, AL (.214) Linn, IA (.150) Tippecanoe, IN (.148) Blair, PA (.052)	Madera, CA (.413) Osceola, FL (.183) Lafayette, LA (.076) Olmsted, MN (.075) Schuykill, PA (.055) Manatee, FL (.035) St. John, LA (.016)
			Panel II: Tulsa	County Cluster		
	La Crosse, WI (.361) Vanderburgh, IN (.208) Clark, OH (.181) Jefferson, AL (.136) Lafayette, LA (.093)	Jefferson, AL (.275) La Crosse, WI (.207) Ada, ID (.13) Clark, OH (.115) Linn, IA (.103) Lafayette, LA (.097) Cabell, WV (.073)	Northumberland, PA (.325) La Crosse, WI (.308) Charleston, SC (.132) Lafayette, LA (.065) Muscogee, GA (.051) Santa Barbara, CA (.050) Tulare, CA (.033) Weber, UT (.032)	Wayne, NE (.412) Linn, IA (.234) Clarke, GA (.166) Muscogee, GA (.103) Poquoson, VA (.040) Jefferson, AL (.036)	Cabell, WV (.288) Linn, IA (.274) Clarke, GA (.161) Muscogee, GA (.133) Clark, OH (.099) Jefferson, AL (.023) Wayne, NE (.023)	Madera, CA (.500) Canyon, ID (.225) Colonial Height, VA (.086) Eau Claire, WI (.062) Manatee, FL (.036) Kenton, KY (.034) Orange, NY (.019)
			Panel III: Stat	e of Oklahoma		
	ID (.610) SC (.222) MT (.168)	ID (.606) SC (.224) MT (.17)	ID (.602) SC (.222) MT (.175)	MT (.511) ID (.257) MI (.098) WY (.085) AL (.049)	MT (.442) ID (.364) MI (.094) WY (.057) AL (.043)	WY (.362) AK (.279) MT (.159) ND (.098) MI (.062) IA (.041)
Observables used to construct the weights						
Number of pre-treatment days	6 V	6 V	14 N-	6 V	6 V	14 N-
Matching on Pre-treat Median Hours at Home	Y es Ves	Y es Ves	NO No	Y es Ves	Y es Ves	N0 No
Matching on Mask Wearing Policy?	Yes	Yes	No	Yes	Yes	No
Matching COVID-testing?	No	Yes	No	No	Yes	No

Appendix Table 1. Donor Pool that Received Positive Weights in Table 2

	(1)	(2)	(3)	
	Panel I: Tulsa County			
Trump Rally	-0.024	0.079	-1.344	
P-Value	[0.896]	[0.877]	[0.537]	
Pre-Treatment Mean of DV ^a	9.542	9.542	9.542	
	Panel	II: Tulsa County	Cluster	
Trump Rally	0.016	-0.100	-1.089	
P-Value	[0.937]	[0.937]	[0.330]	
Pre-Treatment Mean of DV ^a	13.210	13.210	13.210	
	Panel	III: State of Ok	lahoma	
Trump Rally	0.041	0.059	0.171	
P-Value	[0.913]	[0.913]	[0.565]	
Pre-Treatment Mean of DV ^a	9.044	9.044	9.044	
Observable used to construct the weights				
Number of pre-treatment days	6	6	14	
Matching on Median Hours at Home	Yes	Yes	No	
Matching on Reopening Policy?	Yes	Yes	No	
Matching on Mask Wearing Policy?	Yes	Yes	No	
Matching COVID-testing?	No	Yes	No	

Appendix Table 2. Synthetic Control Estimates of Effect of Tulsa Rally on COVID-19 Deaths Using 5 Weeks of Post-Treatment Data

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Notes: Estimate is generated using synthetic control methods. Matching was conducted using the pre-treatment COVID-19 case rate and variables listed under each column. The permutation-based p-values are included in brackets below each point estimate (Abadie et al. 2010).

^a Pre-treatment mean of the Dependent Variable (DV) is calculated using the treated unit.

	Absolute Inflow		Relative Inflow	
_	(1)	(2)	(3)	(4)
Counties with Low Inflow				
June 20-July 4 (0-14 Days After Rally)	-0.017	-0.018	-0.022	-0.024
P-Value	[0.740]	[0.760]	[0.712]	[0.837]
June 26-July 10 (6-20 Days After Rally)	-0.059	-0.062	-0.063	-0.067
P-Value	[0.817]	[0.846]	[0.817]	[0.865]
June 11-July 19 (21-29 Days After Rally)	-0.032	-0.034	-0.022	-0.025
P-Value	[0.202]	[0.240]	[0.250]	[0.212]
July 20 onward (30+ Days After Rally)	-0.035	-0.036	-0.027	-0.032
P-Value	[0.240]	[0.317]	[0.337]	[0.231]
Counties with Moderate- Low Inflow				
June 20-July 4 (0-14 Days After Rally)	-0.011	-0.015	-0.001	-0.001
P-Value	[0.712]	[0.740]	[0.654]	[0.731]
June 26-July 10 (6-20 Days After Rally)	-0.035	-0.043	-0.036	-0.039
P-Value	[0.788]	[0.760]	[0.779]	[0.846]
June 11-July 19 (21-29 Days After Rally)	-0.075	-0.078	-0.045	-0.043
P-Value	[0.808]	[0.673]	[0.760]	[0.346]
July 20 onward (30+ Days After Rally)	-0.101	-0.101	-0.068	-0.064
P-Value	[0.279]	[0.596]	[0.375]	[0.317]
Counties with Moderate- High Inflow				
June 20-July 4 (0-14 Days After Rally)	-0.024	-0.018	-0.003	0.001
P-Value	[0.779]	[0.779]	[0.663]	[0.740]
June 26-July 10 (6-20 Days After Rally)	-0.029	-0.039	-0.056	-0.054
P-Value	[0.769]	[0.721]	[0.192]	[0.317]
June 11-July 19 (21-29 Days After Rally)	-0.047	-0.059	-0.053	-0.042
P-Value	[0.212]	[0.346]	[0.769]	[0.404]
July 20 onward (30+ Days After Rally)	-0.057	-0.048	0.005	0.028
P-Value	[0.260]	[0.346]	[0.346]	[0.308]
Highest Inflow County (Tulsa County)				
June 20-July 4 (0-14 Days After Rally)	-0.006	0.001	0.001	-0.002
P-Value	[0.702]	[0.692]	[0.644]	[0.721]
June 26-July 10 (6-20 Days After Rally)	-0.029	-0.030	0.011	0.007
P-Value	[0.779]	[0.731]	[0.202]	[0.308]
June 11-July 19 (21-29 Days After Rally)	-0.047	-0.038	-0.047	-0.046
P-Value	[0.221]	[0.337]	[0.779]	[0.394]
July 20 onward (30+ Days After Rally)	-0.057	-0.038	-0.064	-0.059
P-Value	[0.269]	[0.356]	[0.356]	[0.298]
Ν	36873	36873	36873	36873
Observable Controls?	No	Yes	No	Yes

Appendix Table 3. Dose-Response DD Estimates of Effect of Tulsa Rally on Inverse Hyperbolic Sine of COVID-19 Deaths Using 5 Weeks of Post-Treatment Data

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Note: Estimate is generated using weighted least squares estimate. All estimates include county and day fixed effects as well as county specific linear time trend. State policy controls include log COVID-19 testing, an indicator for whether a state reopened restaurant or bars, an indicator for whether a state reopened retail services beyond curbside pickup, an indicator for whether a state reopened personal or pet care services, an indicator for

whether a state reopened entertainment business, an indicator for whether a state reopened gyms, and an indicator for whether a state paused reopening. County weather controls include average temperature and an indicator for whether any measurable precipitation fell. BLM Protest control include an indicator for whether a county had a city with 100,000 or more population with a Black Lives Matter protest. Permutation based p-value are included inside the bracket below each point estimate (Buchmueller et al. 2011; Cunningham and Shah (2018).

	(1)	(2)	
	Panel I: Tulsa County		
Trump Rally	0.220	0.403	
P-Value	[0.733]	[0.646]	
Pre-Treatment Mean of DV ^a	9.542	9.542	
	Panel II: Tulsa	County Cluster	
Trump Rally	0.880	0.830	
P-Value	[0.597]	[0.578]	
Pre-Treatment Mean of DV ^a	13.210	13.210	
	Panel III: State of Oklahoma		
Trump Rally	0.504	0.207	
P-Value	[0.667]	[0.875]	
Pre-Treatment Mean of DV ^a	9.044	9.044	
Observable used to construct the weights			
Number of pre-treatment days	6	6	
Matching on Median Hours at Home	Yes	Yes	
Matching on Reopening Policy?	Yes	Yes	
Matching on Mask Wearing Policy?	Yes	Yes	
Matching COVID-testing?	No	Yes	

Appendix Table 4. Robustness of Synthetic Control Estimates of Effect of Tulsa Rally on Cumulative COVID-19 Deaths Per 100,000 Population to Using 8 Weeks of Post-Treatment Data

Notes: Estimate is generated using synthetic control methods. Matching was conducted using the pretreatment COVID-19 death rate and variables listed under each column. The permutation-based pvalues are included in brackets below each point estimate (Abadie et al. 2010).

	Absolute Inflow		Relative Inflow	
-	(1)	(2)	(3)	(4)
 Counties with Low Inflow				
June 20-July 4 (0-14 Days After Rally)	0.019	0.027	-0.001	0.002
P-Value	[0.692]	[0.558]	[0.644]	[0.558]
July 5-July 11 (15-21 Days After Rally)	0.004	0.000	-0.026	-0.019
P-Value	[0.760]	[0.529]	[0.731]	[0.558]
July 12-July 18 (22-28 Days After Rally)	0.045	0.043	0.022	0.026
P-Value	[0.692]	[0.510]	[0.692]	[0.577]
July 19- July 25 (29-35 Days After Rally)	0.058	0.055	0.034	0.030
P-Value	[0.731]	[0.577]	[0.702]	[0.635]
July 26- August 8 (36-49 Days After Rally)	-0.093	-0.096	-0.068	-0.072
P-Value	[0.327]	[0.327]	[0.385]	[0.346]
August 9- August 15 (50-56 Days After				
Rally)	-0.157	-0.160	-0.124	-0.128
P-Value	[0.365]	[0.337]	[0.404]	[0.356]
Counties with Moderate- Low Inflow				
June 20-July 4 (0-14 Days After Rally)	0.029	0.046	0.066	0.090
P-Value	[0.673]	[0.529]	[0.163]	[0.462]
July 5-July 11 (15-21 Days After Rally)	0.034	0.030	0.081	0.066
P-Value	[0.721]	[0.462]	[0.606]	[0.442]
July 12-July 18 (22-28 Days After Rally)	0.019	0.017	0.106	0.098
P-Value	[0.740]	[0.625]	[0.212]	[0.346]
July 19- July 25 (29-35 Days After Rally)	0.001	0.003	0.110	0.114
P-Value	[0.788]	[0.673]	[0.260]	[0.481]
July 26- August 8 (36-49 Days After Rally)	-0.225	-0.221	-0.148	-0.143
P-Value	[0,808]	[0.654]	[0.837]	[0.462]
August 9- August 15 (50-56 Days After				
Rally)	-0.297	-0.297	-0.222	-0.219
P-Value	[0.442]	[0.644]	[0.865]	[0.558]
Counties with Moderate- High Inflow				
June 20-July 4 (0-14 Days After Rally)	0.008	0.054	0.113*	0.148
P-Value	[0.702]	[0.500]	[0.096]	[0.182]
July 5-July 11 (15-21 Days After Rally)	0.019	-0.032	0.145	0.107
P-Value	[0.740]	[0.625]	[0.154]	[0.298]
July 12-July 18 (22-28 Days After Rally)	0.000	-0.030	0.172	0.150
P-Value	[0.760]	[0.692]	[0.173]	[0.346]
July 19- July 25 (29-35 Days After Rally)	0.026	0.007	0.318	0.307
P-Value	[0.769]	[0.663]	[0.192]	[0.144]
July 26- August 8 (36-49 Days After Rally)	-0.212	-0.234	0.019	0.017
P-Value	[0.375]	[0.712]	[0.327]	[0.298]
August 9- August 15 (50-56 Days After				
Rally)	-0.234	-0.256	-0.063	-0.067
P-Value	[0.404]	[0.558]	[0.346]	[0.327]

Appendix Table 5. Dose-Response Difference-in-Differences Estimates of the Effect of Tulsa Rally on Inverse Hyperbolic Sine Transformed (COVID-19 Deaths) Using 8 Weeks of Post-Treatment Data

Highest Inflow County (Tulsa County)				
June 20-July 4 (0-14 Days After Rally)	0.063	0.105	0.006	0.022
P-Value	[0.615]	[0.375]	[0.625]	[0.538]
July 5-July 11 (15-21 Days After Rally)	0.090	0.033	0.022	0.013
P-Value	[0.663]	[0.433]	[0.663]	[0.538]
July 12-July 18 (22-28 Days After Rally)	0.104	0.071	-0.026	-0.03
P-Value	[0.644]	[0.423]	[0.731]	[0.654]
July 19- July 25 (29-35 Days After Rally)	0.119	0.096	-0.047	-0.043
P-Value	[0.692[[0.538]	[0.750]	[0.663]
July 26- August 8 (36-49 Days After Rally)	-0.192	-0.221	-0.144	-0.143
P-Value	[0.365]	[0.644]	[0.827]	[0.471]
August 9- August 15 (50-56 Days After				
Rally)	-0.279	-0.308	-0.155	-0.157
P-Value	[0.433]	[0.683]	[0.442]	[0.385]
Ν	52056	52056	52056	52056
Observable Controls?	No	Yes	No	Yes

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Note: Estimate is generated using weighted least squares estimate. All estimates include county and day fixed effects as well as county specific linear time trend. State policy controls include log COVID-19 testing, an indicator for whether a state reopened restaurant or bars, an indicator for whether a state reopened retail services beyond curbside pickup, an indicator for whether a state reopened personal or pet care services, an indicator for whether a state reopened entertainment business, an indicator for whether a state reopened gyms, and an indicator for whether a state paused reopening. County weather controls include average temperature and an indicator for whether any measurable precipitation fell. BLM Protest control include an indicator for whether a county had a city with 100,000 or more population with a Black Lives Matter protest. Permutation based p-value are included inside the bracket below each point estimate (Buchmueller et al. 2011; Cunningham and Shah 2018).

6 6			
	Tulsa County	Tulsa County	Oklahoma
		Cluster	
	(1)	(2)	(3)
Trump Rally	-0.002	0.001	-0.010
P-Value	[0.663]	[0.810]	[0.522]
Pre-Treatment Mean of DV ^a	0.028	0.029	0.018

Appendix Table 6. Synthetic Control Estimates of Effect of Tulsa Rally on Three-day Moving Average of COVID-19 Case Growth Rate

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Notes: Estimate is generated using synthetic control methods. The donor pool is comprised of counties with urbanicity rates of $\pm 2.5\%$ of Tulsa County urbanicity rate (95.2%) or weighted population density of $\pm 1,000$ people per sq. mi. of Tulsa County weighted population density (3,250) and exclude counties in Oklahoma and in Oklahoma's border states, as well as counties where a home resident was detected (via smartphone using SafeGraph data) in the treatment CBGs on June 20, 2020. All synthetic control estimates match on all days of pre-treatment COVID-19 growth rate.

^a Pre-treatment mean of the Dependent Variable (DV) is calculated using the treated unit.

	Cases per 100,000		Deaths per	r 100,000	
	(1)	(2)	(3)	(4)	
_					
	Panel I: Tulsa County				
Trump Rally	-57.201	-104.822	0.330	-0.541	
P-Value	[0.411]	[0.240]	[0.667]	[0.760]	
Pre-Treatment Mean of DV ^a	230.099	230.099	9.542	9.542	
		Panel II: Tu	lsa Cluster		
Trump Rally	29.159	-115.975	0.143	-1.114	
P-Value	[0.494]	[0.100]	[0.944]	[0.400]	
Pre-Treatment Mean of DV ^a	227.892	227.892	13.210	13.210	
	Panel III: State of Oklahoma				
Trump Rally	-73.154	-111.668	0.318	0.187	
P-Value	[0.364]	[0.174]	[0.409]	[0.434]	
Pre-Treatment Mean of DV ^a	203.002	203.002	9.044	9.044	
Population Density Cut for Donors	Yes	No	Yes	No	
Urbanicity Cut for Donors	No	Yes	No	Yes	

Appendix Table 7. Synthetic Control Estimates of Effect of Tulsa Rally on COVID-19 Case and Death Rate Using Different Donor Pools

* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Note: Estimate is generated using synthetic control method. Matching was based on six days of pre-treatment COVID-19 case rates, pre-treatment stay-at-home behavior, COVID-19 testing rate, COVID-19 reopening policy, and mask wearing policy. Donor pool is restricted to counties/states with similar weight population or urbanicity as Tulsa/Oklahoma.