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Supplementary Text

We first describe each of the eight input models and their corresponding surrogate models
(Section 1), followed by outlining how surrogate models are coupled (Section 2).

1. Input and surrogate models
Input models. Our current goal is to illustrate metamodeling with a set of input models, without
necessarily improving our understanding of pancreatic β-cell biology. Thus, we do not discuss in
detail the validity of previously published input models (1). We do, however, highlight the main
assumptions in constructing the previously unpublished input models (the pancreas, GSIS
signaling, insulin metabolism, virtual screening of GLP1R, GI data, and GLP1 data models).

Surrogate models. We outline each surrogate model and how it was constructed from the input
model, including modeling assumptions. We also provide a table listing the conditional PDF of
its variables at different time slices of its DBN and their parameters.

DBNs of surrogate models. As described in the main text, a surrogate model is represented by a
PDF over some variables of the corresponding input model and potentially additional auxiliary
variables. A surrogate model aims to approximate statistical dependencies among the variables
in the original model, potentially in a simplified form. Each surrogate model was represented by
a DBN (2). Briefly, a DBN factorizes a PDF over a set of time-dependent variables by describing
a conditional PDF for each random variable at time slice t+Δt as a function of some random
variables at time slice t and/or time slice t+Δt. In addition, a DBN describes a conditional PDF
for all variables at an initial time slice t0. If the values of some variables are observed, posterior
conditional or marginal probabilities can be inferred for any subset of variables in the DBN at
any time point. In addition, DBN parameters and topology can be learned from observed data.

DBN implementation. The topology of the DBN for each surrogate model is given in the top
panel of Figure 2. The software implementation, input files, and sample output files are available
at github.com/salilab/metamodeling. The conditional PDF of each random variable is a normal
distribution whose mean is the weighted sum of some random variables (a linear Gaussian) in
the current and/or previous time slice, with manually assigned standard deviations; the use of
non-linear models is illustrated in a tutorial
(github.com/tanmoy7989/bayesian_metamodeling_tutorial). The discrete time step Δt for the
DBNs of all surrogate models was set to 1 min, although the original input models are
constructed with their own time scales and time granularity. In fact, some models contain
time-independent variables, which do not change over the timescale of a model.
Time-independent variables may become time-dependent in the coupling stage, due to coupling
with time-dependent variables from other surrogate models. To guarantee numerical stability,
the conditional PDF of time-independent variables at each time slice is allowed to fluctuate
slightly, by assigning them an arbitrary small standard deviation.
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1.1 Postprandial response model

Input model. The postprandial response model describes insulin and glucose levels in the
plasma and various body tissues (dependent variables) as a function of time, following a
glucose-rich meal, in healthy and T2D subjects (Fig. S1) (1). The values of these variables are
computed from the rate of glucose intake (independent variable), using a system of ODEs.

Figure S1. The postprandial response input model. (Top) A schematic of the system of compartments
and fluxes, described by a model consisting of 29 ODEs (1). The model takes into account interactions
among different physiological systems and organs involved in glucose homeostasis. It was parameterized
based on data from a cohort of 204 healthy subjects and 14 T2D subjects. These data include plasma
insulin and glucose levels, endogenous glucose production, glucose rate of appearance, glucose
utilization, and insulin secretion rate over 420 minutes at 20 minute intervals following a glucose-rich
meal. (Bottom) A subset of 4 of the 29 ODEs in the complete model, indicating change in levels of plasma
glucose (Gp), tissue glucose (Gt), liver insulin (Il), and plasma insulin (Ip).

Surrogate model. The rationale behind the construction of the postprandial response surrogate
model is described in Results (second example for Step 1 of metamodeling). It is relatively
straightforward to construct a DBN for a system of ODEs, because a DBN can be considered a
probabilistic, discretized generalization of a system of ODEs. The postprandial response
surrogate model nonetheless simplifies the input model, still capturing key statistical relations
among its variables (Fig. 2, Table S1) by fitting some parameters of the conditional PDFs listed
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in Table 1 to reproduce its dependent parameters. As described above, all conditional PDFs are
linear Gaussians.

Table S1. Random variables, corresponding conditional PDFs, and conditional PDF parameters in the
postprandial response surrogate model.

Time-dependent variables and their conditional PDFs:

Name Description DBN time
slice*
[min]

Mean
[healthy/T2D**]

Std-dev Unit

∆𝐺
𝑑
𝑃𝑅 Rate of glucose intake from

food digestion
𝑡

0 0. 0 10-2 mM min-1

𝑡 + ∆𝑡 0.0 10-3

𝐺
𝑏
𝑃𝑅 Basal plasma glucose

concentration
𝑡

0
5.1/9.2 1.0 mM

𝑡 + ∆𝑡 𝐺
𝑏
𝑃𝑅(𝑡) 0.1

𝐺𝑃𝑅 Plasma glucose
concentration

𝑡
0

5.1/9.2 0.1 mM

𝑡 + ∆𝑡
∆𝐺

𝑑
𝑃𝑅 (𝑡) ∆𝑡 − 𝑘

1
 𝐼𝑃𝑅(𝑡) ∆𝑡 +  (1 − 𝑘

2
) 𝐺𝑃𝑅(𝑡) ∆𝑡 +

𝑘
3
𝑃𝑅∆𝐺𝑃𝑅(𝑡) ∆𝑡

0.01

***∆𝐺𝑃𝑅 Excess plasma glucose
concentration compared
with the basal
concentration

𝑡
0 𝐺𝑃𝑅(𝑡

0
) −  𝐺

𝑏
𝑃𝑅(𝑡

0
) 0.1 mM

𝑡 + ∆𝑡 𝐺𝑃𝑅(𝑡 + ∆𝑡) −  𝐺
𝑏
𝑃𝑅(𝑡 + ∆𝑡) 0.01

𝑌𝑃𝑅 Provision of new insulin to
the β-cells

𝑡
0

0.00 0.1 pM min-1

𝑡 + ∆𝑡 (1 −  α𝑃𝑅∆𝑡 )𝑌(𝑡) + α𝑃𝑅β𝑃𝑅∆𝐺𝑃𝑅∆𝑡 0.01

𝑆 𝑃𝑅 Pancreatic insulin secretion
rate

𝑡
0 𝑆

𝑏
𝑃𝑅(𝑡

0
) 0.1 pM min-1

𝑡 + ∆𝑡
𝑌𝑃𝑅(𝑡 + ∆𝑡) +  𝐾𝑃𝑅∆𝐺

𝑑
𝑃𝑅 (𝑡 + ∆𝑡) +  𝑆

𝑏
𝑃𝑅(𝑡 + ∆𝑡)

0.01

𝐼𝑃𝑅 Plasma insulin
concentration

𝑡
0

25.0/52.0 0.1 pM

𝑡 + ∆𝑡 (1 − γ𝑃𝑅 ∆𝑡)  𝐼𝑃𝑅(𝑡) + 𝑘
4
𝑃𝑅𝑆𝑃𝑅(𝑡)∆𝑡 0.01

Time-independent variables and their conditional PDFs:

T2D A boolean variable
indicating whether a subject
is diabetic or healthy

- T2D is an observed variable, determining CPD
parameters for CPDs of all other variables. In
principle, a probabilistic prior could be defined for T2D
(e.g., population prevalence of T2D).

- -

𝑆
𝑏
𝑃𝑅 Basal pancreatic insulin

secretion rate
- 34.0/102.5 0.1/1 pM min-1

Time-independent variables represented as conditional PDF parameters:

α𝑃𝑅 Delay between the glucose
signal and insulin secretion

- 0.050/0.013 - min-1

β𝑃𝑅 Pancreatic responsivity to
glucose

- 120.0/115.0 - pM min-1

mM-1
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Parameters of conditional PDFs:

Name Description DBN time
slice*
[min]

Mean
[healthy/T2D**]

Std-dev Unit

γ𝑃𝑅 Transfer rate between
portal vein and liver

- 1.0/1.0 - min-1

𝑘
1
𝑃𝑅 Coefficient for insulin

reducing glucose
concentration

- 0.00025/0.00013 - min-1

𝑘
2
𝑃𝑅 Coefficient for glucose

reducing glucose
concentration

- -0.001230/-0.000735 - min-1

𝑘
3
𝑃𝑅 Coefficient for elevated

glucose reducing glucose
concentration

- -10-6/-10-6 -
-

𝑘
4
𝑃𝑅 Coefficient for insulin

secretion accounting for the
insulin degradation

- 0.7353/0.5073 - -

𝐾𝑃𝑅 Pancreatic responsivity to
the glucose rate of change

- 1000.0/400.0 - Pmol L-1

mM-1

* is the initial time slice in the DBN; is the time slice that follows time slice t by a time step of Δt.𝑡
0

𝑡 + ∆𝑡
**The Healthy/T2D variable in Figure 2 was implemented as different values for variables and parameters for the same PGM.

*** was explicitly used in the code only as an intermediate variable to compute the excess plasma glucose concentration∆𝐺𝑃𝑅

(difference between variables and ), and was omitted from Figure 2.𝐺𝑃𝑅 𝐺
𝑏
𝑃𝑅

1.2 Pancreas model

Input model. The pancreas model is a simple linear model that relates the insulin secretion rate
by individual cells (independent variable) to the insulin secretion rate by individual islets and an
entire pancreas (dependent variables) (Fig. S2).

Figure S2. The pancreas input model. The insulin secretion rate of an islet is the sum of the𝑆
𝑖𝑠𝑙𝑒𝑡

secretion rates of β-cells ( ) in the islet; similarly, the insulin secretion rate of the pancreas𝑁
𝑐 

𝑆
𝑐𝑒𝑙𝑙

is the sum of the secretion rates of islets in the pancreas. The model is parameterized based𝑆
𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠

𝑁
𝑖
 

on the estimated 1140 β-cells in an islet (3) and 3.2 million islets in a pancreas (4). Variable𝑁
𝑐

= 𝑁
𝑖

=

descriptions are indicated in Table S2. We made two simplifying assumptions in the construction of the
pancreas input model. First, the secretion rates of all β-cells are identical and all islets contain the same
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number of β-cells. Second, and were assigned identical values for both healthy and T2D subjects,𝑁
𝑐 

𝑁
𝑖

although the proportion of β-cells in T2D islets is marginally decreased compared to normal islets (5).

Surrogate model. The DBN describing the pancreas surrogate model is a discretized,
probabilistic version of the linear equations of the corresponding input model (Fig. 2, Table S2).
It includes conditional PDFs corresponding to linear Gaussians describing the statistical
dependencies between insulin secretion rates for β-cells, islets, and the pancreas. This
surrogate model is essential for the subsequent coupling of the postprandial response, vesicle
exocytosis, GSIS signaling, and GI data surrogate models (Results, Step 2). It includes only
time-independent variables. However, it is implemented as a DBN, because its variables
become time-dependent during the coupling stage, due to coupling with time-dependent
variables of other surrogate models (Fig. 2).

Table S2. Random variables, corresponding conditional PDFs, and conditional PDF parameters in the
pancreas surrogate model.
Time-independent variables and their conditional PDFs:

Name Description Mean Std-dev Unit

𝑆
𝑐𝑒𝑙𝑙
𝑃𝑎 Insulin secretion rate of a cell  𝑆

𝑐𝑒𝑙𝑙
𝐶 (𝑡) 10-10 pM min-1

𝑆
𝑖𝑠
𝑃𝑎 Insulin secretion rate of an islet 𝑁

𝑐
 𝑆

𝑐𝑒𝑙𝑙
𝑃𝑎 (𝑡) 10-6 pM min-1

𝑆
𝑝𝑎
𝑃𝑎 Insulin secretion rate of the pancreas 𝑁

𝑖
 𝑆

𝑖𝑠
𝑃𝑎(𝑡) 0.1 pM min-1

Parameters of conditional PDFs:

Nc Number of β-cells in an islet 1140 - -

Ni Number of islets in a pancreas 3.2x106 - -

*Legend: - the initial time slice in the DBN; - the time slice that follows time-slice t by a time step of Δt.𝑡
0

𝑡 + ∆𝑡

1.3 Vesicle exocytosis model

Input model. The vesicle exocytosis model describes coarse-grained spatiotemporal trajectories
of vesicle exocytosis in pancreatic β-cells (dependent variables) after glucose stimulation, given
an initial cell configuration (independent variables) (Fig. S3) (6).
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Fig. S3. The vesicle exocytosis input model. The scheme indicates model components (top) and a
snapshot from an actual coarse-grained Brownian dynamics simulation trajectory (bottom) (6). The model
includes the cell membrane (light gray sphere), the nucleus (dark gray sphere), hundreds of insulin
vesicles (light blue spheres), and thousands of glucose molecules (yellow spheres). The components are
rescaled for visualization. Brownian dynamics simulations are restrained by various experimental data,
including soft X-ray tomograms of the cell (7). 48 different 200 ms trajectories were computed for each of
the following three treatment conditions (Table S3): (i) no glucose stimulation, (ii) 25 mM glucose
stimulation, and (iii) 25 mM glucose stimulation with 10 nM Exendin-4 treatment. Exendin-4 is a peptide
agonist of the glucagon-like peptide (GLP) receptor that attenuates postprandial plasma glucose (8).

Table S3. Model parameters of data-driven Brownian dynamics simulations under different conditions.

Treatment

Num
ber
of
runs

Simulation
time [ms]

Time
step
[s]

Radius of
the cell
[Å]

Number
of
glucose
molecules

Number
of insulin
vesicles

Force coefficient
[kcal mol-1 Å-1]

Number of
activation
patches

Vesicle
diffusion
coefficie
nt [Å2

fs-1]

Glucose
diffusion
coefficien
t [Å2 fs-1]

0 mM Glucose 48 200 10-8 65,000 1000 306

For each
condition, 10-4,
10-5, 10-6, and 10-7

For each
condition,
6 and 12

10-5 10-7

25 mM Glucose 48 200 10-8 65,000 4000 791 10-5 10-7

25mM Glucose +
10 nM Exendin-4 48 200 10-8 65,000 4000 508 10-5 10-7

Surrogate model. The rationale behind the construction of the vesicle exocytosis surrogate
model is described in Results (first example for Step 1 of metamodeling). This surrogate model
includes a subset of the input model variables and new variables that are computed from input
model variables. For example, total insulin secretion rate in the surrogate model is computed
from insulin vesicle coordinates; these coordinates are in turn omitted from the surrogate model
for practical reasons of dimensionality reduction. The conditional PDF parameters are fitted
manually to the Brownian dynamics simulations to recapitulate the insulin secretion rates of the
β-cell for different simulation conditions. The time step in the surrogate model (1 min) is longer
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than the entire time scale of the vesicle exocytosis model (200 ms); thus, a single time slice in
the DBN of the surrogate model represents a single simulation trajectory of vesicle exocytosis.
The surrogate vesicle exocytosis model simplifies the corresponding input model in three ways.
First, the cell is secreting at a constant rate across one minute. Second, the surrogate model
interpolates a linear Gaussian relationship from a discrete set of treatment conditions. Third, the
surrogate model describes instantaneous rather than second phase insulin secretion occuring
30 minutes after glucose stimulation.

Table S4. Random variables, corresponding conditional PDFs, and conditional PDF parameters in the
vesicle exocytosis surrogate model.

Time-dependent variables and their conditional PDFs:

Name Description DBN time
slice*
[min]

Mean Std-dev Unit

𝐺𝑉𝐸 Intracellular glucose
concentration

𝑡
0 2.55 0.1 mM

𝑡 + ∆𝑡 2.55 0.01

𝑘
𝑡
𝑉𝐸 Effective rate of

vesicle trafficking
towards the cellular
periphery

𝑡
0 5. 0 +  α𝑉𝐸𝑆𝑉𝐸(𝑡

0
)/2 1.0 m s-1

𝑡 + ∆𝑡
5. 0 +  α𝑉𝐸𝑆𝑉𝐸(𝑡 + ∆𝑡)/2 0.1

𝑁
𝑣
𝑉𝐸 Number of insulin

vesicles in one
β-cell

𝑡
0 β𝑉𝐸𝑆𝑉𝐸(𝑡

0
) 1 -

𝑡 + ∆𝑡
β𝑉𝐸𝑆𝑉𝐸(𝑡 + ∆𝑡) 0.1

𝑁
𝑝𝑎𝑡𝑐ℎ
𝑉𝐸 Number of

activation patches
per vesicle

𝑡
0 6 0.1 -

𝑡 + ∆𝑡
1. 0 𝑁

𝑝𝑎𝑡𝑐ℎ
𝑉𝐸 (𝑡) 0.01

𝑁
𝑖𝑛𝑠
𝑉𝐸 Amount of insulin in

one vesicle
𝑡

0 1.8x10-6 10-7 pmol

𝑡 + ∆𝑡
1. 0 𝑁

𝑖𝑛𝑠
𝑉𝐸(𝑡) 10-8

𝑆 𝑉𝐸 Insulin secretion
rate of one β-cell

𝑡
0 9.32*10-9 10-10 pM min-1

𝑡 + ∆𝑡
𝑘

𝐺
𝑉𝐸𝐺𝑉𝐸(𝑡) + 𝑘

𝑝
𝑉𝐸𝑁

𝑝𝑎𝑡𝑐ℎ
𝑉𝐸 (𝑡 + ∆𝑡) + 𝑘

𝑖𝑛𝑠
𝑉𝐸𝑁

𝑖𝑛𝑠
𝑉𝐸(𝑡 +

+  𝑘
𝐷
𝑉𝐸 𝐷

𝑣
𝑉𝐸(𝑡 + ∆𝑡) + 𝑘

𝑅
𝑉𝐸 𝑅

𝑐𝑒𝑙𝑙
𝑉𝐸 (𝑡 + ∆𝑡)

10-11

Time-independent variables represented as conditional PDF parameters:

𝑅
𝑐𝑒𝑙𝑙
𝑉𝐸 Radius of the β-cell t 6 0.1 μm

𝐷
𝑣
𝑉𝐸 Diffusion coefficient

of insulin vesicles in
the beta cell

t 0.0032 10-4 A2 fs-1
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Parameters of conditional PDFs:

Name Description DBN time
slice*
[min]

Mean Std-dev Unit

α𝑉𝐸 Correlation
between insulin
secretion rate and
the force
coefficient of
vesicle transport

- 1.073x109 - m s-1 pM-1

min

β𝑉𝐸 Correlation
between insulin
secretion rate and
the number of
insulin vesicles in
the cell

- 3.219x1010 - pM-1 min

𝑘
𝑝
𝑉𝐸 Coefficient for the

number of
activation patches
on the vesicle
surface
accelerating insulin
secretion rate

- 2.55x10-10 - pM min-1

𝑘
𝐺
𝑉𝐸 Coefficient for the

intracellular
glucose
concentration
stimulating the
insulin secretion

- 3.4x10-9 - pM min-1

mM-1

𝑘
𝑖𝑛𝑠
𝑉𝐸 Coefficient for the

number of insulin
molecules in each
vesicle
determining insulin
secretion rate

- 0.01 - pM min-1

𝑘
𝐷
𝑉𝐸 Coefficient for the

vesicle diffusion
promoting insulin
secretion rate

- 10-7 - pM min-1

A-2 fs

𝑘
𝑅
𝑉𝐸 Coefficient for the

cell radius
reducing insulin
secretion rate

- -3.2x10-9 - pM min-1

μm-1

* is the initial time slice in the DBN; is the time slice that follows time slice t by a time step of Δt.𝑡
0

𝑡 + ∆𝑡

1.4 GSIS signaling model

Input model. The GSIS signaling model describes the dynamics of the molecular signaling
network leading to insulin secretion in β-cells following glucose stimulation and a GLP1
hormone signal (Fig. S4). The model computes insulin secretion rates as well as concentrations
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of various signaling molecules, such as ATP, cAMP, and Ca2+ over time (dependent variables),
for a given starting condition (independent variables), using a system of linear ODEs.

Figure S4. The GSIS signaling input model. The signaling network topology (left) is a combination of
the linear pathways leading from glucose stimulation to insulin secretion, based on pathway hsa04911 in
the KEGG database (9) and the signaling pathway leading to cAMP-dependent enhancement of insulin
secretion following activation of the GLP1R receptor by the peptide hormone GLP1. GLP1R* is a variable
that indicates GLP1R relative activity levels. Linear ODEs (right) describe the time evolution of the
network component, leading to insulin secretion, S(t). ODE coefficient values are identical to the values of
the corresponding parameters of the conditional PDFs (Table S5). The following simplifying assumptions
were made during model construction: (1) the system dynamics are described by linear equations; (2) the
signaling network of pancreatic β cells is simplified, for example, by merging alternative pathways through
which cAMP and ATP modulate calcium release from various cellular and extracellular compartments and
omitting feedback loops in the network; and (3) identical parameters are used for both healthy and T2D
subjects.

Surrogate model. The DBN describing the GSIS signaling surrogate model is a discretized,
probabilistic version of the linear ODEs of the corresponding input model (Fig. 2, Table S5). As
with other surrogate models, standard deviations were added to reflect our uncertainty in
variable values.
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Table S5. Random variables, corresponding conditional PDFs, and conditional PDF parameters in the
GSIS signaling surrogate model.
Time-dependent variables and their conditional PDFs:

Name Description DBN time
slice*
[min]

Mean Std-dev Unit

𝐺 𝑆𝑔 Intracellular glucose
concentration

𝑡
0 2.55 0.1 mM

𝑡 + ∆𝑡 2.55 0.01

𝐴𝑇𝑃𝑆𝑔 Intracellular ATP
concentration

𝑡
0 3.3 0.1 mM

𝑡 + ∆𝑡
α𝑆𝑔 𝐺 𝑆𝑔(𝑡) + 𝑘

𝐴𝑇𝑃
𝑆𝑔 𝐴𝑇𝑃𝑆𝑔 (𝑡) 0.01

𝐺𝐿𝑃1𝑆𝑔 Plasma GLP1
concentration

𝑡
0 12.5 (basal levels, see GLP1 model) 0.1 pM

𝑡 + ∆𝑡
1. 0  𝐺𝐿𝑃1𝑆𝑔(𝑡) 0.01

𝐺𝐿𝑃1𝑅𝑆𝑔 GLP1R activity 𝑡
0 1. 0 0.1 -

𝑡 + ∆𝑡
𝑘

𝐺𝐿𝑃1
𝑆𝑔 𝐺𝐿𝑃1𝑆𝑔(𝑡) 0.01

𝑐𝐴𝑀𝑃𝑆𝑔 Intracellular cAMP
concentration

𝑡
0 1.3 x 10-3 10-4 mM

𝑡 + ∆𝑡
𝑘

𝑐𝐴𝑀𝑃
𝑆𝑔  𝑐𝐴𝑀𝑃𝑆𝑔(𝑡) +  γ𝑆𝑔 𝐺𝐿𝑃1𝑅𝑆𝑔(𝑡)

+ β𝑆𝑔 𝐴𝑇𝑃𝑆𝑔(𝑡)

10-5

𝐶𝑎2+ 𝑆𝑔 Intracellular Ca2+

concentration
𝑡

0 0.0001 10-5 mM

𝑡 + ∆𝑡
𝑘

𝐶𝑎
𝑆𝑔𝐶𝑎2+ 𝑆𝑔(𝑡) + δ𝑆𝑔𝑐𝐴𝑀𝑃𝑆𝑔 (𝑡) + ζ 𝑆𝑔𝐴𝑇𝑃𝑆𝑔(𝑡) 10-6

𝑆𝑆𝑔 Insulin secretion rate
of a single β-cell.
Concentration is
relative to total
plasma volume.

𝑡
0 9.32*10-9 10-10 pM min-1

𝑡 + ∆𝑡
 ϵ𝑆𝑔𝐶𝑎2+ 𝑆𝑔 (𝑡) 10-11

Parameters of conditional PDFs:

α𝑆𝑔 Coefficient of
glucose-dependent
ATP production

- 0.65 - -

𝑘
𝐴𝑇𝑃
𝑆𝑔 Percentage of

unconsumed ATP
between adjacent
timeslices

- 0.5 - -

𝑘
𝐺𝐿𝑃1
𝑆𝑔 Coefficient for GLP1

activating GLP1R
- 0.08 - pM-1

β𝑆𝑔 Coefficient for cAMP
production through
ATP

- 0.00013 - -

γ𝑆𝑔 Coefficient for cAMP
production through
GLP1R activation

- 0.000438 - -
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Parameters of conditional PDFs (cont.)

Name Description DBN time
slice*
[min]

Mean Std-dev Unit

𝑘
𝑐𝐴𝑀𝑃
𝑆𝑔 Percentage of

unconsumed cAMP
between adjacent
timeslices

- 0.333 - -

δ𝑆𝑔 Coefficient from
cAMP-dependent
change to Ca2+ levels

- 0.0385 - -

𝑘
𝐶𝑎
𝑆𝑔 Percentage of

unconsumed Ca2+

between adjacent
timeslices

- 0.5 - -

ϵ𝑆𝑔 Coefficient for Ca2+

facilitating insulin
secretion

- 0.0011333 - pM min-1

mM-1

ζ 𝑆𝑔 Coefficient for
ATP-dependent
change to Ca2+ levels

0.0

* is the initial time slice in the DBN; is the time slice that follows time slice t by a time step of Δt.𝑡
0

𝑡 + ∆𝑡
.
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1.5 Insulin metabolism model

Input model. The insulin metabolism model predicts activation of cellular metabolic pathways
(dependent variables) for different treatment conditions (independent variables), based on
experimental measurements of metabolomic signatures obtained using liquid chromatography-
mass spectrometry.

Figure S5. The insulin metabolism input model. Enrichment analysis for functional metabolic pathways
is informed by metabolite quantities measured by liquid chromatography-mass spectrometry (LC-MS)
measurements on INS-1E cells under different glucose and Exendin-4 treatments. Based on these
measurements, a statistical model was constructed that outputs normalized enrichment scores for 25
different metabolic pathways from the KEGG pathways database (116), in response to different treatment
conditions. Metabolomic signatures were ranked based on log2-transformed fold change observed for a
given perturbation (e.g., LG/MG/HG co-stimulated with Exendin-4 compared with incretin-free LG/MG/HG
treated INS-1E cells). Metabolites were annotated using KEGG COMPOUND ID (e.g., D-Glucose:
C00031). The enrichment analyses were run with unweighted Kolmogorov‐Smirnov statistic using the
Broad Institute’s GSEA java applet against a library containing all KEGG metabolic pathways. Normalized
enrichment scores (NES) were calculated to determine if metabolic pathways were overrepresented at
the top or the bottom of the given rank lists. Statistical significance scores were assessed by 5,000
permutations of the ranked lists. The permutation-based P-value is defined by the fraction of randomly
permuted lists resulting in the NES values greater than or equal to the observed NES. The KEGG
metabolic pathway library (c2_kegg_gene_cpd_set.gmt) was constructed by scraping the KEGG API.
NES scores for each KEGG pathway at each treatment conditions are provided in the Excel file
https://github.com/salilab/metamodeling/blob/master/data/072919-INS1e-30min-Enrichment-analysis-clea
ned-summary.xlsx.
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Surrogate model. The insulin metabolism surrogate model describes a parametrized linear
relation between the treatment conditions (the independent variables), the TCA cycle
enrichment score (one of the dependent variables), and the concentrations of intracellular ATP
(an additional variable estimated from enrichment of TCA). The insulin metabolism surrogate
model simplifies the corresponding input model in three ways. First, it summarizes a narrow
aspect of the input model that is of particular interest. Second, it interpolates a linear Gaussian
relationship from a discrete set of treatment conditions. Third, it assumes that the change in
TCA cycle activation and ATP concentration occurs instantaneously rather than 30 minutes after
glucose stimulation. The model parameters were manually fitted to reproduce the empirical
relation between independent and dependent variables in the corresponding input model. While
this model describes INS-1e cells rather than primary β-cells, differences in pathway enrichment
among cell types are accounted for during the coupling stage (Discussion).

Table S6. Random variables, corresponding conditional PDFs, and conditional PDF parameters in the
insulin metabolism surrogate model.
Time-independent variables and their conditional PDFs:

Name Description DBN time
slice* [min]

Mean Std-dev Unit

𝐺
𝑒𝑥
𝑀𝑏 Extracellular

glucose
concentration

t 25 0.01 mM

𝐸𝑥4
𝑒𝑥
𝑀𝑏 Extracellular Ex-4

concentration
t 0.0 0.01 nM

𝑃
𝐼𝑁𝑆1𝐸
𝑀𝑏 Normalized

enrichment score
of the TCA
pathway in INS1E
cells

t 𝑘1𝑀𝑏 𝐺
𝑒𝑥
𝑀𝑏(𝑡) +  𝑘2𝑀𝑏  𝐸𝑥4

𝑒𝑥
𝑀𝑏(𝑡) 0.01 -

𝐴𝑇𝑃
𝐼𝑁𝑆1𝐸
𝑀𝑏 Intracellular

metabolite
concentration
(here, ATP) in
INS1E cells

t 𝑘3𝑀𝑏 *  𝑃
𝐼𝑁𝑆1𝐸
𝑀𝑏 (𝑡) 0.01 mM

Parameters of conditional PDFs:

𝑘1𝑀𝑏 Coefficient for the
extracellular
glucose stimulating
the metabolic
pathway

- 0.0372 - mM-1

𝑘2𝑀𝑏 Coefficient for the
extracellular Ex-4
stimulating the
metabolic pathway

- 0.5 - nM-1

𝑘3𝑀𝑏 Coefficient for the
TCA metabolic
pathway producing
ATP

- 3.3 - mM

*Legend: - the initial time slice in the DBN; - the time slice that follows time-slice t by a time step of Δt.𝑡
0

𝑡 + ∆𝑡
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Cell cultures. INS-1E Rattus Norvegicus insulinoma cells were obtained from the Cell Culture
Core of the Raymond Stevens lab (Bridge Institute USC). Cells were maintained in modified
RPMI 1640 supplemented with 5% horse serum, 1 mM sodium pyruvate, 50 μM
β-mercaptoethanol, 2 mM glutamine, and 10 mM HEPES in monolayer. All cells were grown in a
humidified incubator at 5% CO2 and 37˚C. They were used between 30-50 passages of thawing.
Cell counting and viability were assessed using trypan blue staining with a TC20 automated cell
counter (BioRad).

Cell stimulation and intracellular metabolites extraction. Cells were plated on 6-well plates at a
density of 7,000 cells/cm2. When cell densities reached 70%, the media was removed, cells
were washed twice with 2 mL of PBS, followed by adding 5 mL of KRBH buffer with 0 mM
glucose to cells. The cells were starved for 30 min prior to treatment. Following starvation,
KRBH buffers were removed and the cells were treated with 1.1 mM, 16.7 mM, and 25 mM of
glucose without or with 10 nM of Exendin-4. After 30 min, supernatants were collected,
spun-down, and assayed using Mercodia Rat Insulin ELISA kit (10-1250-01) according to the
manufacturer protocol. The culture plates were cooled on ice, and the cells were washed with 1
mL of cold ammonium acetate. The methanol cell suspensions were scraped and transferred to
Eppendorf tubes, followed by centrifugation at 4˚C. The supernatants were transferred to new
Eppendorf tubes, and the pellets were re-extracted with another 350 μL of -80˚C methanol. The
second methanol extraction was spun-down, and the supernatants were pooled with the first
extraction. Metabolites were speed-vac’ed to dryness, resuspended in LC-MS grade water, and
submitted to LC-MS.

Liquid chromatography-mass spectrometry (LC–MS) metabolomics. Samples were randomized
and analyzed on a Q Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer coupled to
an UltiMate 3000 UHPLC system (Thermo Scientific). The mass spectrometer was run in
polarity switching mode (+3.00 kV/-2.25 kV) with an m/z window ranging from 65 to 975. Mobile
phase A was 5 mM NH4AcO, pH 9.9, and mobile phase B was acetonitrile. Metabolites were
separated on a Luna 3 µm NH2 100 Å (150 × 2.0 mm) column (Phenomenex). The flow rate
was 300 µL/min, and the gradient was from 15% A to 95% A in 18 min, followed by an isocratic
step for 9 min and re-equilibration for 7 min. All samples were run in biological triplicate.
Metabolites were detected and quantified by the area-under-the-curve, based on retention time
and accurate mass (≤ 8 ppm) using the TraceFinder 3.3 (Thermo Scientific) software.
Intracellular data was normalized to the cell number at the time of extraction.

1.6 Virtual screening model

Input model. The virtual screening model describes the increase in the activity level of GLP1R
(dependent variable) for different concentrations of various GLP1 agonist compounds, based on
their rank in a library of compounds (independent variables).

14



Figure S6. The virtual screening input model. The model is based on computational docking of 5,689
potential agonists against an atomic structure of GLP1R (10). These potential agonists were ranked by
their predicted affinity to the allosteric site of GLP1R. We selected the top four compounds. The model
computes the increase in GLP1R activity as a function of the rank of the compound A and its

concentration C: , where maximal relative activation F is set to 310.0 fold and a concentration1−𝑒−𝑘·𝐴·𝐶

1+𝑒−𝑘·𝐴·𝐶 · 𝐹

normalization coefficient k was set to 1.1 pM-1.

Surrogate model. The virtual screening surrogate model is a linear approximation of the
corresponding input model, obtained through manual fitting. It simplifies the corresponding input
model in two ways: First, activity is related to the rank and concentration via a linear Gaussian.
Second, identical variable and parameter values are used for both healthy and T2D subjects.

Table S7. Random variables, corresponding conditional PDFs, and conditional PDF parameters in the virtual
screening surrogate model.
Time-dependent variables and their conditional PDFs:

Name Description DBN time slice*
[min]

Mean Std-dev Unit

𝐶𝑉𝑆 Compound
concentration of the
GLP1 analogs

𝑡
0 0 0.01 pM

𝑡 + ∆𝑡
 𝐶𝑉𝑆(𝑡) 10-3

𝐺𝐿𝑃1𝑅𝑉𝑆 GLP1R activity level
relative to GLP1R
activity upon binding to
GLP1 at its basal
concentration

𝑡
0 0 0.01 -

𝑡 + ∆𝑡
𝑘1𝑉𝑆𝐴𝑉𝑆(𝑡) + 𝑘2𝑉𝑆𝐶𝑉𝑆(𝑡) 10-3

Time-independent variables and their conditional PDFs:

**𝐴𝑉𝑆 Rank of different GLP1
agonists with increasing
affinities

𝑡 Prior: 0
Observed values: 1/2/3/4

0.01 -
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Parameters of conditional PDFs:

Name Description DBN time slice*
[min]

Mean Std-dev Unit

𝑘1𝑉𝑆 Coefficient for the GLP1
agonists activating
GLP1R

- 40 - -

𝑘2𝑉𝑆 Coefficient for the
compound concentration
affecting GLP1R
activation

- 2 - pM-1

*Legend: - the initial time slice in the DBN; - the time slice that follows time-slice t by a time step of Δt.𝑡
0

𝑡 + ∆𝑡
** This variable was implemented in the code through additional nodes in a mathematically equivalent fashion.

1.7 Glucose intake data model

Input model. The GI data model tabulates data on the rate of glucose intake from food digestion,

(Table S8). The GI data model illustrates how real-world data can be integrated through∆𝐺
𝑑
𝐺𝑆

metamodeling and coupled with other models.

Table S8. GI data model. The data was simulated at 1 min interval using a sigmoid postprandial
response model. The postprandial response model itself is in turn based on empirical data that are
typically measured by glucose sensors as the rate of appearance from the intestine (1).

Time
[min]

ΔGd
[mM
min-1]

0 0.047

1 0.057

2 0.069

3 0.083

4 0.099

5 0.118

6 0.140

7 0.166

8 0.195

9 0.226

10 0.261

11 0.298

12 0.337

13 0.375

14 0.411

15 0.443
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16 0.470

17 0.489

18 0.498

19 0.498

20 0.489

21 0.470

22 0.443

23 0.411

24 0.375

25 0.337

26 0.298

27 0.261

28 0.226

29 0.195

30 0.166

31 0.140

32 0.118

33 0.099

34 0.083

35 0.069

36 0.057

37 0.047

38 0.039

39 0.032

40 0.026

41 0.022

42 0.018

43 0.015

44 0.012

45 0.010

46 0.008

47 0.007

48 0.005

49 0.004

50 0.004

51 0.003

52 0.002

53 0.002

54 0.002
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55 0.001

56 0.001

57 0.001

58 0.001

59 0.000

60 0.000

Surrogate model. The GI data surrogate model relies on the rate of glucose intake in the input
model, with standard deviations reflecting data uncertainties.

Table S9. Conditional probability distributions for Gaussian variables in the GI data model.

Variable
name

Description Values Unit

∆𝐺
𝑑
𝐺𝑆 Rate of glucose intake from

food digestion
Table S8 mM min-1

1.8 GLP1 data model

Input model. The GLP1 data model defines classes for four discrete values of the plasma
concentration of GLP1 (Table S10); the classification is the same for both normal and T2D
patients.

Table S10. The GLP1 data model.

Level GLP1  [pM]

low 400

medium 800

medium-high 1200

high 1600

Surrogate model. The GLP1 data surrogate model is the observation made in the corresponding
model. It becomes probabilistic only during the coupling stage, in which a conditional PDF of the
GLP1GL variable relates it to a coupling variable GLP1C, as described in SI Appendix:
Supplementary Text 2.
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Table S11. Conditional probability distributions for Gaussian variables in the GL data model.

Variable
name

Description Values Unit

𝐺𝐿𝑃1𝐺𝐿 Plasma GLP1 concentration 400 (low)
800 (medium)
1200 (medium-high)
1600 (high)

pM

2. Coupling and coupling variables
In the coupling stage, coupling variables were introduced as random variables with linear
Gaussian conditional PDFs, relating them to variables from surrogate models (Table S10). In
addition, the conditional PDFs of some variables from surrogate models were modified to
include dependencies on coupling variables (Table S11). When variables from several models
inform a coupling variable, our prior assigns even confidence to information from all variables.

For instance, the coupling variable is statistically coupled to and with equal weights.𝑆
𝑐𝑒𝑙𝑙
𝐶 𝑆𝑉𝐸 𝑆𝑆𝑔

When additional prior information is available, it is used to inform the coupling. For example,
intracellular glucose concentration has been estimated to be half of the plasma glucose
concentration (11).

Table S12. Conditional PDFs for Gaussian variables of the coupling variables.

Coupler Description Time
slice,
[min]

Mean Std-dev Unit

 𝐺
𝑝𝑙
𝐶 Plasma glucose

concentration
t 𝐺𝑃𝑅(𝑡)

10-3
mM

𝐺
𝑐𝑒𝑙𝑙
𝐶 Intracellular

Glucose
concentration

t  𝐺
𝑝𝑙
𝐶 (𝑡)/2 10-3 mM

𝐺𝐿𝑃1𝑅 𝐶 GLP1R activity t 1. 0 𝐺𝐿𝑃1𝑅𝑉𝑆(𝑡) 10-4 -

𝐴𝑇𝑃
𝐼𝑁𝑆1𝐸
𝐶 Intracellular

ATP
concentration

t 1. 0 𝐴𝑇𝑃
𝐼𝑁𝑆1𝐸
𝑀𝑏 (𝑡) 10-3 mM

𝑆
𝑝𝑎
𝐶 Insulin secretion

rate of the
pancrea

t  𝑆
𝑝𝑎
𝑃𝑎(𝑡) 10-3 pM min-1

𝑆
𝑐𝑒𝑙𝑙
𝐶 Insulin secretion

rate of one β-cell
t 𝑆𝑆𝑔(𝑡)  /2 + 𝑆𝑉𝐸(𝑡)/2 10-11 pM min-1

∆𝐺
𝑑
𝐶 Rate of glucose

intake from food
digestion

t
1. 0 ∆𝐺

𝑑
𝑃𝑅 10-6 mM min-1

𝐺𝐿𝑃1𝐶 Plasma GLP1
concentration

t 1. 0 𝐺𝐿𝑃1𝑆𝑔(𝑡) 10-3 pM
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Table S13. Modified conditional PDFs for variables in surrogate models that become dependent on
coupling variables after the coupling stage.

Variable
name

Description Time
slice,
[min]

Mean Std-dev Unit

𝑆𝑃𝑅 Pancreatic insulin
secretion rate 𝑡 + ∆𝑡 (𝑌𝑃𝑅(𝑡 + ∆𝑡) +  𝐾𝑃𝑅∆𝐺

𝑑
𝑃𝑅 (𝑡)

+  1. 0 𝑆
𝑏
𝑃𝑅(𝑡 + ∆𝑡))/3 + 2/3 𝑆

𝑝𝑎
𝐶 (𝑡 + ∆𝑡)

10-3 pM min-1

𝑆
𝑐𝑒𝑙𝑙
𝑃𝑎 Insulin secretion of a cell 𝑡  𝑆

𝑐𝑒𝑙𝑙
𝐶 (𝑡) 10-10 pM min-1

𝐺𝑉𝐸 Basal intracellular
glucose concentration

𝑡 1. 0 𝐺
𝑐𝑒𝑙𝑙
𝐶 (𝑡) 10-3 mM

𝐺𝑆𝑔 Intracellular glucose
concentration

𝑡 1. 0 𝐺
𝑐𝑒𝑙𝑙
𝐶 (𝑡) 10-3 mM

𝐴𝑇𝑃𝑆𝑔 Intracellular ATP
concentration

𝑡 + ∆𝑡 0. 9 (α𝑆𝑔 𝐺
𝑖𝑐
𝑆𝑔(𝑡) + 𝑘

𝐴𝑇𝑃
𝑆𝑔 𝐴𝑇𝑃𝑆𝑔 (𝑡))

+  0. 11  𝐴𝑇𝑃
𝐼𝑁𝑆1𝐸
𝐶 (𝑡 + ∆𝑡)

10-4 mM

𝐺𝐿𝑃1𝑅𝑆𝑔 GLP1R activity 𝑡  𝑘
𝐺𝐿𝑃1
𝑆𝑔 𝐺𝐿𝑃1𝑆𝑔(𝑡) +   𝐺𝐿𝑃1𝑅𝐶(𝑡) 10-3 -

∆𝐺
𝑑
𝐺𝐼 Rate of glucose intake

from food digestion
𝑡 1. 0 ∆𝐺

𝑑
𝐶(𝑡) 10-6 mM min-1

𝐺𝐿𝑃1𝐺𝐿 Plasma GLP1
concentration

𝑡 1. 0 𝐺𝐿𝑃1𝐶(𝑡) 10-3 pM
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Additional Supplementary Figures and Movie

Figure S14. Effect of metamodeling on model accuracy and precision. (A) Statistical dependency of

the output systematic error ( ) of the variable in the postprandial response model on the input𝑒𝑟𝑟 𝐺
𝑏
𝑃𝑅

systematic error of the variable in the vesicle exocytosis model. The input systematic error for is𝑘
𝑡
𝑉𝐸 𝐺

𝑏
𝑃𝑅

0.0. The coupling coefficient corresponds to the slope of the line. (B) Statistical dependency of the output

random error (𝜎) of on the input random error of . Input was presented as evidence with equal𝑘
𝑡
𝑉𝐸 𝐺

𝑏
𝑃𝑅

𝑘
𝑡
𝑉𝐸

values for all time steps. The input random error for is 1.0. For both (A) and (B), the reference values𝐺
𝑏
𝑃𝑅

used for computing the systematic and random errors of and are 5.1 mM and 10.0 m/s,𝐺
𝑏
𝑃𝑅

𝑘
𝑡
𝑉𝐸

respectively. All output values are at t = 100 min.
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Movie S1. A sample coarse-grained Brownian dynamics trajectory contributing to the vesicle
exocytosis input model. A 32.8 μs trajectory is shown. See legend of Figure S3. A single insulin vesicle
is colored in red, highlighting the spatiotemporal trajectory of a single secretion event, including glucose
activation, transport, and secretion. Following secretion, the vesicle is “reborn” inside the cytoplasm,
modeling a new vesicle biogenesis event. The simulation time step is 10 nanoseconds, and the animation
shows snapshots at 200 nanosecond intervals.
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