A Small Molecule Produced by *Lactobacillus* Species Blocks *Candida albicans* Filamentation by Inhibiting a DYRK1-Family Kinase

SUPPLEMENTARY FIGURES

Supplementary Fig. 1: Flow cytometry used to quantify *C. albicans* filamentation. a) Gating strategy used for flow cytometry experiments involving *pHWP1-GFP C. albicans*. b) Growth

curve of wild-type *C. albicans* cultured in the presence of 0% or 30% v/v *Lactobacillus*conditioned medium for 24 hours at 30°C under shaking conditions. Growth was assessed by measuring OD_{600} every 15 minutes for 24 hours. Source data are provided as a Source Data file. **c)** DNase I, RNase A, or Proteinase K treatment (100 mg/L, one hour at 37 °C) did not impair the filamentation-repressing activity of *L. rhamnosus*-conditioned medium (30% v/v). After treatment, media were added to cultures of *C. albicans* and cells were imaged after incubation at 42 °C for 6 hours. Data represents two biological replicates.

	 Blocked Not Blocked 	Filar	entation Growth
Sphingomonas aurantiaca			
Escherichia coli			
Klebsiella pneumoniae			
Pasteurella pneumotropica			
Stenotrophomonas rhizophila			
Parabacteroides distasonis			
Barnesiella viscericola			
Prevotella loescheii			
Bacteroides rodentium			
Bacteroides sartorii			
Bacteroides xylanisolvens			
Bacteroides faecichinchillae			
Bacteroides acidifaciens			
Adlercreutzia equolifaciens			
Enterorhabdus mucosicola			
Olsenella umbonate			
Olsenella profuse			
Bifidobacterium pseudolongum			
Microbacterium dextranolyticum			
Microbacterium halimionae			
Propionibacterium acnes			
Propionibacterium humerisii			
Clostridium polysaccharolyticum			
Ruminococcus gauvreauii			
**Eisen. Tayi			
Clostridium perfringens			
Clostridium sartagoforme			
Faecalicoccus acidiformans			
Streptococcus danieliae			
Ligilactobacillus animalis			
Limosilactobacillus reuteri			
Lactobacillus intestinalis			
Lactobacillus gasseri			
Lactobacillus johnsonii			
Enterococcus faecalis			
Enterococcus hirae			
Enterococcus lactis			
Staphylococcus sapyrophyticus			
Staphylococcus xylosus			
Staphylococcus simulans			
Staphylococcus haemolyticus			
Staphylococcus epidermis			
Staphylococcus caprae			
Staphylococcus capitis			

Supplementary Fig. 2: Select Lactobacillus species and Enterococcus faecalis inhibit C.

albicans hyphal morphogenesis without affecting growth. Conditioned-medium (30% v/v) from 44 bacterial isolates from the mouse gut and nine industrial *Lactobacillus* isolates were tested for their ability to block *C. albicans* filamentation in response to high temperature (42 °C, 6 hours). Growth was assessed qualitatively by light microscopy. Red indicates a block in filamentation or impaired growth. Blue represents filamentous growth and robust growth.

Supplementary Fig. 3: Identification of Lactobacillus-secreted 1-ABC. a) Tandem mass

spectrometry fingerprint of 1-ABC conforms to the elucidated structure of 1-ABC. b) 1H NMR Spectrum for 1-ABC in d6-DMSO. c) 13C NMR Spectrum for 1-ABC in d6-DMSO. d) 1-ABC treatment did not affect *C. albicans* viability, as indicated by propidium iodide staining. Aliquots of cells were treated with 70% ethanol to serve as a positive control for cell death and fluorescence was visualized via microscopy. Data represent two biological replicates. e) 1-ABC blocks *C. albicans* filamentation in response to diverse inducing cues including elevated temperature (42 °C, 6 hours, YPD), 10% serum (37 °C, 3 hours, YPD), 5 mM N-acetylglucosamine (GlcNAc; 37 °C, 3 hours, YPD), Lee's Medium (37°C, 6 hours), Spider Medium (37 °C, 6 hours), and growth under anerobic conditions (37 °C, 4 hours, YPD). Data represent two biological replicates. f) Growth curve of wild-type *C. albicans* cultured in the presence of 0 μ M or 200 μ M 1-ABC for 24 hours at 30°C under shaking conditions. Growth was assessed by measuring OD₆₀₀ every 15 minutes for 24 hours. Source data are provided as a Source Data file.

a		30)°C ————————————————————————————————————		<u> </u>
Lineage 1	Lineage 2	Lineage 3	Lineage 4	Lineage 5	Lineage 6
50 µm					

`										
	Lineage	Gene		Description			Su	bstitution	Туре о	of Mutation
	3	ACP1	Mitochondrial acyl biosynthesis	carrier protein	involved in fatt	ty acid	M19I		LOH	
	4	orf19.1831	Unknown function				T124A	\	LOH	
	5	orf19.3728	Predicted phospha	itase binding a	nd regulation		N222T	г	LOH	
	6	YKU80	NHEJ double stran	nd break repair			L152I		LOH	
	Parent Juneage 3	Chr1	Chr2		Chr4	Chr5	Chr6	chr7 		
	Lineage 4	halaidaad affilianaaniillaaniildaa		ر مذابع منبط مبناء اسل ر		(uiqila,uinii)	nderen der		handalaaddidha	
	Lineage 5	14	alladire ala constantisti dalla dalla	hand and the second s	alkanser helen for		diplocation field		arana da ing Miliper	
	Lineage 6 کی استان ا	iianaigadaaligikianagadaliseigeiseig A		hanahil and a shiring a sh	andreitenska andre andre and and and a second se		aydurooyddigig gydd	hiniteria beretaki	h	

Supplementary Fig. 4: Selection-based strategy identifies six independent mutants with

restored filamentation in the presence of 1-ABC. a) The six lineages capable of filamenting in response to 1-ABC do not exhibit constitutive filamentation. Cultures were grown at 30°C for 18 hours. Data represents three biological replicates. b) Whole-genome sequencing analysis of all six mutant lineages did not detect any copy number variants in the mutants relative to the parental strain. Copy number variant analysis was conducted and visualized using the Y-MAP software¹. Summary of whole-genome sequencing results for Lineages 3-6. All identified loss-ofheterozygosity events or single nucleotide polymorphisms that occurred within open reading frames are shown. Results were independently validated using Sanger sequencing. c) Deletion of *OCA6* does not affect the *C. albicans* response to 1-ABC. Filamentation was induced by growth at elevated temperature (42° C, 6 hours). Data represent three biological replicates. d) Heterozygous deletion of *ROB1* does not affect the *C. albicans* response to 1-ABC. Filamentation was induced by growth at elevated temperature (42° C, 6 hours). Data represent three biological replicates.

а	Compound	Structure	Minimum Effective Concentration	Inactivation by HepG2
	1-ABC		25 μΜ	YES
	Beta-carboline-3- carboxylic acid methylamide		100 µM	YES
	1-ECBC		50 µM	NO
	Harmane		200 µM	YES
	Norharmane		>200 µM	YES
	, ^o Harmine		200 µM	N/A

b

Supplementary Fig. 5: 1-ECBC inhibits C. albicans filamentation and is not inactivated by

human cells. a) Bioactivity and stability data for β -carbolines as monitored by ability to block *C*. *albicans* filamentation induced by 5% serum at 37 °C for six hours. b) 1-ABC was inactivated by human HepG2 cells following incubation with a monolayer of cells overnight, while the alternative β -carboline, 1-ECBC, retained activity. *C. albicans* filamentation was induced with 5% serum at 37 °C for six hours. Light microscopy images were taken at 10X magnification. Data represent two biological replicates.

SUPPLEMENTARY TABLES

Supplementary Table 1: Strains used in this study.

Accession	Strain Name	Genotype	Source
Number			
CaLC239	SN95	arg4∆/arg4∆ his1∆/his1∆ URA3/ura3∷imm434 IRO1/iro1∷imm434	2
CaLC715	<i>HWP1p-</i> <i>GFP/HWP1</i>		3
CaLC1724	GRACE-1198	ura3::imm434/ura3::imm434 his3::HISG/his::HISGtetR- GAL4AD::URA3 yak1::HIS3 SAT1-tetp- YAK1	4
CaLC3365	CaSS1	ura3::imm434/ura3::imm434 his3::HISG/his::HISGtetR- GAL4AD::URA3	4
CaLC3900	HWP1p-NAT- HIS/HWP1	arg4∆/arg4∆ his1∆/his1∆ URA3/ura3::imm434 IRO1/iro1::imm434 HWP1p-NAT-HIS/HWP1	5

LrLC4744	Lacticaseibacillus rhamnosus R0011	Wild type	Lallemand Health Solutions Inc.
LhLC4745	<i>Lactobacillus</i> <i>helveticus</i> R0052	Wild type	Lallemand Health Solutions Inc.
LcLC4746	<i>Lacticaseibacillus</i> <i>casei</i> HA108	Wild type	Lallemand Health Solutions Inc.
LrLC4747	Lacticaseibacillus rhamnosus HA111	Wild type	Lallemand Health Solutions Inc.
LrLC4748	Lacticaseibacillus rhamnosus HA114	Wild type	Lallemand Health Solutions Inc.
LbLC4749	<i>Levilactobacillus</i> <i>brevis</i> HA112	Wild type	Lallemand Health Solutions Inc.
LrLC4750	<i>Limosilactobacill</i> <i>us reuteri</i> HA118	Wild type	Lallemand Health Solutions Inc.
LpLC4751	Lactiplantibacillu s plantarum HA119	Wild type	Lallemand Health Solutions Inc.
CaLC7195	Evolved Lineage	arg4∆/arg4∆ his1∆/his1∆ URA3/ura3::imm434 IRO1/iro1::imm434 HWP1p-NAT-HIS/HWP1 OCA6I43/OCA6 I43	This Study

CaLC7196	Evolved Lineage	arg4Δ/arg4Δ his1Δ/his1Δ URA3/ura3::imm434 IRO1/iro1::imm434 HWP1p-NAT-HIS/HWP1 ROB1L672V/ROB1	This Study
CaLC7197	Evolved Lineage	arg4∆/arg4∆ his1∆/his1∆ URA3/ura3::imm434 IRO1/iro1::imm434 HWP1p-NAT-HIS/HWP1 ROB1L672V/ROB1	This Study
CaLC7198	Evolved Lineage	arg4∆/arg4∆ his1∆/his1∆ URA3/ura3∷imm434 IRO1/iro1∷imm434 HWP1p-NAT-HIS/HWP1 orf19.1831A124/orf19.1831A124	This Study
CaLC7199	Evolved Lineage	arg4∆/arg4∆ his1∆/his1∆ URA3/ura3::imm434 IRO1/iro1::imm434 HWP1p-NAT-HIS/HWP1 orf19.3728T222/orf19.3728T222	This Study
CaLC7200	Evolved Lineage	arg4Δ/arg4Δ his1Δ/his1Δ URA3/ura3::imm434 IRO1/iro1::imm434 HWP1p-NAT-HIS/HWP1 YKU80I152/YKU80I152	This Study
CaLC7201	As CaLC7195, Oca6 ^{N43} /Oca6 ^{I43}	his1//his1/ URA3/ura3::imm434 IRO1/iro1::imm434 HWP1p-NAT- HIS/HWP1 OCA6N43::ARG/OCA6 I43	This Study
CaLC7202	As CaLC3900, Oca6 ^{I43} /Oca6 ^{I43}	his1/his1/ URA3/ura3::imm434 IRO1/iro1::imm434 HWP1p-NAT- HIS/HWP1 OCA6I43::ARG/OCA6I43::ARG	This Study

CaLC7203	As CaLC7196, <i>ROB1/ROB1</i>	his1//his1/ URA3/ura3::imm434 IRO1/iro1::imm434 HWP1p-NAT- HIS/HWP1 ROB1::ARG/ROB1	This Study
CaLC7285	As CaLC3900, <i>ROB1/ROB1^{L672V}</i>	his1//his1/ URA3/ura3 ::imm434 IRO1/iro1 ::imm434 HWP1p-NAT- HIS/HWP1 ROB1/ROB1L672V::ARG	This Study
CaLC7286	As CaLC7195, yak1∆/yak1∆	his1A/his1A URA3/ura3 ::imm434 IRO1/iro1 ::imm434 HWP1p-NAT- HIS/HWP1 OCA6I43/OCA6I43 yak1::ARG/yak1::ARG	This Study
CaLC7287	As CaLC7196, yak1∆/yak1∆	his1A/his1A URA3/ura3 ::imm434 IRO1/iro1 ::imm434 HWP1p-NAT- HIS/HWP1 ROB1/ROB1L672V yak1::ARG/yak1::ARG	This Study
CaLC7453	As CaLC3365, tetO- <i>YAK1-HIS3-</i> FLAG/ tetO- <i>YAK1-HIS3-</i> FLAG	ura3::imm434/ura3::imm434 his3::HISG/his::HISGtetR- GAL4AD::URA3 HygB-TAR-tetO-YAK1- 6his3Flag-SAT1/HygB-TAR-tetO-YAK1- 6his3Flag-SAT1	This Study

Supplementary Table 2: Plasmids used in this study.

Plasmid	Description	Source
pLC1031	HygB-TAR-tetO	6
pLC1081	pV1093	7
pLC1100	pFA-3HA-ARG	8

Accession Number	Name	Sequence (5'-3')
oLC2637	CaROB1AB +1346F	TGCTGCTTTGATAGCTTCTGG
oLC2888	CaROB1-372F	CCTCATGAATACTCAGCTGAG
oLC4714	tetOp+488F	TCGTTTCTGATGGGCTTTTC
oLC5570	CdARG4+1309-F	AGTGTGGAAAGAAGAGATGC
oLC6393	CaYAK1AB-91-F	AACGCAAGAGATCACATACC
oLC6926	SNR52/F	AAGAAAGAAAGAAAACCAGGAGTGAA
oLC6927	sgRNA/R	ACAAATATTTAAACTCGGGACCTGG
oLC6928	SNR52/N	GCGGCCGCAAGTGATTAGACT
oLC6929	sgRNA/N	GCAGCTCAGTGATTAAGAGTAAAGATGG
oLC8303	ROB1+2391R	CATCCCTTCTTCTTTGTTCC
oLC8730	CaOCA6 -3 F	ACAATGTCACAAATTGTCCC
oLC8740	CaOCA6 -262 F	TAGTTGTTGGTGTGCCTACC
oLC8741	CaOCA6 +475 R	TGTATTTCGCCGTGGAATCC
oLC8759	CaROB1 + 3521 R	CTCAAAGTGGGTGCTATAGG
oLC8906	ROB1 + 3353 + ARG4 up homology R	TCGATACATTTGCGGTACAGAAATGTTCTT AATCTTCGGGTTTGAGTACC
oLC8907	ARG4 -1033 + ROB1 ds homology F	CGGGTACTCAAACCCGAAGATTAAGAACA TTTCTGTACCGCA
oLC8908	ARG4 + 3211 + ROB1 ds homology R	ACTACTACTACTACACTCTAACACGGATA AATACACCCTTTAGTCGGTGGTGGAAATG CACGTTTGATTTACAAAAGCTATTTGCATC GT
oLC8916	OCA6 + 917 + ARG4 up homology R	TCGATACATTTGCGGTACAGAAATGTTCTT AAGAATTGGACATGACTCCG
oLC8917	ARG4 -1033 + OCA6 ds homology F	CCGGCCAATACGGAGTCATGTCCAATTCTT AAGAACATTTCTGTACCGCA

Supplementary Table 3: Oligonucleotides used in this study.

oLC8918	ARG4 + 3211 +	AAGCGGTTCAAAATGACCGCCAGTGGTGG
	OCA6 ds	ATTTCACAAATTGGAAACTTTTGTGACTTA
	homology R	CCCTGTGAATGACAAAAGCTATTTGCATC
		GT
oLC9199	oLC9199_SNR52/	CCACATTGTTATTCTTATTCCAAATTAAAA
	R_Yak1tag	ATAGTTTACGCAAGTC
oLC9200	oLC9200_SNR52/	GAATAAGAATAACAATGTGGGTTTTAGAG
	R_Yak1tag	CTAGAAATAGCAAGTTAAA
oLC9201	oLC9201_Yak1 del	TCACATACCATTAATAATATATAAGACCA
	F	ACCATTGTAACCACACAAAGTATCACAGT
		ATCACCGACAAATTTATACATAATGGCGG
		TCGACGGATCCCC
oLC9203	oLC9203_Yak1	AAACAAGATTGTTACATAAACAAAATTAA
	del/tag R	TTAAAAAGTATCATTAAAGAGTATAAAAC
		TTAATACTGGTCAACCTCCCCCTCTCGATG
		AATTCGAGCTCG
oLC9204	oLC9204_Yak1 orf	CAAATTCCTGGATTCCGTAACCCTTGG
	check F	
oLC9205	oLC9205_Yak1 orf	GCAATTCCAGCAGGACCAGAAGG
	check R	
oLC9206	oLC9206_Yak1 tag	CAATGATTGAAAAAGAATATCATGATCGA
	check F	
oLC9207	oLC9207_Yak1 tag	TATAAACCATATTCAGTTCTTAACAA
	check R	
oLC9452	CaYAK1_gRNA F	GATACTTTGTGTGGGTTACAAGTTTTAGAGC
		TAGAAATAGCAAGTTAAA
oLC9453	CaYAK1_gRNA R	TTGTAACCACACAAAGTATCCAAATTAAA
		AATAGTTTACGCAAGTC
oLC9512	oLC9512_1031_tet	AATTCTGATCCTCCCCCTTTTTTCCCTCAAG
	O-Yak1 F	TTCAAACAAAACGCAAGAGATCACATACC
		ATTAATAATATATAAGACCAAGACGTCGT
		ATAGTGCTTGCT
oLC9513	oLC9513_1031_tet	TGCCAATTTCCTCCTATAGAATTGTGTCGA
	O-Yak1 R	TTAAAATTATAATTATAATTAGAACTGTTG
		TTATTGTTATTATATGCCATCGACTATTTA
		TATTTGTATG

SUPPLEMENTARY REFERENCES

- 1. Abbey, D. A. *et al.* YMAP: A pipeline for visualization of copy number variation and loss of heterozygosity in eukaryotic pathogens. *Genome Med.* **6**, 1–15 (2014).
- Noble, S. M. & Johnson, A. D. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen *Candida albicans*. *Eukaryot*. *Cell* 4, 298–309 (2005).
- Staab, J. F., Bahn, Y. S.& Sundstrom, P. Integrative, multifunctional plasmids for hyphaspecific or constitutive expression of green fluorescent protein in *Candida albicans*. *Microbiology* 149, 2977–2986 (2003).
- 4. Roemer, T. *et al.* Large-scale essential gene identification in *Candida albicans* and applications to antifungal drug discovery. *Mol. Microbiol.* **50**, 167–181 (2003).
- 5. Polvi, E. J. *et al.* Functional divergence of a global regulatory complex governing fungal filamentation. *PLOS Genet.* **15**, e1007901 (2019).
- 6. Kim, S. H. *et al.* Genetic analysis of *Candida auris* implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance. *mBio* **10**, e02529-18 (2019).
- 7. Vyas, V. K., Barrasa, M. I. & Fink, G. R. A *Candida albicans* CRISPR system permits genetic engineering of essential genes and gene families. *Sci. Adv.* **1**, e1500248 (2015).
- 8. Zhang, A. *et al.* The Tlo proteins are stoichiometric components of *Candida albicans* mediator anchored via the Med3 subunit. *Eukaryot. Cell* **11**, 874–884 (2012).