Supplementary Information for ## Dementia subtype prediction models constructed by penalized regression methods for multiclass classification using serum microRNA expression data Yuya Asanomi¹, Daichi Shigemizu^{1–3*}, Shintaro Akiyama¹, Takashi Sakurai^{4,5}, Kouichi Ozaki^{1,3}, Takahiro Ochiya^{6,7}, and Shumpei Niida^{1*} ¹ Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan ² Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan ³ RIKEN Center for Integrative Medical Sciences, Yokohama, Japan ⁴ Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan ⁵ Department of Cognition and Behavior Science, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan ⁶ Division of Molecular and Cellular Medicine, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan ⁷ Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan ^{*} Correspondence should be addressed to D.S. (daichi@ncgg.go.jp) or S.N. (sniida@ncgg.go.jp) **Supplementary Fig. S1.** Five-fold cross-validation on a discovery set of Dataset 1. The x-axis shows the number of miRNAs (m). The y-axis shows α , which is used for penalized regression methods. A combination of $(m, \alpha) = (510, 0.3)$ achieved the highest mean accuracy in the test set (blue rectangle). **Supplementary Fig. S2.** Five-fold cross-validation on a discovery set of Dataset 2. The x-axis shows the number of miRNAs (m). The y-axis shows α , which is used for penalized regression methods. a. A combination of $(m, \alpha) = (530, 0.4)$ achieved the highest mean accuracy in the test set (blue rectangle). b. A combination of $(m, \alpha) = (470, 0.2)$ achieved the highest mean of mean accuracies among subtypes in the test set (blue rectangle). **Supplementary Fig. S3.** Five-fold cross-validation on a discovery set of Dataset 3. The x-axis shows the number of miRNAs (m). The y-axis shows α , which is used for penalized regression methods. Combinations of $(m, \alpha) = (200, 0.9)$ and (200, 1.0) achieved the same highest mean accuracy in the test set (blue rectangle).