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Web Appendix 1 The nested trial design with subsampling using covariate-

dependent sampling probabilities

As noted in the main text, a more general version of the nested trial design assumes that the sampling

probabilities for non-randomized individuals depend on baseline auxiliary covariates [1]. Let X = (X1, X2),

where X1 represents baseline auxiliary covariates that are available on all members of the actual population in

which the trial is nested, and X2 represents covariates that are only measured among randomized individuals

(S = 1) and sampled non-randomized individuals (S = 0, D = 1).

The identifiability conditions and identification results remain the same as in the main text; but the

sampling properties of this design are

Pr[D = 1|S = 1] = 1, and

Pr[D = 1|X,A, Y, S = 0] = Pr[D = 1|X1, S = 0] ≡ c(X1),

where 0 < c(X1) ≤ 1 is a known function that only depends on X1, allowing the sampling of non-randomized

individuals to depend on the auxiliary covariates that are available from all members of the actual population.
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Web Appendix 2 Identification of the probability of trial participation

in the nested trial design with subsampling (simple

random sampling)

In this section we present identification results for the marginal and conditional probabilities of trial

participation in nested trial designs with subsampling when a simple random sample of non-randomized

individuals is obtained.

Identification of the marginal probability of trial participation

Using the definition of conditional probability and re-arranging,

Pr[S = 1] =
Pr[S = 1|D = 1] Pr[D = 1]

Pr[D = 1|S = 1]
and Pr[S = 0] =

Pr[S = 0|D = 1] Pr[D = 1]

Pr[D = 1|S = 0]
.

Taking the ratio of the above expressions and exploiting the sampling properties for non-nested trial designs,

Pr[S = 1]

Pr[S = 0]
=

Pr[S = 1|D = 1]

Pr[S = 0|D = 1]
× Pr[D = 1|S = 0]

Pr[D = 1|S = 1]

=
Pr[S = 1|D = 1]

Pr[S = 0|D = 1]
× c.

With a bit of algebra, the above expression can be re-arranged to show that

Pr[S = 1] =

{
1 +

Pr[S = 0|D = 1]

Pr[S = 1|D = 1]
× c−1

}−1

.

By setting c = 1 we see that in the nested-trial design with a census of non-randomized individuals

Pr[S = 1] = Pr[S = 1|D = 1].

Identification of the conditional probability of trial participation

The argument for the conditional probability is parallel to the one presented above for the marginal

probability. Using properties of conditional probability,

Pr[S = 1|X] =
Pr[S = 1|X,D = 1] Pr[D = 1|X]

Pr[D = 1|X,S = 1]
and

Pr[S = 0|X] =
Pr[S = 0|X,D = 1] Pr[D = 1|X]

Pr[D = 1|X,S = 0]
.
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Taking the ratio of the above expressions and exploiting the sampling properties for non-nested trial designs,

Pr[S = 1|X]

Pr[S = 0|X]
=

Pr[S = 1|X,D = 1]

Pr[S = 0|X,D = 1]
× Pr[D = 1|X,S = 0]

Pr[D = 1|X,S = 1]

=
Pr[S = 1|X,D = 1]

Pr[S = 0|X,D = 1]
× c.

The above expression can be re-arranged to show that

Pr[S = 1|X] =

{
1 +

Pr[S = 0|X,D = 1]

Pr[S = 1|X,D = 1]
× c−1

}−1

.

By setting c = 1 we see that in the nested-trial design with a census of non-randomized individuals

Pr[S = 1|X] = Pr[S = 1|X,D = 1].
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Web Appendix 3 Identification of the probability of trial participation

in the nested trial design with subsampling (covariate-

dependent sampling)

In this section we present identification results for the marginal and conditional probabilities of participation

in nested trial designs with subsampling when the sampling of non-randomized individuals uses covariate-

dependent sampling probabilities. The sampling properties of this design are given in Web Appendix 1.

Identification of the marginal probability of trial participation

Using the results from Web Appendix 2, under covariate-dependent sampling of non-randomized individuals,

it is still true that

Pr[S = 1]

Pr[S = 0]
=

Pr[S = 1|D = 1]

Pr[S = 0|D = 1]
× Pr[D = 1|S = 0]

Pr[D = 1|S = 1]

=
Pr[S = 1|D = 1]

Pr[S = 0|D = 1]
× Pr[D = 1|S = 0],

where the second equality follows from the sampling properties of the design.

We will now show that Pr[D = 1|S = 0] is identifiable in this design, using the known sampling

probabilities c(X1) among the non-randomized individuals. To see that, consider the expectation of the

inverse of the sampling probabilities, among sampled non-randomized individuals:

E

[
1

c(X1)

∣∣∣S = 0, D = 1

]
= E

[
1

Pr[D = 1|X1, S = 0]

∣∣∣S = 0, D = 1

]

=
1

Pr[S = 0, D = 1]
E

[
I(S = 0, D = 1)

Pr[D = 1|X1, S = 0]

]

=
1

Pr[S = 0, D = 1]
E

[
Pr[S = 0, D = 1|X1]

Pr[D = 1|X1, S = 0]

]

=
1

Pr[S = 0, D = 1]
E
[

Pr[S = 0|X1]
]

=
Pr[S = 0]

Pr[S = 0, D = 1]

=
1

Pr[D = 1|S = 0]
.
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Using this result, we can write

Pr[S = 1]

Pr[S = 0]
=

Pr[S = 1|D = 1]

Pr[S = 0|D = 1]
×
{

E

[
1

c(X1)

∣∣∣S = 0, D = 1

]}−1

,

which establishes the identifiability of the marginal odds of trial participation in the nested trial design with

covariate-dependent sampling of non-randomized individuals because all quantities on the right-hand-side

of the above equation are conditional on D = 1.

Last, with a bit of algebra, we obtain the following expression for the marginal probability of trial

participation:

Pr[S = 1] =

{
1 +

Pr[S = 0|D = 1]

Pr[S = 1|D = 1]
× E

[
1

c(X1)

∣∣∣S = 0, D = 1

]}
.

Identification of the conditional probability of trial participation

Using an argument similar to the one in Web Appendix 2, but applied to the case of covariate-dependent

sampling of non-randomized individuals, we obtain

Pr[S = 1|X] =

{
1 +

Pr[S = 0|X,D = 1]

Pr[S = 1|X,D = 1]
× 1

c(X1)

}−1

.

This result establishes the identifiability of the conditional probability of trial participation in nested

trial designs with covariate-dependent sampling of non-randomized individuals because the inverse of the

conditional odds of trial participation in the sampled data,
Pr[S = 0|X,D = 1]

Pr[S = 1|X,D = 1]
, are identifiable, and c(X1)

is known by design.

A note about the identification of counterfactual quantities

To obtain identification results analogous to those in the main text, for the counterfactual quantities of

interest, E[Y a] and E[Y a|S = 0], in the nested trial design with subsampling using covariate-dependent

sampling probabilities, in addition to the identifiability of the probability of trial participation, we need to

also establish the identifiability of the distribution of covariates in the target population and in the non-

randomized subset of that population.1 Because the identifiability of the distribution of the covariates in

the randomized subset of the population follows immediately from the sampling properties, and Pr[S = 1]

is also identifiable as argued earlier in this section of the Appendix, the main issue is the identifiability of

the distribution of covariates among the non-randomized subset of the target population.

1An alternative identification approach for E[Y a] in the nested trial design with subsampling using covariate-dependent
sampling probabilities is presented in [1].
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Let x = (x1, x2) be a realization of X = (X1, X2). With little loss of generality, we will show that the

density function f(x|S = 0) of the baseline covariates in the non-randomized subset of the target population

is indeed identifiable as

f(x|S = 0) =
1

c(x1)× θ
f(x|S = 0, D = 1),

where θ = E

[
1

c(X1)

∣∣∣S = 0, D = 1

]
and all quantities on the right hand side are known by design or

conditioned on the subset of sampled non-randomized individuals, (S = 0, D = 1).

As shown earlier in this section of the Appendix, Pr[D = 1|S = 0] =

{
E

[
1

c(X1)

∣∣∣S = 0, D = 1

]}−1

;

thus, θ = 1/Pr[D = 1|S = 0]. Using this result, the definition of c(X1), and the sampling properties of the

design, we can write

1

c(x1)× θ
=

Pr[D = 1|S = 0]

Pr[D = 1|X1 = x1, S = 0]
=

Pr[D = 1|S = 0]

Pr[D = 1|X = x, S = 0]
.

It follows that

1

c(x1)× θ
f(x|S = 0, D = 1) =

Pr[D = 1|S = 0]

Pr[D = 1|X = x, S = 0]
× f(x|S = 0, D = 1)

=
Pr[D = 1|S = 0]

Pr[D = 1|X = x, S = 0]
× f(x|S = 0) Pr[D = 1|X = x, S = 0]

Pr[D = 1|S = 0]

= f(x|S = 0),

which establishes the desired result.
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Web Appendix 4 Estimating the conditional probability of trial participation

in the nested trial design with subsampling (simple

random sampling)

We sketch the proof for the convergence in probability of the estimators for the conditional probability of

trial participation described in the main text, without delving into the technical conditions needed to make

the arguments more rigorous.

We assume a model p(X; γ) for Pr[S = 1|X], where γ is a finite-dimensional parameter. Consider the

likelihood function for the nested trial design with a census of the actual population,

L (γ) =
n∏

i=1

[
p(Xi; γ)

]Si
[
1− p(Xi; γ)

]1−Si ,

and, the pseudo-likelihood function for the nested trial design with known sampling probability of the non-

randomized individuals,

LW(γ) =
n∏

i=1

[
p(Xi; γ)

]SiDi
[
1− p(Xi; γ)

][(1−Si)Di]/c.

For L (γ), the sample size-normalized objective function to be maximized is

̂̀(γ) =
1

n

n∑
i=1

{
Si log p(Xi; γ) + (1− Si) log

[
1− p(Xi; γ)

]}
.

Provided the technical conditions for the uniform law of large numbers hold, the above objective function

converges uniformly in probability, in the sense of the definition in Section 2.1 of [2], to

`0(γ) = E
[
S log p(X; γ) + (1− S) log

[
1− p(X; γ)

]]
.

By Theorem 2.1 of [2], if `0(γ) is uniquely maximized at γ0, the parameter space is compact, and `0(γ)

is continuous, then the estimator γ̂ obtained by maximizing ̂̀(γ), converges in probability to γ0, that is,

γ̂
p−→ γ0.

For LW(γ), the sample size-normalized objective function to be maximized is

̂̀
W(γ) =

1

n

n∑
i=1

{
SiDi log p(Xi; γ) +

(1− Si)Di

c
log
[
1− p(Xi; γ)

]}
.
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Because c is assumed to be bounded away from 0, and provided the technical conditions for the uniform

weak law of large numbers hold, the above objective function converges uniformly in probability to

`W0(γ) = E

[
SD log p(X; γ) +

(1− S)D

c
log
[
1− p(X; γ)

]]
.

We will now show that `0(γ) = `W0(γ).

By design, if S = 1, then SD = 1; if S = 0, then SD = 0. Thus, to establish the result we only need to

show that

E
[
(1− S) log[1− p(X; γ)

]
= E

[
(1− S)D

c
log
[
1− p(X; γ)

]]
.

Starting from the right-hand-side,

E

[
(1− S)D

c
log
[
1− p(X; γ)

]]
= E

[
log
[
1− p(X; γ)

]∣∣S = 0, D = 1
]Pr[S = 0, D = 1]

c

= E
[

log
[
1− p(X; γ)

]∣∣S = 0
]

Pr[S = 0]

= E
[
(1− S) log

[
1− p(X; γ)

]]
,

which establishes the result.

Because `0(γ) = `W0(γ), it follows that the maximizer of ̂̀W(γ), γ̂W, converges in probability to γ0, that

is, γ̂W

p−→ γ0.

To obtain the asymptotic distribution of the estimators, we need additional technical conditions as in

Theorem 3.1 of [2]; provided these conditions hold, γ̂ and γ̂W are asymptotically normal.

8



Web Appendix 5 Estimating the conditional probability of trial participation

in the nested trial design with subsampling (covariate-

dependent sampling)

As in the previous section, we assume a model p(X; γ) for Pr[S = 1|X], where γ is a finite-dimensional

parameter. The weighted pseudo-likelihood function becomes

L ∗
W (γ) =

n∏
i=1

[
p(Xi; γ)

]SiDi
[
1− p(Xi; γ)

][(1−Si)Di]/c(X1i).

Note that the only difference between L ∗
W (γ) and LW(γ) is that the weights in the former depend on X1.

The sample size-normalized objective function to be maximized is

̂̀∗
W(γ) =

1

n

n∑
i=1

{
SiDi log p(Xi; γ) +

(1− Si)Di

c(X1i)
log
[
1− p(Xi; γ)

]}
.

Because c(X1) is assumed to be bounded away from 0, and provided the technical conditions for the uniform

weak law of large numbers hold, the above objective function converges uniformly in probability to

`∗W0(γ) = E

[
SD log p(X; γ) +

(1− S)D

c(X1)
log
[
1− p(X; γ)

]]
.

We will now show that `0(γ) = `∗W0(γ).

By design, if S = 1, then SD = 1; if S = 0, then SD = 0. Thus, to establish the result we only need to

show that

E
[
(1− S) log

[
1− p(X; γ)

]]
= E

[
(1− S)D

c(X1)
log
[
1− p(X; γ)

]]
.
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Starting from the right-hand-side,

E

[
(1− S)D

c(X1)
log
[
1− p(X; γ)

]]
= E

[
E

[
(1− S)D

c(X1)
log
[
1− p(X; γ)

]∣∣∣X1

]]

= E

[
1

c(X1)
E
[
(1− S)D log

[
1− p(X; γ)

]∣∣X1

] ]

= E

[
Pr[S = 0, D = 1|X1]

c(X1)
E
[
log
[
1− p(X; γ)

]∣∣X1, S = 0, D = 1
] ]

= E

[
Pr[S = 0|X1] E

[
log
[
1− p(X; γ)

]∣∣X1, S = 0, D = 1
] ]

= E

[
Pr[S = 0|X1] E

[
log
[
1− p(X; γ)

]∣∣X1, S = 0
] ]

= E

[
E
[
(1− S) log

[
1− p(X; γ)

]∣∣X1

] ]

= E
[
(1− S) log

[
1− p(X; γ)

]]
,

which establishes the result.

Because `0(γ) = `∗W0(γ), it follows that the maximizer of ̂̀∗W(γ), γ̂∗W, converges in probability to γ0, that

is, γ̂∗W
p−→ γ0.

In practical terms, this result suggests that the conditional probability of trial participation in the

target population can be estimated using a weighted regression of S on X among sampled patients, using

weights equal to 1 for randomized patients (all of whom are sampled); 1/c(X1) for sampled non-randomized

individuals; 0 for non-sampled non-randomized individuals.

As above, provided the technical conditions of Theorem 3.1 of [2] hold, γ̂∗W is asymptotically normal.
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