Supplemental information *Additional file 1*

Updated distribution maps of predominant Culex mosquitoes across the Americas

Morgan E. Gorris¹, Andrew W. Bartlow², Seth D. Temple^{3,4}, Daniel Romero-Alvarez^{1,5,6}, Deborah P. Shutt¹, Jeanne M. Fair², Kimberly A. Kaufeld³, Sara Y. Del Valle¹, Carrie A. Manore¹

¹Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM, USA
²Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, USA
³Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
⁴Department of Statistics, University of Washington, Seattle, WA, USA
⁵Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, USA
⁶OneHealth Research Group, Facultad de Medicina, Universidad de las Américas, Quito, Ecuador

Tables:

VectorBase	VectorMap	NEON	PHON	WADOH	Total
27	81	13	96	29	246
33	51	21	122	0	227
74	70	19	66	0	229
150	71	20	28	31	300
35	43	18	15	0	111
20	46	13	0	0	79
45	76	15	10	0	146
	27 33 74 150 35 20	27 81 33 51 74 70 150 71 35 43 20 46	27 81 13 33 51 21 74 70 19 150 71 20 35 43 18 20 46 13	27 81 13 96 33 51 21 122 74 70 19 66 150 71 20 28 35 43 18 15 20 46 13 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S1. The total number of presence data points for each *Culex* species used in model development, after filtering by the 30 km radial buffer.

Note: PHON is the Public Health Department of Ontario and WADOH is the Washington State Department of Health.

Culex species	Feature classes	λ	Train AUC	Mean Test AUC	Mean Difference AUC	Mean Test OR 10%	Var. Test OR 10%	AICc	ΔAICc	# of parameters
Pipiens	LQH	10	0.92	0.91	0.022	0.121	0.006	4261	43	37
Restuans	LQ	2	0.87	0.86	0.018	0.115	0.007	4033	45	21
Salinarius	LQH	20	0.85	0.83	0.019	0.115	0.004	4309	140	11
Tarsalis	LQH	20	0.85	0.84	0.015	0.099	0.005	5658	300	15
Erraticus	LQ	10	0.87	0.85	0.034	0.136	0.035	2049	20	11
Nigripalpus	L	5	0.89	0.87	0.039	0.129	0.012	1362	12	13
Quinque- fasciatus	LQH	10	0.90	0.88	0.024	0.131	0.011	2754	29	23

 Table S2. Final model specifications and performance metrics for each species.

Note: The feature classes are denoted as L for linear function, Q for quadratic function, and H for hinge function. Regularization parameters are denoted as " λ ", "AUC" is area under the curve, and "OR" is omission rate.

Table S3. Summary of environmental factors important for each of the seven Culex species

obtained from the literature review

Species	Variable class for	Environmental	Relationships between	Region over which	References	
Species	distribution modeling	variables	factor and mosquito	conclusions were made		
Culex erraticus	Land cover	Agricultural wetlands	Positive	Gulf Coastal Plain of Georgia, USA	[79]	
	Land cover	Trees and buttress roots	Encountered more often in hollow trees, and buttress roots	Costa Rica	[80]	
	Land cover	Bermuda grass	Higher number of mosquitoes oviposited in traps with Bermuda grass	San Antonio, TX, USA	[81]	
	Land cover	Unshaded	Prefers these conditions	Venezuela	[82]	
	Climate	Warm	Prefers these conditions	Venezuela	[82]	
	Land cover	Vegetated waters in flooded pastures	Prefers these conditions	Venezuela	[82]	
	Land cover	Swamp	Prefers these conditions	Venezuela	[82]	
	Land cover	Lagoon	Prefers these conditions	Venezuela	[82]	
	Land cover	Ground pools	Prefers these conditions	Venezuela	[82]	
	Land cover	Open areas	Prefers these conditions	Venezuela	[82]	
	Land cover	Eastern red cedar	Prefers these conditions	Oklahoma, USA	[83]	
	Land cover	Deciduous woodlands	Prefers these conditions	Oklahoma, USA	[83]	
Culex nigripalpus	Climate	Precipitation of driest month	Positively correlated	St. Johns County, FL, USA	[65]	
	Climate	Precipitation in wettest month	Negatively correlated	St. Johns County, FL, USA	[65]	
	Climate	Temperature seasonality	Negatively correlated	St. Johns County, FL, USA	[65]	
	Climate	Mean temperature of coldest quarter	Negatively correlated	St. Johns County, FL, USA	[65]	
	Land cover	Urban	Negatively correlated	St. Johns County, FL, USA	[65]	
	Climate	Isothermality	Negatively correlated	St. Johns County, FL, USA	[65]	

	Climate Land cover	Annual precipitation Hill shade	Negatively correlated Negatively correlated	St. Johns County, FL, USA St. Johns County, FL, USA	[65] [65]	
	Land cover	Bermuda grass	Higher number of mosquitoes oviposited	San Antonio, TX, USA	[81]	
	Land cover	Mixed vegetation	Negative	Florida, USA		
	Land cover	Roads (paved)	Prefers these conditions	Florida, USA	[84]	
	Land cover	Water (ponds)	Prefers these conditions	Florida, USA	[84]	
	Climate	High humidity	Favor high humidity	Florida, USA	[85]	
	Climate	Wet conditions	Prefers these conditions	Florida, USA	[86]	
	Land cover	Standing water	Prefers these conditions	Florida, USA	[86]	
	Land cover	Urban areas	Rarely found in urban areas	Florida, USA	[56]	
			Human WNV disease			
			incidence in Northeastern			
Culex	Land Cover	Urban areas	regions was positively	Northeastern USA	[57]	
pipiens			associated with urban land			
			covers.			
			Female survival decreased			
	Climate	Temperature	significantly between 20 and	Laboratory study	[42]	
			24C			
	T 1	Urban and suburban	Mostly urban and suburban	I UCA	[66]	
	Land cover	areas	mosquito	Iowa, USA	[55]	
		Temperature (means,	Thrive in warm conditions,			
	Climate	mins, maxs, over	but not extremely hot	Canada	[17]	
		certain periods, etc.)	conditions			
		Precipitation (annual,	Larva develop in standing			
	Climate	monthly)	water sites	Canada	[17]	
			Within 2 kms of			
	Land cover	Agricultural land	cropland/built-up land	Canada	[17]	
			Urban and suburban areas			
	Land cover	Non-forested area	are the main habitat	Connecticut, USA	[58]	
			Preferred larval environment			
	Climate	Salinity, pH, and	is clean, sweet, slightly	Chile	[87]	
		temperature of water	basic, warm water			

Culex quinquefasc iatus	Land cover	Urban areas	Human WNV disease incidence in Northeastern regions was positively associated with urban land covers	Northeastern USA	[57]
	Climate	Temperature	Female survival decreased significantly between 28 and 32C	Laboratory study	[42]
	Climate	Mean diurnal range	Negatively correlated	St Johns County, FL, USA	[65]
	Land cover	Leaf area index	Negatively correlated	St Johns County, FL, USA	[65]
	Land cover	Septic tanks	Septic tanks are important habitat	Puerto Rico	[88]
	Container/urban Land cover areas		Containers/urban setting are an important habitat	Tampa, FL, USA	[59]
	Land cover	Sewage areas	Sewage areas were breeding sites	Atlanta, GA, USA	[89]
Culex restuans	Climate	Temperature	Female survival decreased significantly between 20 and 24C	Laboratory study	[42]
	Land cover	Urban and rural areas	Found in rural and urban settings	Iowa, USA	[55]
	Land cover				[90]
	Land cover	Residential areas	Higher number of mosquitoes in residential areas	New Jersey, USA	[91]
	Land cover	Urban areas	Egg raft rate was significantly higher in urban land use and land cover habitats.	Urbana-Champaign, IL, USA	[92]
	Land cover	High density canopy coverage	High-density canopy coverage was most frequently associated with high Culex abundance in oviposition traps.	Urbana-Champaign, IL, USA	[92]

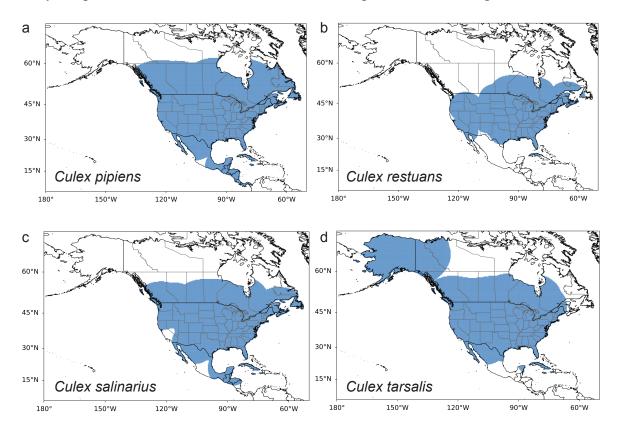
	Land cover	Habitat quality and quantity	nutrient-enriched containers and decrease ovipositing in containers with conspecific larvae	Southeastern MI, USA	[93]
	Land cover	Environmental correlates surrounding discarded tires	Culex were associated with factors related to the surrounding habitat (human population density, canopy cover, tire size)	Central IL, USA	[94]
Culex salinarius	Land cover	Areas with water (from NDVI)	Marshy land is the main habitat	Connecticut, USA	[58]
	Land cover	Salt marsh	Larvae found in undisturbed salt marshes	Suffolk Co, NY, USA	[95]
	Land cover	Freshwater wetlands	Larvae not considerably found	Suffolk Co, NY, USA	[95]
	Land cover	Artificial containers	Larvae not considerably found	Suffolk Co, NY, USA	[95]
	Land cover	Salt marshes	Adults found significantly more than at upland sites	Suffolk Co, NY, USA	[95]
	Climate	Season	Females most prevalent in spring and fall but active year-round	Chambers CO, TX, USA	[96]
	Climate	Ambient temperature	No effect	Iowa, USA	[97]
	Climate	Relative humidity	No effect	Iowa, USA	[97]
	Land cover	Shade	More commonly in deep	Delaware, USA	[98]
	Land cover	Wetland type	Mostly at Conservation Enhancement and Preservation Program ponds vs. retention ponds and constructed wetlands	Delaware, USA	[98]
	Land cover	Vegetation	More abundant in ponds with loosestrife, grasses (Poaceae), duckweed, and Phragmites, and tend to be	Delaware, USA	[98]

Female mosquitoes prefer

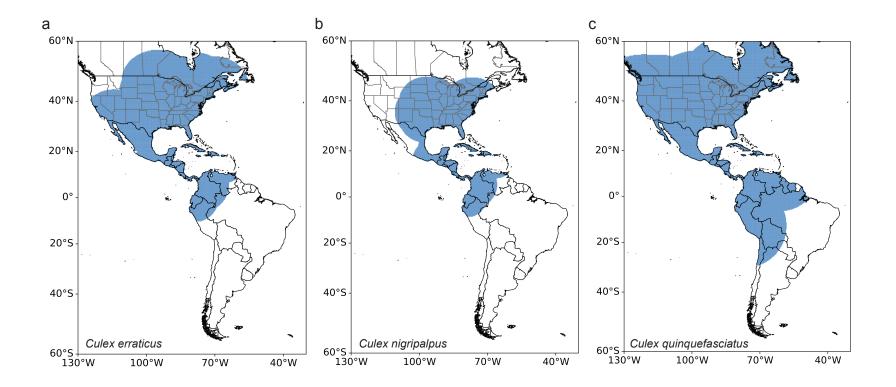
found in permanent ponds or

wetlands

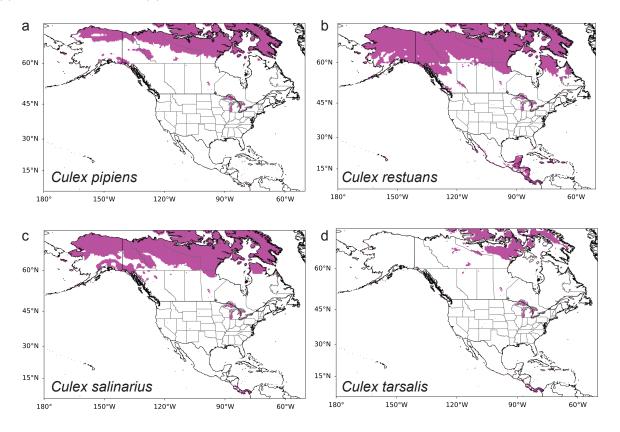
			Attracted to ground-based		
	Topography	Vegetation	light traps than traps	Connecticut, USA	[99]
			suspended in the tree canopy		
	Climate	Temperature	Prefers cooler/spring in FL	Florida, USA	[100]
			Human WNV disease		
Culex	T 1	A 1 1 1	incidence in the western US		[67]
tarsalis	Land cover	Agricultural areas	was positively associated	Western USA	[57]
			with agricultural land covers.		
			Positively correlated with		
	Land cover	Vegetation	grass/hay	Sioux Falls, SD, USA	[101]
	Land cover	Rural areas	Found in rural settings	Iowa, USA	[55]
	Land cover	Grassland/prairie	Grassland cover is favorable	Alberta, Manitoba, and	[16]
	Land cover	cover	habitat for the vector	Saskatchewan, Canada	[16]
	Climate	Monthly	Temperature is important	Alberta, Manitoba, and	[16]
	Chillate	temperatures	habitat consideration	Saskatchewan, Canada	[10]
			Increases with vector		
Climate	Climate	Monthly precipitation	abundance; negatively	Alberta, Manitoba, and	[16]
	Chinate	wontiny precipitation	coefficient for WNV	Saskatchewan, Canada	[10]
			infection rate model		
		Future climate	Vector abundance and WNV	Alberta, Manitoba, and	
	Climate	scenarios	infection rate increase with a	Saskatchewan, Canada	[16]
		secharios	warm & dry climate	,	
			Positively correlated with		
	Land cover	Irrigated land area	vector abundance; irrigated	North-central CO, USA	[102]
			land may make good habitat		
			for vector		
	Topography	Elevation	Negatively correlated with	North-central CO, USA	[102]
			vector abundance		
			Negatively correlated with		
	Land cover	Impervious surface	vector abundance, but a	North-central CO, USA	[102]
			positive regression		
			coefficient		

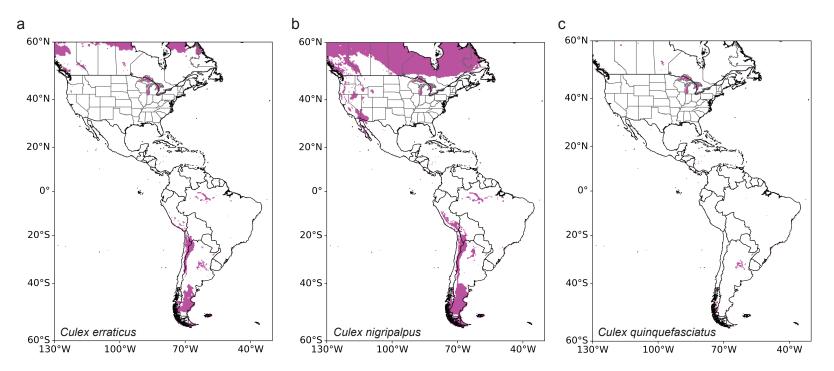

Climate	Dew point	Positively correlated with vector abundance	Bismark, ND, USA	[103]	
Climate	Day length	Positively correlated with	Bismark, ND, USA	[103]	
Chinate	Day length	vector abundance	Dismark, ND, CON	[105]	
Climate	Number of days	Positively correlated with	Bismark, ND, USA	[103]	
	below 0°C	abundance			
		Negatively correlated with			
Land cover	Flood gauge height	vector abundance due to	Bismark, ND, USA	[103]	
		extreme flooding			

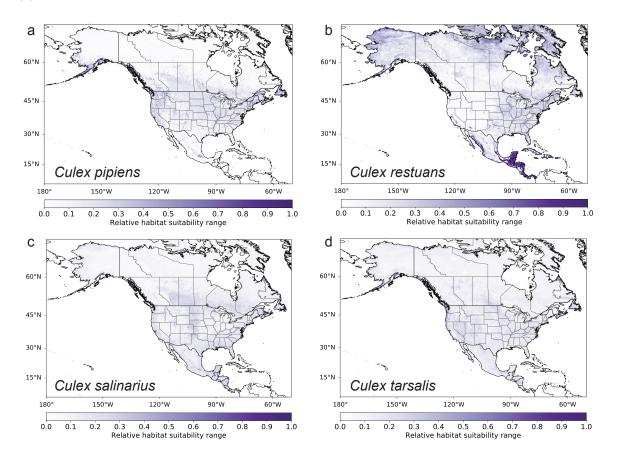
	Environmental variable	Pipiens	Restuans	Salinarius	Tarsalis	Erraticus	Nigripalpus	Quinquefasciatus
	Annual mean temperature	14.7	0.2	0.6	21.4	0.0	0.9	18.2
	Temperature annual range	0.1	0.7	0.0	0.0	0.1	0.0	0.2
	Mean diurnal temp. range	2.3	0.9	0.0	0.0	0.0	0.0	2.3
ite	Max. temp. in the warmest month	0.0	6.6	0.0	8.9	0.0	0.1	2.7
Climate	Min. temp. in the coldest month	1.6	1.1	0.4	2.6	11.8	0.3	13.8
0	Annual mean specific humidity	1.8	0.7	8.3	0.8	0.0	0.5	0.0
	Specific humidity in the most humid month	6.4	0.4	5.8	14.1	15.7	71.7	1.3
	Specific humidity in the least humid month	0.4	1.6	0.0	1.9	0.6	2.0	0.4
	Evergreen/deciduous needleleaf trees	< 0.1	17.5	0.2	0.0	0.0	4.3	0.6
	Evergreen broadleaf trees	0.0	0.4	0.0	0.0	0.5	1.2	8.7
r	Deciduous broadleaf trees	0.5	1.0	0.0	0.8	0.3	0.3	0.1
	Mixed/other trees	0.3	1.0	0.0	0.8	2.3	0.2	2.0
	Shrubs	0.0	19.2	4.9	0.1	3.7	0.3	5.3
NO:	Herbaceous vegetation	0.0	15.7	0.3	0.3	3.8	1.2	1.8
and cover	Cultivated and managed vegetation	8.8	2.9	34.1	35.8	36.7	5.3	4.0
Ľ	Regularly flooded vegetation	0.0	2.4	0.0	0.0	0.0	0.1	0.0
	Urban/built-up	57.4	11.7	33.8	12.0	13.3	1.8	32.9
	Snow/ice	0.0	0.0	0.0	0.3	0.0	0.0	0.0
	Barren	0.0	0.0	0.0	0.0	0.0	0.0	0.1
	Open water	2.7	2.7	0.2	0.0	1.4	1.2	1.3
Habitat	Evenness of EVI	0.0	3.4	0.0	0.0	0.7	1.2	0.1
y	Elevation	2.9	6.1	5.1	0.2	9.1	2.5	3.6
Topography	Roughness index	0.0	0.4	0.3	0.0	0.1	0.5	0.0
godc	Slope	0.0	2.8	2.3	0.0	0.1	3.6	0.5
Ĭ	Terrain ruggedness index	0.0	0.6	3.7	0.0	0.0	0.8	0.1


Table S4. Percent environmental variable contribution during Maxent model development for each *Culex* species.

Figures:


Figure S1. Maps of the environmental training area unique to each species used for the Maxent models across North America for (a) *Cx. pipiens*, (b) *Cx. restuans*, (c) *Cx. salinarius*, and (d) *Cx. tarsalis*. These were created by buffering the data based on the median distance from each presence data point to the centroid of all presence points. Ten thousand background points are randomly sampled from the shaded environmental training area when running Maxent.


Figure S2. Maps of the environmental training area unique to each species used for the Maxent models across North and South America for (a) *Cx. erraticus*, (b) *Cx. nigripalpus*, and (c) *Cx. quinquefasciatus*. These were created by buffering the data based on the median distance from each presence data point to the centroid of all presence points. Ten thousand background points are randomly sampled from the shaded environmental training area when running Maxent.


Figure S3. After extrapolating the Maxent models across North America, areas that are highlighted have novel climate or environmental conditions relative to the background environmental training dataset. This is unique to each species: (a) *Cx. pipiens*, (b) *Cx. restuans*, (c) *Cx. salinarius*, and (d) *Cx. tarsalis*.

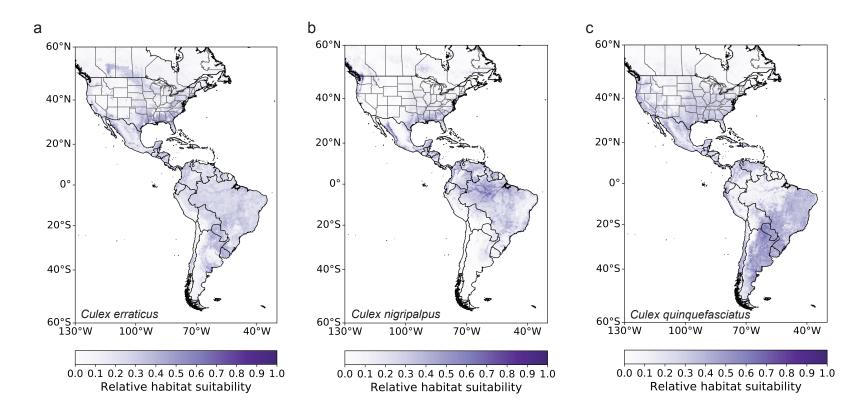

Figure S4. After extrapolating the Maxent models across North and South America, areas that are highlighted have novel climate or environmental conditions relative to the background environmental training dataset. This is unique to each species: (a) *Cx. erraticus*, (b) *Cx. nigripalpus*, and (c) *Cx. quinquefasciatus*.

Figure S5. Maps of the difference between the maximum and minimum suitability output amongst the ten bootstrapped replicates (i.e., the range) to show areas of high or low uncertainty in our models for species in North America: (a) *Cx. pipiens*, (b) *Cx. restuans*, (c) *Cx. salinarius*, and (d) *Cx. tarsalis*.

Figure S6. Maps of the difference between the maximum and minimum suitability output amongst the ten bootstrapped replicates (i.e., the range) to show areas of high or low uncertainty in our models for species in North and South America: (a) *Cx. erraticus*, (b) *Cx. nigripalpus*, and (c) *Cx. quinquefasciatus*.

