Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry

Lohra M. Miller,^a Lauren F. Barnes,^a Shannon A. Raab,^a Benjamin E. Draper,^b Tarick J. El-Baba,^c Corinne A. Lutomski,^c Carol V. Robinson,^c David E. Clemmer,^a and Martin F. Jarrold^a

^aChemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington Indiana 47405 ^bMegadalton Solutions, 3520 E Bluebird Ln, Bloomington Indiana 47401 ^cDepartment of Chemistry, University of Oxford, South Parks Road, Oxford, OXI 3QZ, UK

Supporting Information

CDMS Mass Resolution with 100 ms Trapping Time

In CDMS, the mass resolution has contributions from the *m*/*z* resolution and the charge resolution:

$$\frac{\Delta m}{m} = \sqrt{\left(\frac{\Delta[m/z]}{[m/z]}\right)^2 + \left(\frac{\Delta z}{z}\right)^2} \tag{1}$$

Where Δm , $\Delta[m/z]$, and Δz are the peak full widths at half maximum (FWHM) in the mass, m/z, and charge distributions. The 100 ms trapping measurements reported in the manuscript were performed on our prototype CDMS instrument.¹ On this instrument, the relative root mean square deviation (RMSD) in the m/z measurement, $\sigma[m/z]/[m/z]$, is around 0.0054.² The charge RMSD (σz) depends on both the oscillation frequency (f) and the trapping time (t_{trap}) and is given approximately by³

$$\sigma z = 25.58 \frac{f^{-0.457}}{t_{trap}^{0.5}} \tag{2}$$

The oscillation frequency and m/z are related through the following equation,

$$\frac{m}{z} = \frac{C}{f^2} \tag{3}$$

where C is a constant that depends on the ion energy and trap geometry. For the spike trimer at 475 kDa in Figure 5 of the manuscript the average m/z is around 10,000 Da, and the average oscillation frequency is around 16,000 Hz. For a 100 ms trapping time, the charge RMSD is 0.97 e, according to Equation 2. This leads to a relative charge RMSD ($\sigma z/z$) of around 0.0205. Combining the relative RMSDs in the charge ($\sigma z/z$) and m/z ($\sigma [m/z]/[m/z]$) leads to the relative RMSD in the mass ($\sigma m/m$), which is around 0.0212. Thus, the full width at half maximum (FWHM) of the spike trimer peak at 475 kDa in Figure 5 due to instrumental resolution is $0.0212 \times 2.35 \times 475 = 23.7$ kDa, where the factor of 2.35 converts from RMSD to peak FWHM.

References

- ¹ N. C. Contino and M. F. Jarrold, Charge Detection Mass Spectrometry for Single Ions With a Limit of Detection of 30 Charges, Int. J. Mass Spectrom. **2013**, 345–347, 153-159. <u>https://doi.org/10.1016/j.ijms.2012.07.010</u>
- ² Hogan, J. A.; Jarrold, M. F. Optimized electrostatic linear ion trap for charge detection mass spectrometry. *J. Am. Soc. Mass Spectrom.* **2018**, *29*, 2086-2095. <u>https://doi.org/10.1007/s13361-018-2007-x</u>
- ³ D. Z. Keifer, T. Motwani, C. M. Teschke, and M. F. Jarrold, Acquiring Structural Information on Virus Particles Via Charge Detection Mass Spectrometry, *J. Am. Soc. Mass Spectrom.* 2016, 27, 1028-1036. <u>https://doi.org/10.1007/s13361-016-1362-8</u>