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0.1 Availability of Code and Data
Complete code and data to generate our results are provided separately through the Github
repository at https://github.com/tlawrence3/tSFM.

0.2 Mathematical Presentation of Statistics Calculated
in tSFM v1.0

tSFM v1.0 has been written to function in a general setting for the analysis of any sequence
family encompassing multiple (sub-)functions, whether a noncoding RNA family, protein
superfamily, or family of related genes or genetic elements. It infers structural alphabets and
functional sets from its inputs. RNA base modifications could in principle be symbolized and
processed directly by tSFM v1.0. Nevertheless, in the sequel, we pre-specify simple RNA,
protein and DNA alphabets for clarity.

0.2.1 Definitions and Preliminaries

Let T be a set of taxa. Let BR ≡ {A,C,G, U} be the set of RNA nucleobases, BD ≡
{A,C,G, T} be the set of DNA nucleobases, A be the union of all amino acids encoded
by any taxon t ∈ T , and C be a set of structural aligned sites across a DNA element or
gene, noncoding RNA, or protein family, such as the set of all Sprinzl coordinates [1] in the
consensus structure of tRNAs. Then we define the set of single-site features D as D ≡ BR×C
for RNAs, D ≡ A× C for proteins, or D ≡ BD × C for DNA elements.

Let P ≡ BR ×BR be the set of all 16 base-pairs or base mis-pairs in the Cartesian square of
BR, and let Q ⊂ C × C be the set of all pairs of structurally aligned coordinates involved in
potential base-pairs in the consensus secondary structure of an RNA family. Then we define
the set of paired-site features R in that RNA family as R ≡ P × Q, and the set of single-
and paired-site features in that RNA family as S ≡ D∪R. Otherwise, for a protein or DNA
element/gene family, let S ≡ D.

Let F be a set of all functional classes of the protein, RNA, or DNA element/gene family;
for example, in eukaryotic tRNA genes, F contains 20 classes of elongator tRNAs and one
initiator tRNA class.

Given taxa t, u ∈ T , let F and G be random variables specifying the probabilities that a
random sequence belonging to the family under study isolated from taxon t (respectively u)
is of functional class f ∈ F . We assume F and G have respective probability mass functions
pF (f) and pG(f) estimated by the fractions of annotated genes or elements in genomes
of class f in taxa t and u respectively. Similarly, given feature s ∈ S, let M and N be
random variables specifying the conditional probabilities that a random gene/element, RNA
or protein isolated from taxon t (respectively u) containing feature s ∈ S is of functional
class f ∈ F . We assume thatM and N have probability mass functions pM(f |s) and pN(f |s)
respectively, estimated by the fraction of annotated genes, RNAs or proteins of class f from
taxon t or u respectively that contain feature s.
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0.2.2 Statistics for Class-Informative Features (CIFs)

tSFM v1.0 estimates the structure-conditioned functional information of feature s in taxon
t as Î = Ĥ(F ) − Ĥ(M), where Ĥ(·) is one of three different estimators of Shannon en-
tropy [2–4]. The proportion of functional information ĥ(f |s, t) attributed to functional class
f given feature s and taxon t is estimated using Gorodkin letter-heights [5] as described
previously [6].

0.2.3 Statistics for Divergences of CIFs between Taxa

tSFM v1.0 re-implements ID logos and KLD logos [7] to contrast CIFs between taxa. To esti-
mate divergence in the structure-conditioned functional information of feature s ∈ S between
two taxa t, u ∈ T , we separately estimate the structure-conditioned functional information of
the feature in taxa t and u, obtaining respective values Î and Ĵ , and compute two Information
Difference (ID) values: the ID ∆̂t|u ≡ max(Î − Ĵ , 0) of s in t with u as background; and the
ID ∆̂u|t ≡ max(Ĵ − Î , 0) of s in u with t as background. To contrast functional associations
of a feature s in taxa t, u ∈ T , we compute two Kullback-Leibler Divergences (KLD): the
KLD D̂t|u ≡ D̂ (M‖N) of s in t with u as background if at least one sequence contains the
feature s in taxon u, otherwise D̂t|u ≡ 0; and the KLD D̂u|t ≡ D̂ (N‖M) of s in u with t as
background if at least one sequence contains the feature s in taxon t, otherwise D̂u|t ≡ 0. If
the probability mass of any functional class is zero in M or N , we add pseudo-counts. The
proportion of gain or change attributed to a specific functional class f of a feature in taxon
t compared to u is computed as (pM(f |s)/pF (f))/(pN(f |s)/pG(f)). Here, if feature s is not
observed in functional type f in taxon u, we add pseudo-counts before computing pN(f |s),
assuming pF (f) > 0 and pG(f) > 0 for all f ∈ F .

0.3 Significance Calculations for CIFs

tSFM v1.0 estimates the statistical significance of Î and ĥ(f |s, t) by repeatedly randomly
permuting functional class labels over the input gene sequence data and computing the
fraction of random permutation replicates with Î∗ ≥ Î or ĥ∗(f |s, t) ≥ ĥ(f |s, t) respectively
(starred estimators are computed from permutation pseudo-replicates).

0.4 Significance Calculations for CIF Divergences

tSFM v1.0 estimates the statistical significance of an ID value ∆̂ or KLD value D̂ for a given
feature s ∈ S by repeatedly randomly permuting taxon labels over input gene sequence data
containing feature s and estimating a p-value based on these random permutations using
algorithm Approximate. To compute the p-value Pr(x ≥ x0) of a KLD or ID statistic
x0 > 0 for a given s, up to R (by default 10,000) permutation replicates {y∗i }Ri=1 of x0
are generated by permuting taxon labels over sequences containing s and recomputing the
statistic. If S (by default 10) permutation replicates in {y∗i }Ri=1 exceed x0, the algorithm
terminates and returns PECDF. The default value of the “target" permutation number T to
start to attempt fitting of the Generalized Pareto Distribution (GPD) function FGPD to a
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Figure S1: Validation of Python-based GPD-estimation procedure, GPD-based p-value cal-
culation, and confidence intervals for the GPD-based p-value calculation against the Multi-
variate Extreme Values Distribution package in R (mev v1.13.1) for 237 randomly chosen
features from the ENRIETTII clade against humans.

set of peaks-over-threshold {z∗i }Vi=1 is 500, where V < T is the number of observed peaks-
over-threshold. We test goodness-of-fit of the peaks {z∗i }Vi=1 to the fitted GPD function with
a decision criterion of pG ≥ 0.05, where pG is the p-value of the Anderson-Darling statistic.
The default preferred number of peaks-over-threshold U for fitting to the GPD is 250.

To compensate for multiple testing, tSFM computes FWER or FDR values using the statsmodels
library [8]. Options include the Bonferroni, Sidak, Holm, Holm-Sidak, Simes-Hochberg, or
Hommel methods for FWER control, or the Benjamini-Hochberg, Benjamini-Yekutieli or
Gavrilov-Benjamini-Sarkar methods for FDR control. The default option is BH for the
Benjamini-Hochberg FDR. Users may optionally test only single-site features, only paired-
site features or both, as well as only information, letter-heights, or both. We did not compute
p-values for Information Differences of 0.

0.5 Calculation of Confidence Intervals for CIF Diver-
gence p-Values

For ECDF-based p-value estimates PECDF that attained S = 10 exceedances, we computed
100(1−α)% confidence intervals by a standard normal approximation for the standard error
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Algorithm 1: Approximate p-value Pr(x ≥ x0) for KLD or ID CIF Divergence x0
Input: x0, {y∗i }Ri=1 ∈ R+;R, S, T, U ∈ Z+, U < T < R, S < R
Output: Approximation to Pr(x ≥ x0)

1 N ← 0;M ← 0;
2 while N < R do
3 N ← N + 1;
4 w∗N ← (y∗N)5;
5 if y∗N ≥ x0 then
6 M ←M + 1;

7 if M = S then
8 return PECDF ←M/N

9 if N = T then
10 V ← minU,N/3;
11 repeat
12 t← (w∗(N−V−1) + w∗(N−V ))/2;
13 for i← 1 to V do
14 z∗i ← (w∗(N−V−1+i) − t)

15 Estimate parameters ξ̂, σ̂ for FGPD(z | ξ̂, σ̂) from {z∗i }Vi=1 by MLE;
16 Calculate pG for goodness-of-fit of FGPD(z | ξ̂, σ̂) to {z∗i }Vi=1 by

Anderson-Darling Test;
17 if pG < 0.05 then
18 V ← V − 10;

19 until V < 10 ∨ pG ≥ 0.05;
20 if pG ≥ 0.05 then
21 PGPD ← (V/N)(1− FGPD(((x0)

5 − t) | ξ̂, σ̂));
22 if PGPD > 0 then
23 return PGPD

24 T ← min 2T,R

25 return P ′ECDF ← (M + 1)/(N + 1);
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of a binomial proportion
√
pq/n with q = 1 − p. For ECDF-based p-value estimates P ′ECDF

that did not attain 10 exceedances, we did not compute confidence intervals. For GPD-based
p-value estimates PGPD, we computed 100(1 − α)% confidence intervals by the “boundary
method" outlined in [9] and described in algorithm Boundary. Given GPD shape and
scale parameter estimates ξ̂, σ̂ and a set of peaks-over-threshold {z∗i }Vi=1 associated with
CIF divergence x0, we computed the observed Fisher Information Matrix in pure Python
using expressions for partial derivatives of log-likelihood sums given in [10], and other matrix
calculations in NumPy as detailed in algorithm Boundary. The estimates of the GPD shape
parameters ξ̂ that we observed for our data were nearly always greater than negative one-half,
which is technically required for the MLE asymptotics underlying both MLE estimation of the
GPD parameters and their confidence intervals by the “boundary method" approach [9, 11].
However, one ID statistic for feature A1 from MAJOR clade against humans with moderate
sample sizes (18 sequences in humans and 13 in MAJOR) resulted in a GPD fit with shape
parameter ξ = −0.58 and a p-value for fit to GPD of about 9%. tSFM includes the values of
the GPD parameter estimates in its output.

As shown in Fig. S1 we validated our Python-based GPD-estimation procedure, GPD-based
p-value calculation, and confidence intervals for the GPD-based p-value calculation against
the Multivariate Extreme Values Distribution package in R (mev v1.13.1) for 237 randomly
chosen features from the ENRIETTII clade against humans and found good agreement.

0.6 Significance of CIF Divergences from [12] with Con-
fidence Intervals

Supplementary Figs. S2 and S3 show p-value calculations with 95% confidence intervals for
KLD and (respectively) ID CIF divergences between humans and two clades of trypanosomes
derived from the data of [12].
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Algorithm 2: Boundary Confidence Interval for PGPD

Input: x0, {z∗i }Vi=1 ∈ R+, V,N ∈ Z+ with V < N , ξ̂, σ̂ ∈ R, α ∈ [0, 0.5]
Output: Upper and Lower (1− α)% Confidence Limits {L̂, Û} of PGPD

1 Calculate observed Fisher Information Matrix F from {z∗i }Vi=1 and density fGPD(z | ξ̂, σ̂);
2 Calculate Moore-Penrose Generalized Inverse F−1 from F ;
3 Compute Singular Value Decomposition WDW T of F−1, with D = diag (d1, d2);
4 Compute C√α, the 100(1−

√
α/2)% quantile of the standard normal distribution;

5 ξ0,1 ← ξ̂ − C√α
√
d1; σ0,1 ← σ̂ − C√α

√
d2;

6 ξ0,2 ← ξ̂ + C√α
√
d1; σ0,2 ← σ̂ + C√α

√
d2;

7
(
ξ1
σ1

)
← W

(
ξ0,1−ξ̂
σ0,1−σ̂

)
+
(
ξ̂
σ̂

)
;

8
(
ξ2
σ2

)
← W

(
ξ0,2−ξ̂
σ0,2−σ̂

)
+
(
ξ̂
σ̂

)
;

9 P11 ← (1− FGPD(((x0)
5 − t) | ξ1, σ1));

10 P12 ← (1− FGPD(((x0)
5 − t) | ξ1, σ2));

11 P21 ← (1− FGPD(((x0)
5 − t) | ξ2, σ1));

12 P22 ← (1− FGPD(((x0)
5 − t) | ξ2, σ2));

13 L̂r ← minP11, P12, P21, P22;
14 Ûr ← maxP11, P12, P21, P22;
15 Compute Cα, the 100(1− α/2)% quantile of the standard normal distribution;
16 L̂nr ← (V/N)− Cα

√
(V/N)(1− (V/N))/N ;

17 Ûnr ← (V/N) + Cα
√

(V/N)(1− (V/N))/N ;
18 L̂← L̂rL̂nr;
19 Û ← ÛrÛnr;
20 return {L̂, Û};
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Figure S2: Permutation-based surprisals of KLD values of shared tRNA features for two
different clades of Leishmania against humans as a function of magnitude of KLD signal.
The MAJOR clade pools data from nine genomes of Leishmania and thus contains more
data than the ENRIETTII clade, which pools data from only two genomes. P -values are
calculated by algorithm Approximate. Confidence intervals for PGPD are calculated by
algorithm Boundary. Confidence intervals for PECDF are based on the standard error for a
binomial proportion. The x-axes shows KLD signals of features measured in bits and y-axes
show − log2 of the permutation p-value of that signal. Colors represent the harmonic mean
of conditional sample sizes of sequences carrying a feature in the two clades. A) KLD for
MAJOR clade against humans. B) KLD for humans against MAJOR clade. C) KLD for
ENRIETTII clade against humans. D) KLD for humans against ENRIETTII clade.
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Figure S3: Permutation-based surprisals of ID values of shared tRNA features for two differ-
ent clades of Leishmania against humans as a function of magnitude of KLD signal. P -values
are calculated by algorithm Approximate. Confidence intervals for PGPD are calculated by
algorithm Boundary. Confidence intervals for PECDF are based on the standard error for a
binomial proportion. The x-axes shows KLD signals of features measured in bits and y-axes
show − log2 of the permutation p-value of that signal. Colors represent the harmonic mean of
conditional sample sizes of sequences carrying a feature in the two clades. A) ID for MAJOR
clade against humans. B) ID for humans against MAJOR clade. C) ID for ENRIETTII clade
against humans. D) ID for humans against ENRIETTII clade.
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