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Supplementary Figure 1. Time average-autocorrelation function analytical results. (a) Subdiffusive fBM example, with Hurst
exponent H = 0.3 and sojourn times with power law distribution with α = 0.4. (b) Superdiffusive fBM example, with Hurst
exponent H = 0.7 and sojourn times with power law distribution with α = 0.4. Likely, the small deviations that show up
when the process exhibits long-range dependence, i.e., H > 1/2, are due to the realization time not being long enough, In both
datasets, the realization time is tm = 216 and the number of realizations is 10, 000. The solid lines show analytical results given
by Eq. 27, where 〈CTA(tm, τ)〉 = tγmφTA(τ/tm).
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Supplementary Figure 2. Deviations between the exact results and the asymptotic approximations for the PSD. The deviations
are presented for the four cases discussed in the text as the ratio between the exact hypergeometric function and the 1/ωβ

approximation for the lowest 30 natural frequencies.
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SUPPLEMENTARY NOTE 1. POWER SPECTRAL DENSITY (PSD)

The PSD of a time-dependent signal x(t) is defined as

〈S(ω,∞)〉 = lim
tm→∞

1

tm

〈∣∣∣∣∫ tm

0

eiωtx(t)dt

∣∣∣∣2
〉
, (1)

where the angle brackets denote averaging over an infinitely large ensemble, i.e., the expected value. The Wiener
Khinchin theorem provides a connection between the PSD and the autocorrelation function in stationary processes.
Namely, this theorem states that the PSD is the Fourier transform of the autocorrelation function,

〈S(ω,∞)〉 =

∫ ∞
−∞

eiωτC(τ)dτ, (2)

where C(τ) = 〈x(t)x(t+ τ)〉 is the (ensemble-averaged) autocorrelation function.

SUPPLEMENTARY NOTE 2. FRACTIONAL MOMENTS OF THE NUMBER OF STEPS 〈nν(t)〉 AND
〈∆nν(τ ; t)〉

In order to solve the correlation function, we derive the fractional moments 〈nν(t)〉 and 〈∆nν(τ ; t)〉, where the
relevant case for us is ν = 2H. The former is directly obtained from χn(t), the distribution of the number of steps up
to time t, in the continuous approximation

〈nν(t)〉 =

∫ ∞
0

nνχn(t)dn, (3)

The distribution χn(t) is given by [1]

χn(t) =
t

αt0
n−

1
α−1Lα

(
t

n1/αt0

)
, (4)

where Lα(t) is the one sided Lévy function of order α. Then, Eq. 3 yields

〈nν(t)〉 ≈
∫ ∞

0

t

αt0
nν−

1
α−1Lα

(
t

n1/αt0

)
dn. (5)

The Laplace transform of the one-sided Lévy function is L{Lα(t)} = exp[−sα], thus the fractional moment of the
number of steps in Laplace domain is

〈ñν(s)〉 ≈
∫ ∞

0

tα0n
νsα−1 exp (−ntα0 sα) dn

≈ ν(1 + ν)

tαν0 s1+αν
. (6)

Finally, we can use Tauberian theorem [1] to obtain the inverse Laplace transform,

〈nν(t)〉 ≈ Γ(1 + ν)

tαν0 Γ(1 + αν)
tαν . (7)

Along the same lines, the second term in Eq. 20 is the fractional moment

〈nν(t+ τ)〉 ≈ Γ(1 + ν)

tαν0 Γ(1 + αν)
(t+ τ)αν . (8)

In order to solve for the third term in the ACF, the fractional moment 〈∆nν(τ ; ta)〉 is obtained by considering
Eq. 7 and the forward waiting time tF for the first step of CTRW after the aging time ta. The distribution of forward
waiting times is [1]

ψ1(tF ; ta) =
sin(πα)

π

(
ta
tF

)α
1

ta + tF
, (9)
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so that

〈∆nν(τ ; ta)〉 =

∫ τ

0

〈nν(τ − tF )〉ψ1(tF ; ta)dtF

=
sin(πα)

π

Γ(1 + ν)

tαν0 Γ(1 + αν)

∫ τ

0

tαa (τ − tF )αν

tαF (ta + tF )
dtF

=
sin(πα)

π

Γ(1 + ν)Γ(1− α)

tαν0 Γ(2− α+ αν)
2F1

(
1, 1− α; 2− α+ αν;− τ

ta

)
tα−1
a τ1−α+αν . (10)

The fractional moments 〈nν(t)〉 and 〈∆nν(τ ; t)〉 have been computed previously [2]. The solution for 〈∆nν(τ ; t)〉 given
in Eq. 25 of Ref. [2] has a different form but it is equivalent to Eq. 10 above.

In the limit where τ � ta, the distribution of forward waiting times becomes

ψ1(tF ; ta) =
sin(πα)

π

tα−1
a

tαF
, (11)

so that

〈∆nν(τ ; ta)〉 =

∫ τ

0

〈nν(τ − tF )〉ψ1(tF ; ta)dtF

=
sin(πα)

π

Γ(1 + ν)tα−1
a

tαν0 Γ(1 + αν)

∫ τ

0

(τ − tF )αν

tαF
dtF

=
sin(πα)

π

Γ(1 + ν)Γ(1− α)

tαν0 Γ(2− α+ αν)
tα−1
a τ1−α+αν , (12)

which is also found directly from Eq. 10 because 2F1 (1, 1− α; 2− α+ αν; 0) = 1.

SUPPLEMENTARY NOTE 3. EXACT SOLUTIONS FOR THE AUTOCORRELATION FUNCTIONS
AND PSD OF SUBORDINATED PROCESSES

A. Continuous time random walk (2H = 1)

We start with the solutions for a traditional CTRW [3, 4], i.e., H = 0.5. The ensemble-averaged autocorrelation
function is

CEA(t, τ) = ∆x2
∞∑
n=0

∞∑
∆n=0

(
n2H + (n+ ∆n)2H −∆n2H

)
χn,∆n(t, τ). (13)

which, for the case H = 0.5, becomes

CEA(t, τ) = 2∆x

∞∑
n=0

∞∑
∆n=0

nχn,∆n(t, τ)

= 2∆x2
∞∑
n=0

nχn(t) = 2D〈n(t)〉

= 2∆x2〈n(t)〉, (14)

and, using Eq. 7, or the well know expression for the mean number of jumps in the interval (0, t), 〈n(t)〉 at long times
[1],

CEA(t, τ) ∼ 2∆x

tα0 Γ(1 + α)
tα. (15)

The ensemble averaged autocorrelation function in Eq. 15 has the form CEA = tαφEA and, thus, we obtain the
time-averaged autocorrelation function

〈CTA〉 = tαmφTA(τ/tm) (16)
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with the scaling function

φTA(y) =
y1+γ

1− y

∫ ∞
y

1−y

φEA

z2+γ
dz

=
2∆x2

tα0 Γ(2 + α)
(1− y)α. (17)

Using the time-averaged autocorrelation function in Eq. 17 and the aging Wiener-Khinchin theorem, we obtain the
power spectral density of the CTRW,

〈SCTRW(ω, tm)〉 = 2t1+γ
m

∫ 1

0

(1− y)φTA(y) cos(ωtmy)dy.

=
4∆x2t1+α

m

tα0 Γ(2 + α)

∫ 1

0

(1− y)1+α cos(ωtmy)dy

=
4∆x2t1+α

m

tα0 Γ(3 + α)
1F2

[
1;

3 + α

2
,

4 + α

2
;−
(
ωtm

2

)2
]
, (18)

where 1F2 (a; b1, b2; z) refers to the generalized hypergeometric function.
When α > 1 the mean waiting time exists and the CTRW statistics revert in the long time to those of Brownian

motion. In particular, replacing α = 1 and ωtm = 2πk we find 1F2

[
1; 2, 5/2;−(ωtm)2/4

]
= 6/(ωtm)2 and, thus, the

PSD in Eq. 18 is that of standard Brownian motion,

〈SBM(ω)〉 ∼ ω−2, (19)

which is independent of tm.

B. Subordinated process involving fBM (0 < H < 1)

1. Autocorrelation function

When H 6= 0.5, the process has positively correlated increments for H > 0.5 and negatively correlated increments
when H < 0.5. The autocorrelation function CEA in Eq. 13 is

CEA(t, τ) = ∆x2
[
〈n2H(t)〉+ 〈n2H(t+ τ)〉 − 〈∆n2H(τ ; t)〉

]
. (20)

where ∆n(τ ; t) is the number of steps between the aged time t and t+ τ . From Eqs. 7, 8, and 10, the terms in Eq. 20
are found to be

〈n2H(t)〉 =
Γ(1 + 2H)

tγ0Γ(1 + γ)
tγ , (21)

〈∆n2H(τ ; t)〉 =
Γ(1 + 2H)

tγ0Γ(1 + γ)
b 2F1

(
1, 1− α; 2− α+ γ;−τ

t

)
tα−1τ1−α+γ , (22)

where 2F1 (a1, a2; b; z) is the Gaussian hypergeometric function. We have defined

γ = 2αH, (23)

and the constant b is

b =
sin(πα)

π

Γ(1− α)Γ(1 + γ)

Γ(2− α+ γ)
. (24)

Note that in the specific case that H = 0.5, these constants revert to b = γ = α. Using a different formalism,
〈∆nν(τ ; t)〉 has been previously derived [2, 5]. These previous results were expressed in terms of incomplete beta
functions but they are equivalent to ours. The ensemble-averaged autocorrelation function, Eq. 20, is thus given by

CEA(t, τ) = ∆x2tγ
[
1 +

(
1 +

τ

t

)γ
− b 2F1

(
1, 1− α; 2− α+ γ;−τ

t

)(τ
t

)1−α+γ
]
, (25)
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with

D =
Γ(1 + 2H)

Γ(1 + γ)

∆x2

tγ0
, (26)

which gives the EA-MSD when τ = 0; 〈x2(t)〉 = 2∆x2〈n2H(t)〉 = 2Dtγ .
The ensemble-averaged autocorrelation function in Eq. 25 has the form CEA(t, τ) = tγφEA(τ/t), which implies the

time-averaged autocorrelation function is of the form 〈CTA(tm, τ)〉 = tγmφTA(τ/tm) [6]. Defining y = τ/tm, we can
find the scaling function (see Methods section in main text)

φTA(y) =
D

1 + γ

[
(1− y)γ +

1

1− y
− (1 + γ)b

α

y1+γ−α

(1− y)1−α 2F1

(
1,−α; 2− α+ γ;− y

1− y

)]
. (27)

Numerical simulations are observed to agree with analytical results for both H < 1/2 and H > 1/2 in Supplementary
Figs. 1a and 1b, respectively.

2. Power spectral density

We see that the subordinated process with correlated increments shows that 〈CTA〉 = tγmφTA(τ/tm).The aging
Wiener-Khinchin theorem gives the average power spectral density for the natural frequencies ωtm = 2πk with k a
non-negative integer,

〈S(ω, tm)〉 = 2t1+γ
m

∫ 1

0

(1− y)φTA(y) cos(ωtmy)dy. (28)

For the process subordinated to fractional Brownian motion, the time average autocorrelation function is found to
be given by

φTA(y) =
D

1 + γ

[
(1− y)γ +

1

1− y
− (1 + γ)b

α

y1+γ−α

(1− y)1−α 2F1

(
1,−α; 2− α+ γ;− y

1− y

)]
. (29)

Therefore, to obtain 〈S〉, we compute the following three integrals with the notation ω̃ = ωtm and noting ω̃ = 2πk,

∫ 1

0

(1− y)1+γ cos(ω̃y)dy =
1

2 + γ
1F2

[
1;

3 + γ

2
,

4 + γ

2
;−
(
ω̃

2

)2
]
, (30)

∫ 1

0

cos(ω̃y)dy = 0, (31)

∫ 1

0

y1−α+γ(1− y)α2F1

(
1,−α; 2− α+ γ;− y

1− y

)
cos(ω̃y)dy

= −(1− α+ γ)
Γ(1 + α)Γ(2− α+ γ)

Γ(3 + γ)
2F3

[
2− α+ γ

2
,

3− α+ γ

2
;

3

2
,

3 + γ

2
,

4 + γ

2
;−
(
ω̃

2

)2
]
, (32)

where 2F3 (a1, a2; b1, b2, b3; z) is also a generalized hypergeometric function, leading to

〈S(ω, tm)〉 = 2Dt1+γ
m

[
1

(1 + γ)(2 + γ)
1F2

(
1;

3 + γ

2
,

4 + γ

2
;−
(
ωtm

2

)2
)

+
b(1− α+ γ)Γ(1 + α)Γ(2− α+ γ)

αΓ(3 + γ)
2F3

(
2− α+ γ

2
,

3− α+ γ

2
;

3

2
,

3 + γ

2
,

4 + γ

2
;−
(
ωtm

2

)2
)]

. (33)
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SUPPLEMENTARY NOTE 4. PSD ASYMPTOTICS FOR LARGE ωtm

The expansion of the hypergeometric functions for ωtm � 1 (when ωtm = 2πk) are

1F2

[
1;

3 + γ

2
,

4 + γ

2
;−
(
ω̃

2

)2
]

= (1 + γ)(2 + γ)(ωt)−2 +O(ωt)−2−γ , (34)

2F3

[
2− α+ γ

2
,

3− α+ γ

2
;

3

2
,

3 + γ

2
,

4 + γ

2
;−
(
wt

2

)2
]

=
cos
(
π(α−γ)

2

)
Γ(3 + γ)

(1− α+ γ)Γ(1 + α)
(ωt)−2+α−γ +O(ωt)−2−α, (35)

which leads to

〈S(ω, tm)〉 ≈ 2Dt1+γ
m

(ωtm)−2 +
b cos

(
π(α−γ)

2

)
Γ(2− α+ γ)

α
(ωtm)−2+α−γ

 . (36)

Thus, the leading term for 〈S(ω, tm)〉 depends on the values of α and γ. In the case that α− γ > 0,

〈S2H<1(ω, tm)〉 ≈ 2ct−(1−α)
m ω−2+α−γ , (37)

where

c =
Db

α
cos

(
π(α− γ)

2

)
Γ(2− α+ γ). (38)

Note that γ = 2αH and thus α − γ > 0 when H < 0.5, i.e., this is the leading term when the increments are
anticorrelated. When the underlying fBM is superdiffusive (i.e, H > 0.5), α− γ < 0 and the leading term is

〈S2H>1(ω, tm)〉 ≈ 2Dt−(1−γ)
m ω−2. (39)

SUPPLEMENTARY NOTE 5. QUANTIFICATION OF THE DEVIATIONS OF THE ASYMPTOTIC
APPROXIMATIONS FROM THE EXACT PSD RESULTS

The asymptotic approximations of the PSD yield the familiar 1/ωβ form. These approximations are very accurate
in the limit ωtm � 1. Thus, a fair question is how much do these approximations deviate from the exact results when
the frequency is small? We evaluate the deviations at the small natural frequencies ωtm = 2πk, with k = 1, 2, 3, . . . .
The results are presented for the four cases discussed in the manuscript in Supplementary Figure 2. Differences
between the exact result (Equation 33) and the asymptotic approximations (Equations 37 and 39) are substantial
only at the lowest natural frequencies. On a log-log plot, which is the common representation of 1/f type of spectra,
these deviations are hard to detect.
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