AdcA2

unpaired wilcoxon test

Α

AdcA2

AliA

unpaired wilcoxon test

Α

AliA

AliB

AliB

AliC

AliC

AliD

В

NS >0.05, * <0.05, ** < 0.01, *** <0.001

AliD

AmiA

Α

unpaired wilcoxon test

AmiA

В

CbpC

unpaired wilcoxon test

CbpE

unpaired wilcoxon test

CbpF

unpaired wilcoxon test

CbpL

unpaired wilcoxon test

NS >0.05, * <0.05, ** < 0.01, *** <0.001

CbpL

В

Chimeric__PspA_PspC

unpaired wilcoxon test

Chimeric__PspA_PspC

DacA

А

unpaired wilcoxon test

DacA

DacB

DacB

В

Eno

unpaired wilcoxon test

Eno

EtrX1

unpaired wilcoxon test

resp

EtrX2

GpsB

unpaired wilcoxon test

Φ

õ

Q

GpsB

Hic2

unpaired wilcoxon test

Hic2

LytA

unpaired wilcoxon test

LytB

response

unpaired wilcoxon test

LytC

MetQ

unpaired wilcoxon test

MetQ

MsrAB2

Α

unpaired wilcoxon test

MsrAB2

NanA

NanA

PavB

NS >0.05, * <0.05, ** < 0.01, *** <0.001

PavB

PccL

PccL

РсрА

unpaired wilcoxon test

PcsB

unpaired wilcoxon test

Ð

PcsB

unpaired wilcoxon test

PfbA

unpaired wilcoxon test

PfbA

PGK

unpaired wilcoxon test

NS >0.05, * <0.05, ** < 0.01, *** <0.001

PGK

unpaired wilcoxon test

В

PhpP

PhtD

PhtD

PiaA

PiaA

unpaired wilcoxon test

PitB

inh+cefo-

inh–

inh+cefo+

PnrA

unpaired wilcoxon test

PnrA

PpmA

unpaired wilcoxon test

PpmA

PrtA2

unpaired wilcoxon test

PrtA2

PsaA

unpaired wilcoxon test

PsaA

unpaired wilcoxon test

NS >0.05, * <0.05, ** < 0.01, *** <0.001

PspA

PspC

unpaired wilcoxon test

unpaired wilcoxon test

PsrP

В

SIrA

unpaired wilcoxon test

d٦

SIrA

unpaired wilcoxon test

SP_0107

unpaired wilcoxon test

SP_0148

unpaired wilcoxon test

SP_0191 y-axis = log10-scale

SP_1069

unpaired wilcoxon test

SP_1069

unpaired wilcoxon test

В

SP_1992

unpaired wilcoxon test

Α

В SP_2063 y-axis = log10-scale . • 1e+05 .

20 30 inhibition & MIC 岸 inh– **d** 1e+04 inh+cefoinh+cefo+ • AB equal or above MIC 1e+03 0 inh– inh+cefoinh+cefo+

inhibition in mm

• 0

• 10

Sp0899

unpaired wilcoxon test

Sp0899

TrxB

unpaired wilcoxon test

TrxB

FIG S5 Individual boxplot graphs of quantified IgG levels against the respective pneumococcal antigens. The Luminex xMAP technology and xMAPr app were used to quantify the levels of sputum IgGs specific for 55 *S. pneumoniae* antigens. The sizes of the symbols in the boxplots are proportional with the previously measured diameters of pneumococcal growth inhibition zones in mm (1). The colours of the boxes refer to the PLS-identified sputum sample groups as in Fig. 1A. The symbol shape indicates whether the quantified cefotaxime concentration was below (circle, 0), or equal/above (triangle, 1) the MIC for *S. pneumoniae* TIGR4. (A) Boxplot showing the response for a particular antigen on a non-log scale and the statistical outcome of the respective Wilcoxon rank sum test. (B) Boxplot with the response for a particular antigen on a log₁₀ scale.

References

 Seinen J, Dieperink W, Mekonnen SA, Lisotto P, Harmsen HJM, Hiemstra B, Ott A, Schultz D, Lalk M, Oswald S, Hammerschmidt S, de Smet A, van Dijl JM. 2019. Heterogeneous antimicrobial activity in broncho-alveolar aspirates from mechanically ventilated intensive care unit patients. Virulence 10:879-891.