Fig. S1

Α

Fig. S1 Target analysis revealed miR825-5p as a central hub for TNL gene regulation. A We used WMD3 (Ossowski et al., 2008) and default parameters on Araport11 to predict targets for MIR825-encoded 21-nt (miR825-3p, formerly miR825) and 22-nt (miR825-5p; formerly miR825*). All three predicted targets for 21-nt miR825-3p are shown. Only the top four predicted targets for 22-nt miR825 are shown. Predicted targets for 22-nt miR825 are genes encoding Toll/interleukin-1 (TIR), nucleotide binding site (NBS) and leucine-rich repeat (LRR) containing proteins (TIR-NBS-LRR). B MiR825-5p sequence paired with the consensus for 18 TNLs (plus one TIR domain protein) putative targets from the *Arabidopsis* genome. The logo corresponding to the consensus protein sequence for miR825-5p target site is shown below (black lines indicates perfect pairing, grey lines perfect pairing with the most conserved nucleotide, and dots indicate variable region that allows pairing at the RNA level). **C** Primary network showing all 21 putative targets for miR825-5p as predicted using WMD3 and default parameters on Araport11. TNL is indicated for the 17 out of these 21 that are annotated as such. Two additional genes encode a truncated TIR-NBS-LRR and a TIR domain-carrying protein.

Fig. S2

Fig. S2 Controls for transgenic plants described in Fig. 2 and 3. A Small RNA Northern blot assay showing accumulation of artificial miRNA (amiR anti825; supplemental methods; Fig. S2a) (Schwab, 2006; Ossowski *et al.*, 2008), resulting from the modification of the precursor for miR319 to target and silence pri-miR825. **B** Accumulation of miR825-5p (upper panel) and *AT5G38850* (lower panel) in amiR825-5p transgenic plants. Asterisks indicate results are significantly different from WT plants, as established by a Student's t-test (P<0.05). Error bars correspond to standard error. **C** Accumulation of miR825-5p (upper panel) and *AT5G38850* (lower panel) in STTM825-5p transgenic plants. Asterisks indicate results are significantly different from WT plants, as established by a Student's t-test (P<0.05). Error bars correspond to standard error. **C** Accumulation of miR825-5p (upper panel) and *AT5G38850* (lower panel) in STTM825-5p transgenic plants. Asterisks indicate results are significantly different from WT plants, as established by a Student's t-test (P<0.05). Error bars correspond to standard error. **D** Western Blot analysis showing levels of phosphorylated mitogen-activated protein kinases (MPK3, MPK4, MPK6 and MPK11) after treatment with 100 nM flg22 of wild type (WT), an STTM line, and an amiR line at three different time points (0, 10 or 15 min post flg22 treatment). Similar results were obtained with additional lines. Membrane was stained with Coomasie as a loading reference.

Fig. S3

SRR1171802

Fig. S3 T-plots showing degradome tags for miRNA targets. T-plots showing density of 5' position of degradome tags corresponding to *MIST1* (miR825-5p target) and *AT5G43740* (miR472 target) across different degradome libraries. The red dot indicates degradome tags starting at the predicted target site for miR825-5p or miR472 (slicing between10th-11th nucleotides at complementary target site relative to the miRNA). Category refers to PARE read abundance of that position (Addo-Quaye *et al.*, 2009). P-values are indicated.

Fig. S4 TNL-encoding *AT5G38850* gene accumulates more sRNAs than any other NLR in Arabidopsis. Graph shows sRNA accumulation from all NLRs within the *Arabidopsis* genome (data obtained from NCBI: BioProject SRP097592, WT library). Graph displays number of sRNA (reads per 10 million small RNAs mapped, RPTM) accumulated from each NLR-encoding gene. Arrows point to two miR472 target CNL genes. Number of sRNA accumulated from *TAS1A* and *TAS3* are provided as reference.

AT1G59780 (NB-ARC domain)

miR472 target site

Putative miR825-5p AT1G63750 target site (TIR-NBS-LRR)

AT4G16950 (RPP5/TIR-NBS-LRR)

AT5G47260 (Putative Disease Resistance Protein)

AT4G16990 (RLM3/TIR-NBS-LRR)

AT1G58602

Fig. S5 SiRNA production from different NLR genes. Images show screenshots from MPSS showing sRNAs that originate from NLR genes in *Arabidopsis* selected among those displayed in Fig. 4B for accumulating the highest levels of sRNAs

Fig. S6

Fig. S6 MiRNA825-5p is a trigger for phasiRNAs production from *MIST1* **transcripts. A** Predicted 3D-structure for the asymmetric duplex formed between miR825-5p and miR825-3p. Predictions were done using RNAfold and MC-fold/MC-Sym pipeline. **B** Sequence complementarity between miR825-5p and its target site in *MIST1*. Sequence matching the first sRNA that accumulates from this transcript is highlighted. Its position matches that predicted for the first phasiRNA (3'D1⁽⁺⁾) to be generated after cleavage by RISC-miR825-5p, between nucleotides 10 and 11. **C** Sequence and length of the sRNA highlighted in **B**. **D** Screenshot from MPSS showing sRNAs that accumulate from *MIST1* (*AT5G38850*). **E** Screenshot from MPSS showing the Phasing Analysis for the region analyzed in **D**. Each dot represents a window of ten cycles of sRNAs 21-nt in length, with the score for the degree of phasing indicated in the Y axis (scores calculated as described in (Howell *et al.*, 2007)). The red dot is the highest scoring window. Dots colored otherwise correspond to window in phase with the highest scoring (solid dots are exactly in phase, open dots are almost in phase [-1/+1]. Only 21-nt reads are considered for the analysis. **F** Predicted free energy for hybridization between miR825-5p and 3' target fragment/ 5' target fragment of *MIST1*. Prediction was done using UNAFold as previously described by (Branscheid *et al.*, 2015). **G** Quantification of sRNAs produced from *MIST1* as RPTM (Reads Per Ten Million) in two independent biological replicates in different plant mutant backgrounds.

Fig. S7

Degradome-based Network (AGO1/2 associated sRNAs)

Fig. S7 Regulatory network based on degradome data for miR825-5p and *MIST1***-derived miR825-5p-triggered phasiRNAs.** Network shows gene targeting based on the results detailed in Table 1, obtained following previously published reports (Zhai *et al.*, 2011; Deng *et al.*, 2018) using raw data from PARE libraries of Arabidopsis under basal conditions to look for degradome tags supporting phasiRNA targeting of TNL gene transcripts. Target genes represented include those for which tags significantly accumulated precisely map to predicted cleavage position within the phasiRNA matching sequence (Deng *et al.*, 2018) in at least two independent libraries, and after filtering out those with a peak category above 2. Size of signs indicating each phasiRNA.

Fig. S8 Pri-miR825 is downregulated by PAMPs. A-D Semi quantitative RT-PCR show levels of pri-miR825 3 hours: A post-inoculation with $5x10^7$ CFU/ml of *P. syringae* DC3000. **B** post-treatment with flg22, **C** post-inoculation of *fls2* mutant plants with, $5x10^7$ CFU/ml of *P. syringae* DC3000, **D** post-treatment with chitin. Accompanying graphs correspond to Image J quantification of the bands relative to actin, and **E** post-inoculation with $5x10^7$ CFU/ml of *P. syringae* DC3000.

Fig. S9

Fig. S9 AtmiR825A promoter is active in adult leaves. A Confocal microscopy images showing GFP accumulation in a transgenic line harbouring the reporter gene under the control of *At*miR825 promoter (pMIR825A::GFP-HIS). **B** Western blot analysis using anti-HIS antibody show accumulation of the GFP-HIS reporter fusion protein in several transgenic lines harbouring the pMIR825A::GFP-HIS construct. The membrane was stained with Coomassie and used as loading control. Samples for **a** and **b** were taken from *Arabidopsis* adult leaves.

Fig. S10 MiR825-5p predicted regulatory network. A MiR825-5p direct target genes are shown including MIST1 as a primary central hub for TNL gene regulation. Only the top five phasiTNLs in terms of accumulation and AGO1/AGO2 association are included, as well as their predicted targets. Hits of this phasiTNLs on primary miR825-5p are also indicated. PhasiTNL4 acts as a secondary hub in this regulatory network through targeting of the highly conserved TIR3 motif. **B** Domain organization of a TNL protein with domains and conserved motifs indicated. Alignments of miR825-5p and phasiTNLs with their respective target sequences are mapped to the corresponding domains/motifs within the TNL protein.

Table S1. Primers used in this	study	
Name	Sequence	
amiR825-5p-I	GATCAAGCACCAGCTCGAAGAAGCTCTCTCTTTTGTATTCC	Increase level
amiR825-5p-II	GAGCTTCTTCGAGCTGGTGCTTGATCAAAGAGAATCAATGA	Increase level
amiR825-5p-III	GAGCCTCTTCGAGCTGGCTTGATCACAGGTCGTGATATG	Increase level
amiR825-5p-IV	GATCAAGCACAGCTCGAAGAGGCTCTACATATATATTCCT	Increase level
amiR-A	CTGCAAGGCGATTAAGTTGGGTAAC	For cloning an
amiR-B	GCGGATAACAATTTCACACAGGAAACAG	For cloning an
STTM825-5p-F	AAGTTAACGCTTCTTCGAGCCTATGGTGCTTGAGTTGTTGTTGTTATGGTCTAATTTAAATATGGTCT	Reduce levels
STTM825-5p-R	TTGGATCCTCAAGCACCATAGGCTCGAAGAAGCATTCTTCTTCTTTAGACCATATTTAAATTAGACCA	Reduce levels
amiR-anti825-I	GATAAGCTTCTTCGAGCTGGTGCTTCTCTCTTTTGTATTCC	Reduce levels
amiR-anti825-II	GAAGCACCAGCTCGAAGAAGCTTATCAAAGAGAATCAATGA	Reduce levels
amiR-anti825-III	GAAGAACCAGCTCGATGAAGCTTATCACAGGTCGTGATATG	Reduce levels
amiR-anti825-IV	GATAAGCTTCATCGAGCTGGTTCTTCTACATATATATTCCT	Reduce levels
pro825-2kb-F	TAAAGCGGCCGCATGCTGTTTTCCAATAAAGTTAATTC	For cloning the
pro825-2kb-R	AAGGCGCGCCTATTTTCTAAGATAAATTAGCTAAGC	For cloning the
Pri-miR825-qPCR-F	ACTCGTTCAAGCACCAGCTC	Cuantification
Pri-miR825-qPCR-R	CATCAACTTGTTCATGCACCTT	Cuantification
MIST1-qPCR-F	GAGAGGAGCCAAACCATAGC	Cuantification
MIST1-qPCR-R	TCGGCATCACTACGTCTTTGC	Cuantification
Actin2-qPCR-F	ACTAAAACGCAAAACGAAAGCGGTT	Cuantification
Actin2-qPCR-F	CTAAGCTCTCAAGATCAAAGGCTTA	Cuantification
Reverse-universal-stemloop of	I GTGCAGGGTCCGAGGT	Cuantification
RT stem-loop miR825-5p	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCTTCT	For pulsed RT
miR825-5p stem-loop qPCR F	TGGCTCAAGCACCAGCTCGA	Cuantifiation of
U6 probe	GCTAATCTTCTCTGTATCGTTCC	Northern blot
miR825-5p probe	GCTTCTTCGAGCTGGTGCTTGA	miR825-5p de
MIST1_PhasiRNA_probeF	TTTGAAATGCAAAGACGTAG	Generation of
MIST1_PhasiRNA_probeR	TTGGCGCGCCCTTTCATATTCATTTCTCCTTTCACTG	Generation of
MIGS825-5p-TS F	AAGCGGCCGCGCTTCTTCGAGTTGGTGCTTGATCTTCTCTAGCCGTGGTCGTC	Generation of
MIGS825-5p-TS R	AAGGCGCGCCGGCCATTTCCTTCAGCCTATAT	Generation of

Used to els of miR825-5p els of miR825-5p els of miR825-5p els of miR825-5p miRs niRs of miR825-5p of miR825-5p of Pri-miR825 of Pri-miR825 of Pri-miR825 of Pri-miR825 ne promoter of AthmicroRNA825A ne promoter of AthmicroRNA825A of Pri-miR825 of Pri-miR825 of MIST1 (TIR-NBS-LRR) of MIST1 (TIR-NBS-LRR) of Actin2/q-PCR normalization of Actin2/q-PCR normalization of miRNAs ۲ and cuantification of miR825-5p of miR825-5p t loading control etection by Northern blot flong probe for phasiRNA detection by northern blot flong probe for phasiRNA detection by northern blot MIGS MIGS

Supplementary Table 2. ACT2 expression relative to UBQ5 in miR825-5p altered genotypes and statistical analysis.

Genotype	Actin	Average	SD	SE
	1			
Col-0	1.43064593	1.1707902	0.22872141	0.132052366
	1.08172467			
	0.76666417			
STTM3	1.74512858	1.0331889	0.62301204	0.35969617
	0.58777395			
	0.88679139			
STTM4	0.96593633	0.90642159	0.05252678	0.030326352
	0.86653705			
	1.104454			
OX3	1.94980971	1.72603044	0.54528755	0.314821912
	2.12382761			
	0.80478017			
OX12	0.79186881	0.76629047	0.05585885	0.032250119
	0.70222244			

ANOVA summary				
F	2.764			
P value	0.0876			
P value summary	ns			
Significant diff. among means (P < 0.05)?	<u>NO</u>			
R square	0.5251			

Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value
Col-0 vs. STTM3	0.1376	-0.8987 to 1.174	NO	ns	0.9912
Col-0 vs. STTM4	0.2644	-0.7720 to 1.301	<u>NO</u>	ns	0.9121
Col-0 vs. OX3	-0.5552	-1.592 to 0.4811	<u>NO</u>	ns	0.4423
Col-0 vs. OX12	0.4045	-0.6318 to 1.441	NO	ns	0.7058
STTM3 vs. STTM4	0.1268	-0.9096 to 1.163	<u>NO</u>	ns	0.9936
STTM3 vs. OX3	-0.6928	-1.729 to 0.3435	<u>NO</u>	ns	0.2544
STTM3 vs. OX12	0.2669	-0.7694 to 1.303	<u>NO</u>	ns	0.9093
STTM4 vs. OX3	-0.8196	-1.856 to 0.2167	NO	ns	0.1431
STTM4 vs. OX12	0.1401	-0.8962 to 1.176	<u>NO</u>	ns	0.9906
OX3 vs. OX12	0.9597	-0.07659 to 1.996	<u>NO</u>	ns	0.0729

Supplementary Table 3. ACT2 expression relative to UBQ5 after flg22 treatment and statistical analysis.

·		y 0.01					
Treatment	Actin	Average	SD	SE	<i>t</i> -test P value	P value summary	Significantly different (P < 0.05)?
Mock 0 h	0.41561895 1	0.65895	0.304199	0.17563			
	0.56123102				0.1942	ns	NO
Flg22 0 h	0.97490486	0.9549822	0.125471	0.07244			
	1.0055						
Mock 3 h	1.21139274	1.0822192	0.113249	0.06538			
	1.03526492				0.2016	nc	NO
	0.44084192				0.3910	IIS	NO
Flg22 3 h	0.9794203	0.8634635	0.378218	0.21836			
	1.17012825						
	1						
Mock 6 h	1.50350882	1.1744474	0.285148	0.16463			
	1.01983329				0.2832	ns	<u>NO</u>
	1.17419064	0 0001102	0 277006	0 15009			
FIGZZ O II	0.02037033	0.0901102	0.277090	0.13998			
	1						
Mock 14 h	2.3456699	1.7119067	0.67623	0.39042			
	1.79005014						
	0.61985385				0.0636	ns	NO
Flg22 14h	0.75262337	0.7112819	0.0793	0.04578			
	0.76136844						

Table	S4 .	Antibodies	used i	in	this	work

Antibody	Working dilution	Reference
anti-GFP	1:600	Santa Cruz Biotechnology, USA
anti-Tubulin	1:1000	Abiocode M0267
anti-MPKs	1:5000	Cell Signaling Biotech #4370
anti-PR1	1:5000	(Wang <i>et al.</i> , 2005)*
anti-Rabbit	1:10000	SIGMA A6154
anti-Mouse	1:80000	SIGMA A9044

*Wang D, Weaver ND, Kesarwani M, Dong X. 2005. Induction of protein secretory pathway is required for systemic acquired resistance. *Science* 308(5724): 1036-1040.

Strain	Reference	Antibiotic selection*
Pseudomonas syringae pv. tomato DC3000	Cuppels, 1986 ¹	
Pseudomonas syringae pv. tomato DC3000	Macho et al.	15 μg/ml kanamycin (pAME)
constitutively expressing AvrPt2	2009 ²	
Agrobacterium tumefaciens C58C1	Deblaere et al.	50 µg/ml rifampicin (genomic)
	1985	5 µg/ml tetracycline (helper
		plasmid PGV2260)
		50 μg/ml kanamycin (pGWB2,
		pBINX)
		40 μg/ml hygromycin
		(pGWB2, pMDC111)
Agrobacterium tumefaciens GV3101	Koncz <i>et al</i> .	50 µg/ml rifampicin (genomic)
	1994	5 µg/ml tetracycline (helper
		plasmid pSOUP)
		50 μg/ml kanamycin (pGWB2,
		pBINX)
		40 µg/ml hygromycin
		(pGWB2, pMDC111)
		20 µg/ml gentamycin (helper
		plasmid pMP90)

Table S5. Bacterial strains used in this work

*Genomic resistance or plasmid resistance when indicated

¹Cuppels, D. A. 1986. Generation and Characterization of Tn5 Insertion Mutations in *Pseudomonas syringae* pv. tomato. Appl. Environ. Microbiol. 51:323-327.

²Macho AP, Ruiz-Albert J, Tornero P, Beuzón CR. 2009 Identification of new type III effectors and analysis of the plant response by competitive index. Mol Plant Pathol. 10:69–80.

³Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, et al. 1985 Efficient octopine Ti plasmid-derived vectors for *Agrobacterium*-mediated gene transfer to plants. Nucleic Acids Res.13:4777–88.

⁴Koncz C., Martini N., Szabados L., Hrouda M., Bachmair A., Schell J. (1994) Specialized vectors for gene tagging and expression studies. In: Gelvin S.B., Schilperoort R.A. (eds) Plant Molecular Biology Manual. Springer, Dordrecht.

Table S6. Pla	asmids generated/used in this study			
Plasmid	Cloned	Used to	Promoter	Plant Resistance
pGEM-T	amiR825-5p	Cloning of amiR825-5p	-	-
pBINX`	amiR825-5p	Increases levels of miRNA825-5p (22nt)	35S	Km
pBINX`	amiR319	Increases levels of miR319	35S	Km
pBINX`	STTM825-5p	Reduce levels of miRNA825-5p (22nt)	355	Km
pBINX`	Empty Vector	Control	355	Km
pBSKII	anti-825	Cloning of anti-825	-	-
pBINX`	anti-825	Reduce levels of Pri-miR825	355	Km
pENTR	microRNA825A 2kb promoter	Cloning of microRNA825A 2kb promoter	-	-
pMDC111	microRNA825A 2kb promoter	Reporter of micoRNA825A promoter activity with GFP	-	Hyg
pENTR	AT5GG38850 genomic region	Cloning of AT5GG38850 genomic region	-	-
PEG103	AT5GG38850 genomic region	Increases levels of AT5G38850 fused to GFP	355	Basta
pENTR	AT5GG38850 genomic region with a mutated miR825-5p target site	Cloning of AT5GG38850 genomic region with a mutated miR825-5p target site	-	-
PEG103	AT5GG38850 genomic region with a mutated miR825-5p target site	Increases levels of a miR825-5p resistant version of AT5G38850 fused to GFP	35S	Basta
pENTR	MIGS825-5p-TS	Cloning of MIGS825-5p-TS	-	-
pGWB2	MIGS825-5p-TS	Produce a fusion between miR825-5p Target site and a fragment of AGAMOUS gene	35S	Km and Hyg

Table S7. Transgenic lines used in this study						
Transgenic lines (<i>A. thaliana</i>)	Plasmid used	Plant resistance/selection	Description			
amiR anti-825	pBINX'	Km	Transgenic line expressing an artificial miRNA (amiR) against Pri-miR825			
amiR825-5p	pBINX'	Km	Transgenic line that increase miR825-5p levels			
STTM825-5p	pBINX'	Km	Transgenic line that reduce miR825-5p levels			
			Transgenic line harbouring a fusion between miR825-5p Target site and a			
MIGS825-5p-TS	pGWB2	Km/Hyg	fragment of AGAMOUS gene			
MIGS825-5p-TS x amiR825-5p	pGWB2/pBINX'	Km/Hyg	Cross between both transgenic line described above			
			Transgenic line harbouring a phusion between miR825 promoter and GFP			
Pro825::GFP	pMDC111	Hyg	reporter			

Table S8. Software used in this work

Software	Purpose	Data source	Parameters	Reference
SRA toolkit fastq-dump	Raw file retrival and conversion to fasq files	Sequence Read Archive (NCBI)	Standard/default parameters	http://ncbi.github.io/sra-tools/
Trimmomatic	Quality filtered applied for adapter removal	Fastq files obtained using fastq- dump	Standard/default parameters	(Bolger <i>et al.</i> , 2014) ¹
FASTQC	Quality confirmation	Fastq files quality- filetered by Trimmomatic	Standard/default parameters	http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bowtie	Mapping of reads to Arabidopsis genome (TAIR10). SAM output.	Reads from FASTQC- confirmed fastq files	No mismatches (–v 0 mode), except for AGO1 and AGO2 libraries (-v 1 mode)	(Langmead <i>et al.</i> , 2009) ²

	Convertion to	SAM files	Standard/default parameters	(Li <i>et al.</i> , 2009) ³
samtools	BAM, sorting and			
	indexing			
IGV browsor		Sorted and	Standard/default parameters	(Robinson <i>et al.</i> , 2011) ⁴
IGV blowser	Reads visualization	indexed		
		BAM files		
	Estimating	SAM and	Normalization to ten millions	(Anders <i>et al.</i> , 2015) ⁵
UTS og broog	numbers of reads	GFF	of total reads mapped to the	
n i Seq niseq-	mapped per feature	files	entire genome (RPTM	
count	of the A. thaliana		method)	
	genome			
	Display small RNA	Raw reads	Standard/default parameters	https://github.com/MikeAxtell/strucVis
	coverage and	retrieved		
strucVis	secondary structure	from		
	of ath-miR825	SRR2079800		
	precursor			
	microRNA and	miRNA /	Standard/default parameters	(http://wmd3.weigelworld.org/cgi-bin/webapp.cgi;
WMD3	siRNA target	siRNA fasta		Ossowski Stephan, Fitz Joffrey, Schwab Rebecca, Riester
	prediction	files		Markus and Weigel Detlef, personal communication)

	microRNA and	miRNA /	Standard/default parameters	(Dai & Zhao, 2011) ⁶
psRNATarget	siRNA target	siRNA fasta		
	prediction	files		
		Sequences	Standard/default parameters	(Madeira <i>et al.</i> , 2019) ⁷
		retrieved		miRBase (Griffiths-Jones et al., 2006) ⁸
		from		
	To analyze	miRBase or		
Clustal Omega	miRNA825	NCBI (Blastn		
	conservation	against the		
		genomes with		
		ath-miR825		
		as template)		
		NLR	Standard/default parameters	(Crooks <i>et al.</i> , 2004) ⁹
		sequences		
Weblogo	Generation of logos	were		
		retrieved		
		from TAIR		
"grep" UNIX /	Determination of	Raw files	Only reads starting with	N/A
Linux	5p and 3p read	obtained	mature miRNA sequences and	
command	number for	from	containing the adapter	

	calculation of	Sequence	sequence immediately after	
	miR825 5p/3p	Read Archive	miRNA reads were used.	
	ratios.	(NCBI) under	Ratios were calculated for	
		the accession	each library	
		numbers		
		listed in		
		Table S6,		
		converted to		
		fastq files		
		Four	Bowtie parameters for	(Addo-Quaye <i>et al.</i> , 2009) ¹⁰
		degradome	modified to -v 0 [no mismatch	Output filtering (Gyula et al., 2018) ¹¹
		libraries	allowed] and -k 10 [report up	Ws/Wl ratios (Zhai <i>et al.</i> , 2011) ¹²
	Degradome	(Table S6)	to 10 valid alignments] during	
CleaveLand4	analyses against	analyzed	alignment. Output was filtered	
	Arabidopsis	against AGO-	retaining only degradome	
	thaliana cDNA	bound	categories 0-2 and Allen scores	
	NLR-transcriptome	sRNAs. Just	0-6.	
		sRNAs with	Outer DNA NUD inter (
		≥5 of	Univ sknA-NLK interactions	
		mapped reads	detected in at least 2 of the	

		were used in	libraries were considered	
		the analysis.	significative.	
			ws/w1 ratios: number of	
			PARE reads within a small	
			window (5 nt ± 2) divided by	
			the number of reads within a	
			large window (31 nt ± 15),	
			considered as validated when	
			equal or larger than 0.5	
	Prediction of	fastq file	Standard/default parameters	$(Zuker, 2003)^{13}$
Mfold	secondary RNA			
Mioid	structure and			
	Vienna format.			
	Visualization of	Vienna	Standard/default parameters	(Darty <i>et al.</i> , 2009) ¹⁴
Varna	secondary RNA	format		
	structure			
Mfold, RNAhybrid	Prediction of	Fasta	Standard/default parameters	Mfold (Zuker, 2003) ¹³
	secondary and			RNAhybrid (Krüger et al., 2006) ¹⁵
	tertiary structures			MC-fold/MC-sym (Parisien & Major, 2008) ¹⁶

and MC-	for the miR8255-		Overall pipeline (Manavella <i>et al.</i> , 2012) ¹⁷
fold/MC-Sym	p/miR825-3p		
	duplex		

¹Bolger AM, Lohse M, Usadel B. 2014 Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–20.

²Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10:R25–10.

³Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009 The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25:2078–9.

⁴Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. 2011 Integrative genomics viewer. Nat Biotechnol. 29:24–6.

⁵Anders S, Pyl PT, Huber W. 2015 HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 31:166–9. ⁶Dai X, Zhao PX. 2011 psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 39:W155–9.

⁷Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. 2019 The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47:W636–41.

⁸Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. 2006 miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34:D140–4.

⁹Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004 WebLogo: a sequence logo generator. Genome Res; 14:1188–90.

¹⁰Addo-Quaye C, Miller W, Axtell MJ. 2009. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25: 130–131.

¹¹Gyula P, Baksa I, Tóth T, Mohorianu I, Dalmay T, Szittya G. 2018. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF- YA2and YUC2. Plant, Cell & Environment 41: 2404–2417.

¹²Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacy G, Cook DR, Green PJ, Sherrier DJ, Meyers BC. 2011. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, transacting siRNAs. Genes & Development 25: 2540–2553.

¹³Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: 3406–3415.

¹⁴Darty K, Denise A, Ponty Y. 2009. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25: 1974–1975.

¹⁵Kruger J, & Rehmsmeier M (2006). RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res, 34, W451-4.

¹⁶Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature. 2008 Mar 6;452(7183):51-5. doi: 10.1038/nature06684. PMID: 18322526.

¹⁷Manavella PA, Koenig D, Weigel D. 2012. Plant secondary siRNA production determined by microRNA-duplex structure. Proceedings of the National Academy of Sciences of the United States of America 109: 2461–2466.

Accession number	Description		
GSM2787769 GSM2787770	ACO1/ACO2 loaded small DNA IP libraries		
GSM3909547 GSM3909548	AGO1/AGO2-ioaded small KNA IF lidfafies		
SRR1171802 SRR1171803 SRR1171804 SRR10322040	Degradome libraries [dataset]. Arabidopsis thaliana, omics_ena_project, V1; 1970. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA238653.		
SRR2079799 SRR2079800 SRR2079801 SRR2079802 SRR2079803 SRR2079804 SRR2079805 SRR2079806 SRR2079807 SRR2079807 SRR2079809 SRR2079810 SRR2079811 SRR2079812	Sequence Read Archive (NCBI) files used to determine miR825 5p/3p ratios Submitted by: Gene Expression Omnibus (GEO) Study: Time-course transcriptome of wild-type Arabidopsis leaf		

Table S9: Libraries used in this work