
S1 Supplementary Appendix

List of Strategies
Table S1 characterizes each strategy assessed in this paper. Each row represents one strategy, their corresponding
parameters, and the 75th percentile of the regret distribution over the 20,000 futures under which each strategy was
tested. Lower regret represents better performance. The parameters in this table as used in the equations discussed
in the Methods - Policy Levers section. Figure S1 illustrates that the information provided in table S1 is a summary
of the regret distributions of each one of the strategies. While table S1 provides a summary of our findings, figure S1
illustrates how different strategies handle the challenges imposed by the uncertainties we used for our stress-tests, and
how outcomes vary even when strategies are fixed. Figure S1 A shows that strategies with lower levels of caution
tend to result in more deaths and lower numbers of days under NPIs. Strategies with higher levels of caution absorb
those challenges by imposing longer intervention periods. Figure S1 B shows that adaptive strategies with different
initial levels of caution can achieve similar results, hinting that it is possible to start with higher levels of caution and
adaptively decrease the level of caution (e.g, T-12-2, T-24-2) while arriving at outcomes that are similar to outcomes
obtained by strategies with constant levels of caution (e.g., C-6-1).

Strategy codes are defined as follows. The first two columns describe the characteristics of each strategy. The
first letter in the strategy name represents the strategy type (C for constant caution, T for time-based, and V for
vaccine-based strategies). The subsequent number represents the baseline level of caution xb, and the third number
is a sequential code to make the strategy code unique. The parameters column describes the policy levers that
characterize each strategy, as described in the methods section. The final three columns present the 75th regret
percentile of three metrics of interest.

Table S1. Strategy characteristics and robustness measures.

Strategy Strategy Parameters Deaths / 100k NPI Days
C-0.5-1 constant 93 73
C-1.5-1 constant 50 161
C-3-1 constant 28 209
C-6-1 constant 12 238
C-12-1 constant 4 247
C-24-1 constant 0 252
V-0.5-2 V ∗ = 60%; kc = 15 93 72
V-1.5-2 V ∗ = 60%; kc = 15 53 153
V-3-2 V ∗ = 60%; kc = 15 31 200
V-6-2 V ∗ = 60%; kc = 15 14 231
V-12-2 V ∗ = 60%; kc = 15 5 242
V-24-2 V ∗ = 60%; kc = 15 1 248
V-0.5-1 V ∗ = 60%; kc = 10 94 71
V-1.5-1 V ∗ = 60%; kc = 10 54 149
V-3-1 V ∗ = 60%; kc = 10 32 197
V-6-1 V ∗ = 60%; kc = 10 15 230
V-12-1 V ∗ = 60%; kc = 10 5 243
V-24-1 V ∗ = 60%; kc = 10 1 248
V-0.5-6 V ∗ = 50%; kc = 15 94 70
V-1.5-6 V ∗ = 50%; kc = 15 58 140
V-3-6 V ∗ = 50%; kc = 15 37 181
V-6-6 V ∗ = 50%; kc = 15 19 213
V-12-6 V ∗ = 50%; kc = 15 8 232
V-24-6 V ∗ = 50%; kc = 15 3 240
V-0.5-5 V ∗ = 50%; kc = 10 95 68
V-1.5-5 V ∗ = 50%; kc = 10 59 138
V-3-5 V ∗ = 50%; kc = 10 37 182
V-6-5 V ∗ = 50%; kc = 10 19 218
V-12-5 V ∗ = 50%; kc = 10 8 238
V-24-5 V ∗ = 50%; kc = 10 2 244
V-0.5-4 V ∗ = 40%; kc = 15 95 65
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Table S1 – continued
Strategy Strategy Parameters Deaths / 100k NPI Days
V-1.5-4 V ∗ = 40%; kc = 15 68 123
V-3-4 V ∗ = 40%; kc = 15 50 154
V-6-4 V ∗ = 40%; kc = 15 33 177
V-12-4 V ∗ = 40%; kc = 15 19 202
V-24-4 V ∗ = 40%; kc = 15 10 222
V-0.5-3 V ∗ = 40%; kc = 10 97 62
V-1.5-3 V ∗ = 40%; kc = 10 66 124
V-3-3 V ∗ = 40%; kc = 10 46 161
V-6-3 V ∗ = 40%; kc = 10 27 195
V-12-3 V ∗ = 40%; kc = 10 14 224
V-24-3 V ∗ = 40%; kc = 10 6 238
T-0.5-6 α = 50%;Tα = 2021− 09− 26 93 73
T-1.5-6 α = 50%;Tα = 2021− 09− 26 53 155
T-3-6 α = 50%;Tα = 2021− 09− 26 31 200
T-6-6 α = 50%;Tα = 2021− 09− 26 14 223
T-12-6 α = 50%;Tα = 2021− 09− 26 5 238
T-24-6 α = 50%;Tα = 2021− 09− 26 1 249
T-0.5-5 α = 50%;Tα = 2021− 07− 04 93 72
T-1.5-5 α = 50%;Tα = 2021− 07− 04 56 140
T-3-5 α = 50%;Tα = 2021− 07− 04 34 191
T-6-5 α = 50%;Tα = 2021− 07− 04 16 224
T-12-5 α = 50%;Tα = 2021− 07− 04 6 240
T-24-5 α = 50%;Tα = 2021− 07− 04 1 248
T-0.5-4 α = 50%;Tα = 2021− 03− 10 104 53
T-1.5-4 α = 50%;Tα = 2021− 03− 10 71 127
T-3-4 α = 50%;Tα = 2021− 03− 10 46 165
T-6-4 α = 50%;Tα = 2021− 03− 10 24 211
T-12-4 α = 50%;Tα = 2021− 03− 10 11 222
T-24-4 α = 50%;Tα = 2021− 03− 10 4 229
T-0.5-3 α = 10%;Tα = 2021− 09− 26 93 73
T-1.5-3 α = 10%;Tα = 2021− 09− 26 53 149
T-3-3 α = 10%;Tα = 2021− 09− 26 36 182
T-6-3 α = 10%;Tα = 2021− 09− 26 22 204
T-12-3 α = 10%;Tα = 2021− 09− 26 12 217
T-24-3 α = 10%;Tα = 2021− 09− 26 5 225
T-0.5-2 α = 10%;Tα = 2021− 07− 04 93 72
T-1.5-2 α = 10%;Tα = 2021− 07− 04 64 130
T-3-2 α = 10%;Tα = 2021− 07− 04 54 147
T-6-2 α = 10%;Tα = 2021− 07− 04 33 168
T-12-2 α = 10%;Tα = 2021− 07− 04 18 192
T-24-2 α = 10%;Tα = 2021− 07− 04 9 213
T-0.5-1 α = 10%;Tα = 2021− 03− 10 124 0
T-1.5-1 α = 10%;Tα = 2021− 03− 10 109 65
T-3-1 α = 10%;Tα = 2021− 03− 10 93 92
T-6-1 α = 10%;Tα = 2021− 03− 10 71 112
T-12-1 α = 10%;Tα = 2021− 03− 10 47 130
T-24-1 α = 10%;Tα = 2021− 03− 10 26 161
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Fig. S1. Regret distributions for a sub-set of strategies. This figure presents the performance of a subset of the strategies presented in terms of Deaths / 100 k people
regret and Number of Days under NPIs regret. Each dot in this plot represents the performance of each strategy in one of the 20,000 futures. The color gradient represents
Change in Transmissibility uncertainty.
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Model
The model used in this analysis is based on our previously published ODE model (1) and its recent extension (2).
Figure S2 presents an overview of our compartmental model, whereby individuals in our population progress over the
different stages of the infection.
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Fig. S2. Compartmental Model Structure. Each circle in this figure represents a progression state, each subdivided in 5 population strata. For simplicity and
clarity, the figure omits arrows representing loss of immunity (from the recovered states to the S state). See equations for details.

Individuals in our population are divided into 21 compartments. The set of compartments that are common to
our NPI-only model include: The noninfected and susceptible (S), the exposed and infected but not yet infectious
(E), the presymptomatic or primary infectious stage (P ), the infected with mild symptoms (ISm), the infected
with severe symptoms (ISs), the diagnosed infected with mild symptoms (YSm), the diagnosed infected with severe
symptoms (YSs), the non-ICU hospitalized (H), the hospitalized in the ICU (HICU ), the infected asymptomatic (IA),
the diagnosed infected asymptomatic (YA), and those that died (D). We assume that individuals in the P and IA
compartments are completely asymptomatic and thus are unaware of being infectious. All those compartments were
present in our previous work (1, 2). As in our previous model, this model does contain multiple population strata,
but it does not contain geographic patches within a US state. Although this may seem an important limitation, the
COVID-19 case data in California suggests that COVID-19 waves occurred at the same time across counties. Because
reopening policies are defined at the state level, and COVID-19 waves do not seem to respect county boundaries
within states, we believe our model is defined at an appropriate geographic level given the questions posed in the
problem framing section.

The model used in this paper includes new compartments aiming to represent vaccination roll-out. Here, we focus
our description on these compartments. New compartments include those who have received a full vaccination dose
(V ), the vaccinated who have been infected and are in the exposed and infected but not yet infectious stage (Ev),
the vaccinated in the presymptomatic infectious stage (Pv), the vaccinated in the infected asymptomatic (IAv) and
those diagnosed infected asymptomatic (YAv). This model also has three distinct recovered stages RI , RA and RAv
allowing us to respectively track those that have recovered having been symptomatic, non-vaccinated asymptomatic,
and vaccinated asymptomatic.

The arrows connecting the disease states describe the progression rates between the different compartments. We
assume that mild symptoms are a dry cough and a fever, while severe symptoms also include shortness of breath.
The sum of the population in all of the states gives the total population N . However, we assume that N = 1 and
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thus each state variable gives the proportion of the population belonging to that state.

Model Formulation. Our compartmental model is described by the following set of coupled ordinary differential
equations (ODEs):

Ṡ = −λS − ω(t)S, [1]
V̇ = ωS − λvS, [2]
Ė = λS − νE, [3]
Ṗ = νE − (γS + γA)P, [4]
Ėv = λvV − νvEv, [5]
Ṗv = νvEv − (γV + γAv)P, [6]
İA = γAP − [ξA + ζA(t)]IA, [7]
ẎA = ζA(t)IA − ξ∗AYA, [8]
İAv = γAvP − [ξA + ζAv(t)]IAv, [9]
ẎAv = ζAv(t)IAv − ξ∗AYAv, [10]
İSm = γSP − [υ + ξm + ζS(t)]ISm, [11]
ẎSm = ζS(t)ISm − [υ∗ + ξ∗m]YSm, [12]
İSs = υISm − [ξs + µs + hAH + (1−AH)ζS(t)]ISs, [13]
ẎSs = (1−AH)ζS(t)ISs + υ∗YSm − [ξ∗s + µs + h∗AH ]YSs, [14]
Ḣ = A[hISs + h∗YSs]− [µH + χ+ ξH ]H, [15]

ḢICU = AICUχH − [µICU + ξICU ]HICU , [16]
ṘA = ξAIA + ξ∗AYA, [17]
ṘAv = ξAIAv + ξ∗AYAv, [18]
ṘS = ξmISm + ξ∗mYSm + ξsISs + ξ∗sYSs + ξHH + ξICUHICU , [19]
Ḋ = µS(ISs + YSs) + [µH + (1−AICU )χ]H + µICUHICU . [20]

Many of the ODEs and transition rates in equations 1 -20 are the same as those used by our first COVID-19
transmission model described in our recent work (2). Here we focus on providing a high-level overview of the way
NPIs are represented in our model and on describing the additions made to the ODEs and the model. Vaccination is
the most important addition compared to our previous model, and most of the description is centered around how we
model vaccination.

The additional disease compartments include new disease-specific progression rates. In particular, disease progression
rates for those that have vaccinate can differ from those who have not. The vaccination rate is given by the parameter
ω(t), described later in this paper. We denote the per-person progression rate from exposure to the presymptomatic
for those vaccinated by νv. The progression rates for those who vaccinate differs from the progression rates for
those who do not vaccinate. Hence, the progression rates γv and γAv are not respectively equal to γS and γA.
However, we assume that the overall duration of the presymptomatic phase does not change with vaccination. Hence,
(γv + γAv)−1 = (γS + γA)−1. However, the proportion av of those vaccinated that remain asymptomatic is higher than
the same proportion a0 of those who did not. Hence, av > a0, where av = γAv(γv + γAv)−1 and a0 = γA(γS + γA)−1.
We assume that those who have been vaccinated but get infected and develop mild symptoms progress through the
disease’s clinical states as if they were not vaccinated. Hence, for these people, we assume that the vaccine has failed
and no longer provides benefits. However, the majority of vaccinated individuals will continue to stay asymptomatic.
Their disease progression rate is the same as those asymptomatic who did not vaccinate except for the detection rate.
We assume that those who are vaccinated and asymptomatic have a lower rate of seeking to get tested, and hence
ζAv < ζA.

Our model also tracks additional outputs. We compute the true cumulative case counts ĊT ; the reported cumulative
case counts ĊR, the cumulative number of people tests Ṫ , the reported recovered ṘR, the reported deaths ḊR and the
reported case-fatality rate CFRR(t). These output quantities are respectively computed using the following equations.
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ĊT = λ, [21]
ĊR = ζS [ISm + (1−AH)ISs] + hAHISs + ζAIA, [22]
Ṫ = ĊR + ζ(S + E + P ), [23]

ṘR = ξ∗AYA + ξ∗mYSm + ξ∗sYSs + ξHH + +ξICUHICU , [24]
ḊR = Ḋ − µSISs, [25]

CFRR(t) = DR(t)/CR(t). [26]

Population Groups and Mixing. Our model considers different population groups or strata. We consider five population
strata, including the front-line essential workers (FLEW), the employed non-FLEW, the unemployed, minors of
age below 17, and seniors of 65 and above. The first three population strata only include those aged 18 to 64.
The prognosis parameters that enter the ODEs depend on the population strata. Prognosis parameters include
the proportion of people that develop symptoms (i.e., γS , γA, γV and γAv), the proportion of symptomatic who
develop severe and critical symptoms (i.e., υ and χ), and the proportion of critical cases that lead to death without
pharmaceutical treatment (i.e., µICU ).

The structure of the model is expressed as an array of ODEs, where the disease progression dynamics for each
stratum are expressed by equations 1-20. This formulation extends the model from the more conventional version of a
single-strata compartment model that assumes homogeneous mixing and implicit interactions within the population.
Heterogeneity in disease transmission is introduced by strata-dependent mixing contact rates describing the variations
in how people belonging to the different population strata mix with each other. These strata-dependent mixing
contact rates control the transmission dynamics, specifically the force of infection terms λ and λv that enter the
ODEs.

We consider six different mixing modes including household, work, school, commercial, recreation, and other. We
used a combination of a network-based dataset and self-reported survey data to create matrices describing the average
daily contacts between each stratum in each mixing mode (3, 4). We decompose these matrices into a set of row
normalized five-by-five mixing matrices Mm, column normalized contact vectors κm, and scalar mode weight wm
for each mixing mode labeled by the index m. The total contact matrix, K is calculated by a weighted sum of the
mode-specific contact matrices Km, and expressed as

K =
∑
m

wm[κm �Mm] =
∑
m

wmKm, [27]

where � denotes the element-wise multiplication. The weights, wm give the proportion of contacts (or duration of
contacts) of how people mix over the different mixing modes. Under the disease-free status-quo conditions these
weights sum to one, hence

∑
m wm = 1.

Modeling SARS-CoV-2 transmission. SARS-CoV-2 transmission is modeled by the force of infection λ which charac-
terizes how infectious people in each disease state infect others. We express the force of infection as a vector of five
elements, one for each stratum and expressed as

λ(t) = kλceffβeffK ·
∑
XI

mXIXI(t), [28]

where ceff represents the effective contact rate, and βeff effective transmissibility, and XI represents the set of
the infectious disease compartments. This set includes all the disease stages that are infectious, including those
that follow from disease transmission of vaccinated people, namely Pv, IAv and YAv. People who have COVID-19
symptoms or are diagnosed are less likely to mix socially. Moreover, people in the early stages of the disease are more
infectious. Hence, we use the coefficients mXI to represents the multiplicative reduction factor for infectious states
XI that scale the transmission rate relative to the asymptomatic and unaware of being infectious. We compute the
value of the product ceffβeff by setting the values of the basic reproductive ratio R0. By using the next-generation
matrix method we find that ceffβeff = R0/teff , where the time scale teff is expressed in terms of the multiplicative
coefficients mXI and the values of the disease progression rates (2, 5). The multiplicative factor kλ represents a
calibration constant. Heterogeneity in transmission rates across the population strata is accomplished by the total
contact matrix K.

Our model assumes imperfect vaccines whereby those who vaccinate may still contract the disease and become
infectious and symptomatic. In section we describe how we model the efficacy of the vaccine and the virus transmission
amongst those who vaccinated.
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Nonpharmaceutical Intervention Levels. Nonpharmaceutical interventions (NPIs) based on social distancing reduce
the total number of unique contacts. They are modeled using a different set of scalar weights wm that enter equation 27,
and are such that their sum is less than one. For example, we can set all values of wm to zero except for m =
Household mixing, which retains its original value or perhaps increases it. Additionally, we can modify the mixing
matrix Mm for m = Household mixing to describing a different behavior of age group mixing within a household due
to the new social-distancing measures. Hence, we obtain a different contact matrix K. Specifically, to model the
impact of reduced mixing from NPI level n on mode m, we define a diagonal matrix Φ{n}m . The diagonal elements of
Φ{n}m specify the reduction in mixing for each stratum in mode m relative to the disease-free state. For interventions
that apply to all strata (i.e., where each stratum changes their mixing by the same proportion), such as the closure of
schools, all diagonal elements of Φ{n}m have the same value. However, there are some interventions that only apply to
some strata and not others. For example, the case when only essential front-line workers are expected to attend their
workplaces. In such cases, the diagonal elements of Φ{n}m take on different values, each specifying the strata-mode
specific impact of the NPI. Hence, the expression for K{n} that accounts for the impact of NPIs is:

K{n} =
∑
m

wm

{
(Φ{n}m ) 1

2 Km(Φ{n}m ) 1
2

}
. [29]

Table S2 provides a description of the intervention levels which are denoted by the index n. These intervention
levels are used in our model to mechanistically change the transmission processes at different mixing modes and the
goal of the model is to compute the consequences of that level of transmission on health outcomes. However, using only
those outcomes is not sufficient to properly inform decision-making. As discussed in the methods section, it is desirable
to use additional outcome measures to evaluate the pareto-efficiency of alternative strategies. Because minorities and
workers at high-contact service industries (e.g., hospitality and leisure) are more likely to face unemployment and
income loss during the pandemic (6), accounting for the effects of policies on those populations is essential if modelers
seek to provide comprehensive decision support to policymakers. For these reasons, we seek to use measures that
are monotonically increasing relative to the unknown marginal effect of NPIs on social welfare. This paper uses the
number of days of NPIs as the primary measure. In addition to that measure we obtain an estimate of the weekly
income loss incurred in each of the NPI levels using the baseline estimates from the general equilibrium economic
model (7). At the end of the simulation run, we aggregate the income loss incurred under each NPI level.

Table S2. Nonpharmaceutical intervention levels.

NPI Level (n) Description

Level 1: No Intervention No Intervention
Level 2: Close schools All schools are closed.
Level 3: Close schools, bars, and restaurants;
and ban large events

In addition to school closures, all bars’ and
restaurants’ dine-in services are closed, only
allowing for take-out options. Also, large gath-
erings are banned.

Level 4: Close schools, bars, and restaurants;
ban large events; and close nonessential busi-
nesses

In addition to school, bar, and restaurant clo-
sures, all nonessential businesses are closed.

Level 5: Close schools, bars, and restau-
rants; ban large events; close nonessential
businesses; and shelter in place for the most
vulnerable

In addition to the closure of all nonessential
businesses, a shelter in place recommended
for the vulnerable population, including the el-
derly, children, and other at-risk populations.

Level 6: Close schools, bars, and restau-
rants; ban large events; close nonessential
businesses; and shelter in place for everyone
but essential workers

In addition to the interventions above, shelter
in place order is issued for everyone but es-
sential workers.

Modeling Adaptive Strategies. This paper presented only three alternative types of adaptive strategies, which resulted
in 78 alternative strategies. Yet, there are many potential ways to frame and model reopening policies. Instead of
addressing the question of when society can reopen schools by simulating outcomes under a simple set of rules with
an exogenous NPI time-series, we use an endogenous controller to represent a strategy and ask how policymakers
should manage their level of caution over time. The difference between the two questions is important. While other
studies (8) and our early work (1) addressed the impact of specific fixed policies, this approach does not address the
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important question of how to adapt policies over time conditional on vaccination. While the first question allows a
simple comparison and is more intuitive, the first framing inevitably results in large outbreaks if stringent policies are
not followed, and might lead to recommendations that are vulnerable to new strains with higher transmissibility.
Because the benefits of NPIs are a non-linear function of the immunity status in the population, and because
immunity is changing over time, a set of fixed intervention schedules can result in a menu of options that would be
pareto-dominated if a wider set of options was included. This is the main concern and motivation for expanding the
option set with alternative strategies.

Framing policies as endogenous also has disadvantages. This formulation implies that policymakers can and will
sustain a coherent level of caution over time, and strictly follow that strategy. We remedy this disadvantage by
conceptualizing the level of caution as a potentially time-varying control and implementing a stopping condition
to cease the use of NPIs once an immunity threshold based on vaccination is crossed. This approach allows us to
answer specific questions such as "when interventions can be lifted" while using an endogenous controller that is more
robust to uncertainties and representative of adaptive policies. Rather than being an input, the date when NPIs are
relaxed is an outcome - a function of policy levers and the uncertainties. The rationale behind this formulation is that
policymakers will face higher pressure to relax policies as a wider proportion of the population is vaccinated.

One approach to reconciling the two approaches could be to run the analysis using the endogenous policies over
a wide range of futures and then derive an NPI time-series from strategies that were not pareto-dominated. This
policy could be translated to an exogenous policy. We did not explicitly do that in this paper because using that NPI
time-series for other states or countries could be potentially misleading. However, that approach could be potentially
useful for public health departments that wish to translate dynamic, endogenous policies to more interpretable
prescriptions.

Vaccination. Our model accounts for a phased vaccination rollout, where a one-dose or a two-dose vaccine is distributed
to population strata in order of priority.In our model, those who are immunized (either with a two-dose or a one-dose
vaccine) enter the vaccinated compartment V . Our model represents vaccination supply and demand separately.

Vaccination capacity is the average rate at which vaccine courses (VCs) can be administered by state. Vaccination
capacity increases over time. We assume that, starting from the day when vaccines start to be administered, denoted
by tv, the daily supply rate of VCs sv(t) increases from zero to a maximum daily rate s{max}

v based on the sigmoid
function

sv(t) = s{max}
v

eln 2·(t−tv)/τv − 1
eln 2·(t−tv)/τv

for t ≥ tv. [30]

τv is the time scale of capacity increase such that sv(τv) = s
{max}
v /2. We denote the daily number of VCs utilized in

each stratum by the vector u(t), and the total number of available VCs as a stock variable v(t). The change in the
daily number of available VCs is equal to the difference between the daily number of VCs supplied sv(t), and the sum
of the daily number of VCs utilized across the population strata, which we denote by u(t). The latter is equal to the
sum of the elements of the vector u(t). Our model tracks the total number of available VCs v(t) by treating it as a
stock using the following ODE

v̇(t) = sv(t)− u(t). [31]

Our model tracks the total number of utilized VCs in each stratum. This is denoted by the vector U(t) and is given
by the time integral of u(t). The daily number of VCs used u(t) depends on the vaccination allocation policy and
demand. At the start of the vaccine rollout, we assume that policymakers specify a vaccination allocation policy. The
policy is denoted by a vector A∗V . Its elements determine the proportion of vaccines allocated to each population
strata, and hence they sum to one. The vector A∗V specifies the initial allocation policy, such that higher priority
groups have higher values. It is constant over time. However, the actual allocation policy, denoted by AV (t) changes
over time because willing members of priority groups deplete as vaccines are distributed. AV (t) depends on the
proportion of each stratum willing and eligible to receive additional vaccine doses and the vaccine allocation A∗V .

We define the vector W as the proportion of each stratum approved to receive the vaccine and willing to get
vaccinated. We then construct an indicator function, IV (t), which describes if there is still demand in each stratum at
time t. This allows us to ’switch off’ vaccine supply to strata that have been fully vaccinated. The indicator function
IV (t) is expressed as a Heaviside step function H(x), and compares the number of willing and eligible individuals, W,
to the total number of utilized VCs, U(t), element by element:

IV (t) = H[W−U(t)]. [32]

Each element of IV (t) represents a population stratum. The value of the element is equal to 1 as long as there are still
individuals in the stratum approved and willing to vaccinate and equal to 0 otherwise. As of January 2021, the FDA
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has approved the vaccines for everyone except minors of less than 16. Hence, the value of the IV (t) for the youngest
population strata only considers whether all eligible minors have received the vaccine. The normalized element-wise
multiplication of vectors A∗V and DV (t), gives the time-varying allocation vector AV (t), and is expressed as

AV (t) = N [A∗V � IV (t)] . [33]

The function N (.) is a normalization function such that the sum of the elements of AV (t) is equal to one. Thus, as
the highest priority stratum has all willing members vaccinated, this value in AV (t) is set to zero, and the priority on
other strata are increased.

At the beginning of the rollout, we expect the demand for vaccines to be high. For this case, supply will be limited,
and the daily rate of vaccinations in each stratum is given by sv(t) ·AV (t). However, when the vaccination capacity is
no longer a constraint, the daily rate of vaccinations in each stratum no longer depends on the initial vaccination policy
A∗V . Instead, it depends on demand, which we denote as DV (t). As mentioned, our indicator function IV (t) signals
whether demand is present for each stratum. We assume that demand is limited to the unvaccinated susceptible
(S), and recovered (RA and RS) population. Hence, the vector representing the demand for VCs in each population
strata is given by an element-wise multiplication of vectors S +RA +RS , and IV (t), and expressed as

DV (t) = (S + RA + RS)� IV (t). [34]

When people no longer perceive the vaccination capacity as constrained, they may seek to get vaccinated at a different
rate, sw(t). We assume that this probability is the same across the population strata and does not vary with time.
We also make the assumption that vaccination rate is independent of the Nonpharmaceutical intervention policy.
Hence, in our model the daily consumption rate of VCs is the minimum of supply and demand in each strata:

u(t) = Pmin [sv(t) ·AV (t), sw ·DV (t)] [35]

The function Pmin[x,y] is the parallel minimum and returns the element-wise minimum between the vectors x and y.
We can convert this into a per-person daily consumption rate of VCs among the susceptible:

ω(t) = u(t)
S + RS + RA

[36]

Both the Heaviside step function and the parallel minimum introduce abrupt changes in the model dynamics and
lead to a significant increase in stiffness of the ODEs. This is problematic because it significantly slows the numerical
solvers. To resolve this issue, we used a continuous approximation to these functions. For example, we approximated
the step function with a very steep sigmoid function.

Vaccination Efficacy. Our model separately considers the vaccine efficacy in protecting from disease transmission and
in preventing symptoms. As inputs, the model requires the specification of the vaccine’s overall efficacy of ev and
efficacy in protecting from disease transmission etv. The overall efficacy is given by

ev = 1− Fv/F0, [37]

where Fv is the proportion of individuals in the treatment group that during phase 3 vaccine trials reported having
symptoms, and F0 represents the same proportion in the control-placebo group. We can express Fv and F0 in terms
of the ev as

Fv = β(1− etv)(1− av) [38]
F0 = β · (1− a0) [39]

where β is the overall transmissibility common to the treatment and the control group. The proportions av and a0
respectively represent the probabilities of remaining asymptomatic after being infected for those who do and do not
vaccinate. It follows that we can express av in terms of a0 using the vaccine’s efficacy values by the expression

av = 1− (1− ev)(1− a)
1− etv

. [40]

Therefore, by specifying a, ev and etv we can find the value for av and hence the relative probabilities that those who
are vaccinated develop mild or severe disease, expressed through γV and γAv.
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To model the transmission of SARS-CoV-2 to those who have vaccinated we consider both the efficacy of the
vaccine in protecting from disease transmission etv as well as the increase in the rate of social mixing of those who
have vaccinated. Following from section , we express the force of infection on those who have vaccinated as

λv(t) = kλceffβeff (1− etv)mvK ·
∑
XI

mXIXI(t). [41]

The coefficient mv represents a multiplicative factor that accounts for the overall effect of behavior changes of the
people who vaccinate. For example, these behavioral changes include the tendency for those who vaccinate to be less
willing to comply with NPIs and continue to wear their masks, and to generally increase their social mixing rate.
In the equations 28 and 41, XI represents the set of all infectious states and it includes the states Pv, IAv and YAv.
These three infectious states follow from the disease transmission to those who have vaccinated. Hence, both equations
depend on the coefficients mPv , mIAv and mYAv that scale the transmission rate relative to the asymptomatic and
unaware of being infectious. The multiplicative factor mv is included as part of these three coefficients. For example,
we set mPv = mvmP , and likewise for the other two factors. Hence, equation 41 considers a squared behavioral effect
whereby people who are vaccinated increasingly mix amongst each other by an overall multiplicative factor of m2

v.

Additional Mechanisms. Our model includes additional mechanisms that influence the long-term transmission
dynamics. These include seasonality and loss of immunity. We model seasonality in transmission by multiplying
ceffβeff by a time-varying term denoted by ϑ(t) that has an average value equal to one over a year. We use a
sinusoidal function to describe ϑ(t). A parameter s controls for the strength of the seasonal effect in the time-varying
function ϑ(t). To model loss of immunity (9), we allow those who recover can become susceptible again. We use a
first-order boxcar method and include an intermediate recovered compartment RB , which recovered people transition
into before losing immunity and returning the susceptible population pool S. These mechanisms are described in
more detail in our prior work (2).

Calibration
Model calibration was performed using the Incremental Mixture Approximate Bayesian Computation (IMABC)
algorithm (10). The calibration approach requires the specification of parameter priors π(θc) and calibration targets
y∗. IMABC begins with a rejection-based approximate Bayesian computation (ABC) step, drawing a sample of
parameters θc of size N0 from their prior distribution π(θc), simulating calibration targets yt, and accepting parameters
that yield simulated outcomes near observed targets within initial tolerance bounds of y∗t ± εf,t. Next, the sample is
iteratively updated by drawing additional candidate parameters from a mixture of multivariate normal distributions,
centered at the parameters that yield simulated targets that are closest to observed targets. IMABC uses (y∗−yt)2/y2

t

as a distance metric of simulated outcomes from the observed data. As more points are accepted, the initial tolerance
bounds are narrowed, and parameters that yield simulated targets outside of these new bounds are removed. The
algorithm has converged when it obtains the requested number of draws that are within final tolerance intervals,
y∗t ± εf,t. Once the algorithm has converged, posterior estimates can be obtained using a weighted sample from
accepted parameter vectors (10). The weights account for the selection of the sample, using the normal mixture
distributions.
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Fig. S3. Calibration results for California. The blue lines are the outputs of the calibrated model across three metrics of interest. The data and the calibration target bounds
are displayed in gray.

We calibrate the model using COVID-19 deaths timeseries from March 1st, 2020 through December 25th, 2020.
We use reported COVID-19 deaths because that is the most reliable indicator available and the main outcome of
interest for this analysis. This time-series does not include all-cause excess mortality, which is beyond the scope of our
model. We use this time period because we are interested in how policymakers should shift their reopening strategy
after vaccination started in the US. We use cumulative deaths time-series at the state level, collapsed at ten 30-day
intervals yt, t ∈ {1, ..., 10} starting in March 1st, 2020 through December 25th, 2020. Figure S3(b) shows the data we
use and illustrates the model runs that the algorithm selects. We set the initial tolerance level as εi = max(yt) and
the final tolerance level as εf = 0.2max(yt) where yt is the cumulative number of deaths. Therefore, the goal of the
algorithm is to find model runs that are within the envelope yt ± εf,t of the cumulative death time series illustrated in
the graph. In addition to the death time series calibration target, we also require the number of susceptible individuals
in the model to be greater than 65%, seeking to find model runs that are consistent with seroprevalence data.

We choose to use 30-day time periods with the aim of reducing the number of individual targets that the calibration
procedure needs to track. As figure S3(a) illustrates, choosing another time period (e.g, a 7-day) would yield similar
results. Figure S3 also illustrates that the model does not fit the surge in cases around month number 6 in California
(September 2020). That is the case because our model does not contain time-varying mixing parameters that could
absorb that surge. For the purposes of this analysis, we argue that adding more parameters to the model calibration
phase could be problematic∗.

The calibration results presented above are a function of our model structure presented earlier, the calibration
targets and their tolerance interval used, and a set of parameters. Parameters used during the calibration run are
divided into three sets: calibrated parameters (C), parameters that were fixed during calibration (F), and parameters
that were fixed during calibration but later explored as deep uncertainties (F, D) using a new experimental design.
Table S3 presents each parameter, the set to which they belong, a formula or symbol relating the parameter to our

∗Adding time-varying parameters to the model seeking to improve model fit without a mechanistic explanation for the summer surge can be problematic for the purposes of this analysis. For example, the
surge could signal an increase in pandemic fatigue and not a month-level seasonal phenomenon. Our future work might explore better ways of incorporating realistic behavioral components in our model
that could better explain the unexplained surges using more calibration targets to inform the model. For the purposes of this analysis, we chose not to overfit the model to the data and preserve only
parameters that represent known mechanisms.
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model and related sources. The value column includes the parameter mode and minimum and maximum bounds used
during calibration.

Table S3. Model Parameters.

Set Parameter Formula or Symbol Value Sources

C Proportion of infections
which are asymptomatic

γA
γA+γS 0.25 [0.15, 0.5] (11–14)

C Proportion of symptomatic
infections which are severe
(require hospitalization)

υ
υ+ξm+µS 0.05 [0.03, 0.07] (2)

C Proportion of severe cases
which are critical (require
ICU admission)

χ
χ+ξH+µH 0.32 [0.26, 0.38] (14, 15)

C Initial proportion of critical
cases which result in death

µICU
ξICU+µICU 0.75 [0.7, 0.8] (15–17)

C Magnitude of seasonal effect
when it is at its peak

s 0.2 [0.15, 0.3] (2)

C Intervention Calibration Fac-
tor

θ 2 [0.5, 3.5] (2)

C Magnitude of behavioral
adaptation factor after lock-
down.

bh 0.45 [0.1, 0.8] (2)

C Reduction in ICU death
proportion when maxi-
mum treatment efficacy is
achieved

N/A 0.5 [0.4, 0.6] (16)

C 1/ rate at which treatment
improves (months)

N/A 6 [3, 9] (16)

C Increased progression rate
for tested individuals

κξ 2 [1.33, 4] (2)

F Infectivity of mild symp-
tomatic stage relative to
asymptomatic infectivity.

mIm 0.83 (14, 18–20)

F Infectivity of severe symp-
tomatic stage relative to
asymptomatic infectivity.

mSs 0.14 (14, 18–20)

F Infectivity of hospitalized
stage relative to asymp-
tomatic infectivity.

mH 0.07 (14, 18–20)

F Infectivity of tested mild
symptomatic stage relative
to asymptomatic infectivity.

mY Sm 0.28 (14, 18–20)

F Infectivity of tested severe
symptomatic stage relative
to asymptomatic infectivity.

mY Ss 0.14 (14, 18–20)

F Infectivity of tested asymp-
tomatic stage relative to
asymptomatic infectivity.

mY A 0.2 (14, 18–20)

F Duration in days of incuba-
tion phase

1
ν + 1

γA+γS 5 (14, 21–23)

Continues on following page
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Table S3, continued

Set Parameter Formula or Symbol Value Sources

F Infectious duration in days
of asymptomatic and mild
disease

1
ξA

5 (14, 22–25)

F Duration in day from first
developing severe sympo-
toms to being hospitalized.
The development of critical
symptoms (e.g., ARDS) is
assumed to happen after one
additional day.

1/h 0.1 (14, 26)

F Expected days spent in hos-
pital (including ICU) at hos-
pitalization

1
ξH+µH+AICUχ

(
1 + χ

ξICU+µICU

)8 (14, 26)

F Proportion of incubation
phase which is non-infectious

γA+γS
γA+γS+ν 0.6 (22, 27)

F Per person daily rate of seek-
ing a test - assuming no ca-
pacity constraints

ζ 0.01 (2)

F Per person daily detection
rate for those who are symp-
tomatic

ζS 0.1 (2)

F Per person daily detec-
tion rate for those who are
asymptomatic

ζA 0.01 (2)

F Expected days spent in the
ICU at ICU admission as
a proportion of expected
days spent in the hospital at
hospitalization

ξH+µH+AICUχ
ξICU+µICU+χ 0.9 (14, 26)

F Vaccine Overall Efficacy ev 0.95 (28, 29)
F Average number of days to

adjust NPI Levels.
l 14 (2)

F,D Change in transmissibility
from baseline value

∆λ(t) 0 assumed

F,D Increase in mixing due to
vaccination

mv 1 assumed

F,D Maximum Vaccination Rate s
{max}
v 3 ∗ 10−3 assumed

F,D Vaccine Transmission Effi-
cacy

etv 1 assumed

F,D Months before loss of natu-
ral immunity

ρN 20 (30)

F,D Proportion of the Population
willing to vaccinate.

W 0.9 (2)

Most of our parameters are defined based on clinical evidence. Because disease duration parameters are not
informed by our calibration procedure (deaths time-series do not carry information about these rates) and to reduce
the dimensionality of the calibration problem, we fix disease duration parameters that can be regarded as less
uncertain at this stage in the pandemic. We also fix parameters that define the relative infectiousness of different
disease states. Our prior work has established that these parameters have a small influence on the model outcomes
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we use for calibration when one accounts for the ranges of the other, more uncertain and influential parameters (2).
Other parameters are more uncertain and benefit from calibration. For parameters unique to our model (i.e., the

effectiveness of NPIs θ) or parameters poorly characterized from existing literature (i.e., magnitude of the seasonal
effect on mixing in California during 2020), we use one of two approaches. The first approach is to provide prior
ranges and let the calibration algorithm find combinations of parameters that jointly are consistent with the data.
The NPI Effectiveness parameter θ and the behavioral adaptation factor bh (to what extent people adapted after
the initial lockdowns) are part of this set of parameters. Finally, there are parameters that are regarded as deep
uncertainties. Further discussion about how these parameters enter our model is available in our prior work (2). The
next section describes how the full experimental design is created using these parameters.

Experimental Design
Our full experimental design table is composed by the combination of the set of 78 strategies described in the Methods
section and listed in Appendix I, the 100 calibration parameters vectors obtained using the calibration approach
described earlier and a set of 200 draws from a Latin Hypercube sample of the six deeply uncertain parameters
described in table S4. Instead of adding these deep uncertainties to the calibration process, we use baseline values
during calibration and explored the uncertainty in their values after calibration. Our approach resembles the scenarios
used by the Scenarios Hub initiative (31). However, instead of defining four discrete scenarios combining uncertainties
(e.g. increased transmissibility driven by new variants) and decisions (e.g. relaxation of NPIs), we explore a wider set
of strategies under a continuum of plausible futures. Table S4 presents each uncertainty explored in this analysis, the
baseline value used during model calibration, and the minimum and maximum values. The baseline value reflects the
assumptions commonly made by modelers elsewhere (e.g., there is no endogenous change in transmissibility driven by
higher vaccination coverage).

Table S4. Deep Uncertainties and their ranges.

Uncertainty Symbol Baseline Min Max

Change in transmissibility from
baseline value

∆λ(t) 0 -25% 50%

Increase in mixing due to vacci-
nation

mv 0 0 20%

Maximum Vaccination Rate s
{max}
v 0.0030 0.0023 0.0038

Vaccine transmissibility efficacy
factor

etv 100% 10% 100%

Average duration of immunity
(months)

ρN 20 10 40

Proportion of the Population
willing to vaccinate.

W 90% 54% 90%

All these uncertainties are applied to the model as an exogenous shift in the level of the baseline uncertainty values
after the calibration period. Other functional forms, (e.g., smooth transitions from the baseline value to the new
value) could also be implemented to represent these uncertainties with more realism. For example, modeling the
impact of variant strains on transmissibility could be done with a logistic growth curve. However, considering these
uncertainties using smooth transition functions would require an even larger experimental design to accommodate
the additional parameters that control the rate and timing of the changes in parameters, which could be uncertain
themselves. To keep our experimental design computationally tractable, we explore uncertainties by changing their
values immediately after the calibration phase.

These uncertainties were chosen to include factors often considered by other modelers. For example, at the time of
this writing, the MIDAS Network Scenario Hub uses changes in transmissibility driven by variants and vaccination
uptake and efficacy (31). Our uncertainties were chosen to encompass these scenarios and to further explore the
impacts of other concerns not commonly addressed in the existing literature. For example, uncertainties in behaviors
related to vaccination include the actual maximum vaccination rate that society will achieve, the fraction of the
population willing to vaccinate (applied to each population strata), and a potential increase in mixing after vaccination
which is often ignored.

When multiple uncertainties are mechanistically entangled in our model (e.g., increases in transmissibility driven
by new variant strains can be potentially offset by higher levels of mask-wearing), we use a single parameter that
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represents the overall change in that parameter from baseline. For example, the change in transmissibility from a
baseline value uncertainty ∆λ(t) is intended to represent the combined effect of more transmissible variant strains
(32), increased use of adaptation measures (such as reopening schools with enhanced mitigation protocols), as well as
potential changes in the overall mixing. Because all these factors would affect the same transmission equation in our
model, sampling multiple uncertainties in a Latin Hypercube to represent them separately would prove inefficient and
unnecessary to our purposes. Therefore, we use a single uncertainty parameter to represent the combined effect of
these factors.

After calibration, we construct our final experimental design as follows. As described in the calibration section, we
obtain a weighted sample from the posterior containing 100 calibration parameter vectors. This sample is obtained
with substitution, and resulted in 75 unique parameter sets. We do not need to spend computation time on duplicated
parameter vectors. Therefore, we obtain the experimental design by combining the 200 parameter vectors obtained
from the uncertainties, with the 75 unique parameter vectors obtained from the calibration procedure. This process
results in 15,000 futures under which we test each reopening strategy. We obtain our full experimental design by
randomizing the order of the 15,000 futures† and combining this resulting dataset with the set of 78 strategies, which
resulted in 1.17 million unique cases to be run. After this process, we re-create the full experimental design by
repeating the 25 non-unique calibration parameter vectors according to the number of times they were sampled from
the posterior distribution.

The set of decisions we made with respect to our parameters in this particular analysis should not be interpreted
as a set-in-stone representation of the pandemic. The set of uncertainties we chose, their bounds and how they were
modeled represented our knowledge and concerns with respect to the pandemic in the US as of February 2021. In
a regular Robust Decision Making engagement, this set of uncertainties would evolve as more information become
available. Parameters that were once deep uncertainties would become regular calibration parameters. For example,
if it becomes clear that vaccine prevents transmission, that parameter could be either set during the calibration phase
or could be calibrated to data. Similarly, if highly transmissible variant strains become dominant, that change could
be reflected in our model with a smooth function. When it becomes clear what will be the final vaccination rate, this
parameter could be set. At that point, other uncertainties or policy options might emerge as important, and another
analytical cycle could be undertaken to provide further results. The RDM iterative approach would accommodate
these new developments, and decision-makers could regularly re-evaluate the robustness of their decisions to the
remaining uncertainties of concern.

This section described the additions made to our original model, documented the parameters used in this analysis,
and provided details on how the calibration parameters are used with the deeply uncertain parameters and strategies
to create our large experimental design that is the basis of our conclusions. Further details about our model can be
obtained from our prior work (1, 2).

Computing Environment
The calibration process and the strategy stress-testing runs were performed on Bebop, a High-Performance Computing
cluster managed by the Laboratory Computing Resource Center at Argonne National Laboratory. Bebop has 1024
nodes comprised of 672 Intel Broadwell processors with 36 cores per node and 128 GB of RAM and 372 Intel Knights
Landing processors with 64 cores per node and 96 GB of RAM. This analysis used slurm’s array jobs to execute the
runs in parallel across Broadwell nodes, using 35 cores per node and up to three jobs of 12 nodes at a time. The 1.17
million unique model runs used approximately 50,000 hours of CPU time to complete.

Code
The model and the functions used to perform this analysis were implemented in R. We developed the c19randepimod
R package specifically to inform policies during the COVID-19 pandemic. The package includes a series of functions
to gather data, define a c19model model class, calibrate the model, define experimental designs, run experiments
and generate results. By defining our model as a class, we allowed ourselves and future users to extend our original
c19model. Currently, models based on the c19model class necessarily need to be compatible with the deSolve package,
but future versions can relax this requirement and allow stochastic models or ABMs. This allows us to create new
model classes that inherit the functions implemented for the c19model class regardless of the model structure. For
example, our original state policy tool published in May 2020 did not include vaccination, behavioral responses to
vaccination and hesitancy, seasonality, and increases in transmissibility from variants, but the model used in this paper
does. This flexibility and model design choices proved to be helpful and instrumental for our work. Readers can find our
code and instructions to reproduce our work at https://github.com/RANDCorporation/covid-19-reopening-california.

†This is useful because it allows us to run a fraction of our experiments and evaluate results in the interim, before spending the 50,000 hours of computing time required to run the full experimental design.
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