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1 BASE MODEL CONSTRUCTION

1 Base model construction

1.1 Platform for infectious disease dynamics simulation

We developed a deterministic compartmental model of COVID-19 transmission using the AuTuMN plat-

form, publicly available at https://github.com/monash-emu/AuTuMN/. Our repository allows for the rapid

and robust creation and stratification of models of infectious disease epidemiology and includes plug-

gable modules to simulate heterogeneous population mixing, demographic processes, multiple circulating

pathogen strains, repeated stratification and other dynamics relevant to infectious disease transmission. The

platform was created to simulate TB dynamics, being an infectious disease whose epidemiology differs

markedly by setting, such that considerable flexibility is desirable [1]. We have progressively developed

the structures of our platform over recent years, and further adapted it to be sufficiently flexible to permit

simulation of other infectious diseases for the purpose of this project.

1.2 Base COVID-19 model

Using the base framework of an SEIR model (susceptible, exposed, infectious, removed), we split the ex-

posed and infectious compartments into two sequential compartments each (SEEIIR). The two sequential

exposed compartments represent the non-infectious and infectious phases of the incubation period, with

the latter representing the “presymptomatic” phase such that infectiousness occurs during three of the six

sequential phases. For this reason, “active” is a more accurate term for the two sequential “I” compartments

and is preferred henceforward. The two infectious compartments represent early and late phases of active

disease, during which symptoms occur if the disease episode is symptomatic, and allow explicit represen-

tation of notification, case isolation, hospitalisation and admission to ICU. The “active” compartment also

includes some persons who remain asymptomatic throughout their disease episode, such that these com-

partments do not map directly to either persons who are infectious or those who are symptomatic (Figure

1).

The latently infected and infectious presymptomatic periods together comprise the incubation period,

with the incubation period and the proportion of this period for which patients are infectious defined by
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1 BASE MODEL CONSTRUCTION

input parameters described below. In general, two sequential compartments can be used to form a gamma-

distributed profile of transition to infectiousness following exposure if the progression rates for these two

compartments are equal, although in implementing this model the relative sojourn times in the two sequen-

tial compartments usually differed. Nevertheless, the profiles implemented are broadly consistent with the

empirically observed log-normal distribution of individual incubation periods [2].

The transition from early active to late active represents the point at which patients are detected (for

those persons for whom detection does eventually occur) and isolation then occurs from this point forward

(i.e. applies during the late disease phase only, see Section 2). This transition point is also intended to

represent the point of admission to hospital or transition from hospital ward to intensive care for patients

for whom this occurs (see Section 1.4).

Figure 1 – Unstratified compartmental model structure. S = susceptible, E = exposed, I =

active, R = recovered/removed. Depth of pink/red shading indicates the infectiousness of the

compartment.

1.3 Age stratification

All compartments of this base compartmental structure were stratified by age into five-year bands from

0-4 years of age through to 70-74 years of age, with the final age group being those aged 75 years and

older. Heterogeneous baseline contact patterns by age were incorporated using age-specific contact rates

extrapolated using contact matrices for China, where a contact survey was conducted in 2017 by Zhang et

al. 2017 [3]. These contact matrices relating to China are adjusted for age distribution differences between

Malaysia and China (described in Section 3). These are then modified by non-pharmaceutical interventions

as described in Section 3. Our modelled age groups were chosen to match these mixing matrices. The
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1 BASE MODEL CONSTRUCTION

automatic demographic features of AuTuMN that can be used to simulate births, ageing and deaths were

not implemented, because the issues considered pertain to the short- to medium-term and the immediate

implementation of control strategies, for which population demographics are less relevant.

1.4 Clinical stratification

The age-stratified late exposed/incubation and both the early and late active disease compartments were fur-

ther stratified into five “clinical” categories: 1) asymptomatic, 2) symptomatic ambulatory, never detected,

3) symptomatic ambulatory, ever detected, 4) ever hospitalised, never critical and 5) ever critically unwell

(Figure 2). The proportion of new infectious persons entering stratum 1 (asymptomatic) is age-dependent

(as described in Table 4). The proportion of symptomatic patients (strata 2 to 5) ever detected (strata 3

to 5) is set through a parameter that represents the time-varying proportion of all symptomatic patients

who are ever detected (the case detection rate, see Section 2). Of those ever symptomatic (strata 2 to 5), a

time-constant but age-specific proportion is considered to be hospitalised (entering strata 4 or 5). Of those

hospitalised (entering strata 4 or 5), a fixed proportion was considered to be critically unwell (entering

stratum 5, Figure 3).

1.5 Hospitalisation

For COVID-19 patients who are admitted to hospital, the sojourn time in the early and late active compart-

ments is modified, superseding the default values of the sojourn times for these compartments, as indicated

in Table 3. The point of admission to hospital is considered to be the transition from early to late active

disease, such that the sojourn time in the late disease represents the period of time admitted to hospital. For

patients admitted to ICU, admission to ICU occurs at this same transition point. For this group, the period

of time hospitalised prior to ICU admission is estimated as a proportion of the early active period, such that

the early active period represents both the period ambulatory in the community and the period in hospital

prior to ICU admission.
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1 BASE MODEL CONSTRUCTION

Figure 2 – Illustration of the implementation of the clinical stratification. Depth of pink/red

shading indicates the infectiousness of the compartment. Typical parameter values presented,

although the infectiousness of asymptomatic persons is varied in calibration.
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1 BASE MODEL CONSTRUCTION

Figure 3 – Illustration of the rationale for the clinical stratification.
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1 BASE MODEL CONSTRUCTION

1.6 Infectiousness

Asymptomatic persons are assumed to be less infectious per unit time active than symptomatic persons not

undergoing case isolation (typically by around 50%, although this is varied in calibration/uncertainty anal-

ysis). Infectiousness is also decreased for persons who have been detected to reflect case isolation, and for

those admitted to hospital or ICU to reflect infection control procedures (by 80% for both groups). Presymp-

tomatic individuals are presumed to have equivalent infectiousness to those with early active COVID-19.

1.7 Application of COVID-19-related death

Age-specific infection fatality rates (IFRs) were applied and distributed across strata 4 and 5, with no deaths

typically applied to the first three strata. A ceiling of 50% is set on the proportion of those admitted to ICU

(entering stratum 5) who die. If the infection fatality rate is greater than this ceiling, the proportion of

critically unwell persons dying was set to 50%, with the remainder of the infection fatality rate then applied

to the hospitalised proportion. Otherwise, if the infection fatality rate is less than half of the absolute

proportion of persons critically unwell, the infection fatality rate is applied entirely through stratum 5 (such

that the proportion of critically unwell persons dying in that age group becomes <50% and the proportion

of stratum 4 dying is set to zero). In the event that the infection fatality rate for an age group is greater

than the total proportion hospitalised (which is unusual, but could occur for the oldest age group under

certain parameter configurations), the remaining deaths are assigned to the asymptomatic stratum. This

approach was adopted for computational ease and is valid because the duration active for persons entering

this stratum is the same as for the other non-hospitalised strata, such that the dynamics are identical to

assigning the deaths to any of the first three strata. We used the age-specific IFRs previously estimated

from age-specific death data from 45 countries and results from national-level seroprevalence surveys [4]

as indicated in Table 4. We allowed IFRs to vary around the previously published point estimates in order

to incorporate uncertainty and to allow the IFRs to differ from the settings in which they were estimated

(see Calibration section).
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1 BASE MODEL CONSTRUCTION

Clinical stra-
tum

Stratum name Pre-symptomatic Early Late

1 Asymptomatic 0.5 0.5 0.5

2 Symptomatic ambulatory never detected 1 1 1

3 Symptomatic ambulatory ever detected 1 1 0.2

4 Hospitalised never critical 1 1 0.2

5 Ever critically unwell 1 1 0.2

Table 1 – Illustration of the relative infectiousness of disease compartments by clinical stratification
and stage of infection. Typical parameter values displayed.

1.8 Modelling Variants of Concern (VoC)

To consider the effects of VoC on infection dynamics and the vaccination programs, we explicitly simulated

two competing strains to represent 1) the wild-type or ancestral virus, and 2) all VoC strains, where the

VoC were assumed to be associated with increased transmissibility only. Therefore, we do not differentiate

between different variants and assume the single VoC strain that is modelled represents all currently circu-

lating strains. Susceptible individuals can be infected with either the wild-type or VoC strain and infectious

individuals contribute to the force of infection with their respective infecting strain only. VoC strains are

seeded into the model such that one additional person per day is infected with the VoC strain for a duration

of ten days, with the time that this ten-day period commences varied during model calibration.

1.9 Modelling vaccination

We stratified all model compartments as either vaccinated or unvaccinated and commenced simulations with

an fully unvaccinated population. With vaccination roll-out, individuals in the susceptible and recovered

compartments move from “unvaccinated” to “vaccinated” at a constant rate representing vaccine admin-

istration over time. The daily rate of vaccination is calculated from the vaccine coverage achieved over

a given period of time is calculated as ratevac =
−log(1−coverage)

T , where coverage represents the targeted

proportion of people vaccinated by the end of the roll-out period and T represents the roll-out period.
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2 CASE DETECTION

1.10 Modelling vaccine effects

Vaccination is assumed to have two mechanisms of effect: 1) prevention of infection and 2) protection

against progressing to severe infection among those infected. A particular vaccine roll-out programme

can be simulated to act through these two mechanisms simultaneously. The proportion of the effect that

is attributed to preventing infection, Vp = Vi/Ve , where Vp is sampled from Latin Hypercube Sampling

following Beta (13.6, 5.8), Vi ∈ [0,1] is the infection prevention efficacy and Ve ∈ [0,1] is the overall efficacy

(that would be observed in clinical trials). If severity prevention efficacy is denoted Vs, since Ve =Vi+Vs(1−

Vi) it follows that Vs =
Ve(1−Vp)
1−VpVe . For the component of the vaccine effect attributed to infection prevention,

the infection risk of vaccinated individuals is reduced by (1−Vi). Severity-preventing vaccination reduces

the infection fatality rate (IFR) and the probability that an infected individual experiences symptomatic

disease. Thus, the vaccine efficacy parameter pertaining to disease severity prevention modifies the splitting

proportions of infected individuals between the different clinical categories and the rate of COVID-19-

related mortality.

2 Case detection

2.1 General approach

We calculate a time-varying case detection rate, being the proportion of all symptomatic cases (clinical

strata 2 to 5) that are detected (clinical strata 3 to 5). This proportion is informed by the number of tests

performed using the following formula:

CDR(time) = 1− e−shape×tests(time)

time is the time in days from the 31st December 2019 and tests(time) is the number of tests per capita

done on that date. To determine the value of the shape parameter, we solve this equation based on the

assumption that a certain daily testing rate tests(t) is associated with a certain CDR(t). Solving for shape

yields:
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3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

shape =
−log(1−CDR(t))

tests(t)

That is, if it is assumed that a certain daily per capita testing rate is associated with a certain proportion

of symptomatic cases detected, we can determine shape. As this relationship is not well understood and

unlikely to be consistent across all settings, we vary the CDR that is associated with a certain per capita

testing rate during uncertainty/calibration. Given that the CDR value can be varied widely, the purpose of

this is to incorporate changes in the case detection rate that reflect the empirical historical profile of changes

in testing capacity over time.

3 Implementation of non-pharmaceutical interventions

A major part of the rationale for the development of this model was to capture the past impact of non-

pharmaceutical interventions (NPIs) and produce future scenarios projections with the implementation or

release of such interventions.

3.1 Isolation and quarantine

For persons who are identified with symptomatic disease and enter clinical stratum 3, self-isolation is as-

sumed to occur and their infectiousness is modified as described above. The proportion of ambulatory

symptomatic persons effectively identified through the public health response by any means is determined

by the case detection rate as described above.

3.2 Community quarantine or “lockdown” measures

For all NPIs relating to reduction of human mobility or “lockdown” (i.e. all NPIs other than isolation and

quarantine), these interventions are implemented through dynamic adjustments to the age-assortative mix-

ing matrix. The baseline mixing matrices of Zhang et al. [3] are based on contact patterns of 965 individuals

during the period of 2017/18 in Shanghai City, China. The matrices also have the major advantage of al-

lowing for disaggregation of total contact rates by location, i.e. home, work, school and other locations.
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3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

This disaggregation allows for the simulation of various NPIs in the local context by dynamically varying

the contribution of each location to reflect the historical implementation of the interventions.

For each location L (home, school, work, other locations) the age-specific contact matrix CL = (cL
i, j) ∈

R16×16
+ is defined such that cL

i, j is the average number of contacts that a typical individual aged i has with

individuals aged j. The original matrices from China are denoted QL = (qL
i, j)∈R16×16

+ , where qL
i, j is defined

using the same convention as for cL
i, j. The matrices QL were extracted using the R package “socialmixr” (v

0.1.8) and to obtain the contact matries relating to Malaysia (CL), these were then adjusted to account for

age distribution differences between Malaysia and China.

Let π j denote the proportion of people aged j in Malaysia, and ρ j the proportion of people aged j in

China. The contact matrices CL were obtained from:

cL
i, j = qL

i, j×
π j

ρ j
.

The overall contact matrix results from the summation of the four location-specific contact matrices:

C0 = CH +CS +CW +CL, where CH , CS, CW and CL are the age-specific contact matrices associated with

households, schools, workplaces and other locations, respectively.

In our model, the contributions of the matrices CS, CW and CL vary with time such that the input contact

matrix can be written:

C(t) =CH + s(t)2CS +w(t)2CW + l(t)2CL

The modifying functions are each squared to capture the effect of the mobility changes on both the

infector and the infectee in any given interaction that could potentially result in transmission. The modifying

functions incorporate both macro-distancing and microdistancing effects, depending on the location.

3.3 School closures/re-openings

Reduced attendance at schools is represented through the function s(t), which represents the proportion of

all school students currently attending on-site teaching. If schools are fully closed, s(t) = 0 and CS does not

contribute to the overall mixing matrix C(t). s(t) is calculated through a series of estimates of the proportion

of students attending schools, to which a smoothed step function is fitted. Note that the dramatic changes

12



3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

in this contribution to the mixing matrix with school closures/re-openings is a more marked change than

is seen with the simulation of policy changes in workplaces and other locations (which are determined by

empiric data and so do not vary so abruptly and do not fall to zero).

3.4 Workplace closures

Workplace closures are represented by quadratically reducing the contribution of workplace contacts to

the total mixing matrix over time. This is achieved through the scaling term w(t)2 which modifies the

contribution of CW to the overall mixing matrix C(t). The profile of the function w(t) is set by fitting a

polynomial spline function to Google mobility data for workplace attendance (Table 2).

3.5 Community-wide movement restriction

Community-wide movement restriction (or “lockdown”) measures are represented by proportionally reduc-

ing the contribution of the other locations contacts to the total mixing matrix over time. This is achieved

through the scaling term l(t)2 which modifies the contribution of CL to the overall mixing matrix C(t). The

profile of the function l(t) is set by fitting a polynomial spline function to an average of Google mobility

data for various locations, as indicated in Table 2.

3.6 Household contacts

The contribution of household contacts to the overall mixing matrix C(t) is fixed over time. Although

Google provides mobility estimates for residential contacts, the nature of these data are different from those

for each of the other Google mobility types. They represent the time spent in that location, opposed to

other categories, which measure a change in total visitors rather than the duration. The daily frequency with

which people attend their residence is likely to be close to one and we considered that household members

likely have a daily opportunity for infection with each other household member. Therefore, we did not

implement a function to scale the contribution of household contacts to the mixing matrix with time.

13



4 PARAMETERS

Location Approach Google mobility types

School Policy response Not applicable

Household Constant Not applicable

Workplace Google mobility Workplace

Other locations Google mobility Unweighted average of:

• Retail and recreation
• Grocery and pharmacy
• Parks
• Transit stations

Table 2 – Mapping of Google mobility data to contact locations

3.7 Microdistancing

Interventions other than those that prevent people coming into contact with one another are thought to be

important to COVID-19 transmission and epidemiology, such as maintaining interpersonal physical distance

and the wearing of face coverings. We therefore implemented a “microdistancing” function to represent

reductions in the rate of effective contact that is not attributable to persons visiting specific locations and

so is not captured through Google mobility data. This microdistancing function reduces the values of all

elements of the mixing matrices by a certain proportion and is applied to non-household locations. These

time-varying functions multiplicatively scale the location-specific contact rate modifiers s(t), w(t) and l(t).

The microdistancing function for non-household locations is given as:

micro(t) =
upperasympt

2
(tanh(0.05(t− in f lectiontime))+1)

where, upperasympt represents the final value of the microdistancing component and in f lectiontime is the

time when inflection occurs in the scaling curve.

4 Parameters

4.1 Non-age-stratified parameters

14



4 PARAMETERS

Parameter Value Rationale

Incubation period Calibration
parameter, truncated
normal distribution,
mean 5.5 days

Estimates of the incubation period have included
5.1 days, 5.2 days and 4.8 days [5] [6] [7] [8]. A
systematic review [2] found that data are best
fitted by a log-normal distribution (mean 5.8 days,
CI 5.0 to 6.7, median 5.1 days). Our systematic
review [9] found that estimates of the mean
incubation period have varied from 3.6 to 7.4
days.

Proportion of incubation
period infectious

50% Infectiousness is considered to be present
throughout a considerable proportion of the
incubation period, based on analyses of
confirmed source-secondary pairs [10] and early
findings that the incubation period was similar to
the serial interval [5]. The study of
source-secondary pairs was also the primary
reference cited by a review of the infectious period
that identified studies that quantified the
pre-symptomatic period, which concluded that the
median pre-symptomatic period could range from
less than one to four days [11].

Active period (regardless of
detection/isolation, for
clinical strata 1 to 3)

Calibration
parameter, truncated
normal distribution,
mean 6.5 days

This quantity is difficult to estimate, given that
identified cases are typically quarantined. Studies
in settings of high case ascertainment and an
effective public health response have suggested a
duration of greater than 5.5 days [8]. PCR
positivity, which may continue for up to two to
three weeks from the point of symptom onset [10]
[11], is difficult to interpret and does not
necessarily indicate infectiousness. Consistent
with these findings, the duration infectious for
asymptomatic persons has been estimated at 6.5
to 9.5 days [11] (although in our model, this would
include the pre-symptomatic infectious period).

Proportion of infectious
period before isolation or
hospitalisation can occur

0.333 Assumed

15



4 PARAMETERS

Continuation of Table 3

Parameter Value Rationale

Disease duration prior to
admission for hospitalised
patients not critically unwell
(i.e. early active sojourn
time, stratum 4)

7.7 days Mean value from ISARIC cohort, as reported on
4th October 2020 in Table 6 [12], and similar to
the expected mean from earlier reports from
ISARIC [13]. This cohort represents high-income
countries better than low and middle-income
countries, with the United Kingdom contributing
data on the greatest number of patients, followed
by France. Earlier estimates of this quantity from
China included 4.4 days [5].

Duration of hospitalisation if
not critically unwell (late
active sojourn time, stratum
4)

12.8 days Mean value from the ISARIC cohort, as reported
on 4th October 2020 in Table 6 [12].

ICU duration (late active
sojourn time, stratum 5)

10.5 days Mean duration of stay in ICU/HDU from ISARIC
cohort for patients with complete data, as
reported on 10th October 2020 Table 6 [12]. Many
other studies reporting on the average duration of
ICU stay suffer from right-truncation issues, often
estimating 7-10 days length of stay.

Duration of time prior to ICU
for patients admitted to ICU

10.5 days Calculated as the sum of the time from symptom
onset to hospital admission (7.7 days above) plus
the duration from hospital admission to ICU
admission reported by October ISARIC report
(2.8 days) [12].

Relative infectiousness of
persons admitted to hospital
or ICU

0.2 Assumed

Relative infectiousness of
identified persons in
isolation

0.2 Assumed

Table 3 – Universal (non-age-stratified) model parameters. Point estimates are used as model
parameters except where ranges are indicated in calibration parameter table below in calibration
table.

4.2 Age-specific parameters

16



4 PARAMETERS

Age group
(years)

Clinical
fractiona

Relative
susceptibility to
infection

Infection fatality
rate

Proportion of
symptomatic
patients hospi-
talised

0 to 4 0.29 0.36 3 ×10-5 0.0777

5 to 9 0.29 0.36 1 ×10-5 0.0069

10 to 14 0.21 0.36 1 ×10-5 0.0034

15 to 19 0.21 1 3 ×10-5 0.0051

20 to 24 0.27 1 6 ×10-5 0.0068

25 to 29 0.27 1 1.3 ×10-4 0.0080

30 to 34 0.33 1 2.4 ×10-4 0.0124

35 to 39 0.33 1 4.0 ×10-4 0.0129

40 to 44 0.40 1 7.5 ×10-4 0.0190

45 to 49 0.40 1 1.21 ×10-3 0.0331

50 to 54 0.49 1 2.07 ×10-3 0.0383

55 to 59 0.49 1 3.23 ×10-3 0.0579

60 to 64 0.63 1 4.56 ×10-3 0.0617

65 to 69 0.63 1.41 1.075 ×10-2 0.1030

70 to 74 0.69 1.41 1.674 ×10-2 1.072

75 and above 0.69 1.41 5.748 ×10-2, b 0.0703

Source/
rationale

Model fitting to
age-distribution
of early cases in
China, Italy,
Japan,
Singapore, South
Korea and
Canada taken
from upper-left
panel of Figure
2b of [14].

Conversion of odds
ratios presented in
Table S15 of Zhang
et al. 2020 to relative
risks using data
presented in Table
S14 of the same
study [15].c

Estimated from
pooled analysis of
data from 45
countries from Table
S3 of O’Driscoll et al
[4]. Values
consistent with
previous estimates
using serosurveys
performed in Spain
[16].

Estimates from
the Netherlands
as the first wave
of infections de-
clined from 4th
May to 21st July
[17].

Table 4 – Age-stratified parameter values. Age-stratified parameters not varied during calibra-
tion, or varied through a common adjuster parameter.
a Proportion of incident cases developing symptoms.
b Weighted average of IFR estimates for 70 to 79 and 80 and above age groups.
c Note the relative magnitude of these values are similar to those estimated by the analysis we use to estimate the age-specific clinical
fraction.[14]
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5 CALCULATION OF OUTPUTS

5 Calculation of outputs

5.1 Incidence

Incidence is calculated as any transitions into the early active compartment (“I”).

5.2 Hospital occupancy

This is calculated as the sum of three quantities:

1. All persons in the late active compartment in clinical stratum 4, representing those admitted to hos-

pital but never critically unwell.

2. All persons in the late active compartment in clinical stratum 5, representing those currently admitted

to ICU.

3. A proportion of the early active compartment in clinical stratum 5, representing those who will be

admitted to ICU at a time in the future. This proportion is calculated as the quotient of 1) the differ-

ence between the pre-ICU period and the pre-hospital period for clinical stratum 4, divided by 2) the

total pre-ICU period. That is, a proportion of the pre-ICU period is considered to represent patients

in hospital who have not yet been admitted to ICU.

5.3 ICU occupancy

This is calculated as all persons in the late active compartment in clinical stratum 5.

5.4 Seropositive proportion

This is calculated as the proportion of the population in the recovered (“R”) compartment. Although very

similar numerically to the attack rate, persons who died of COVID-19 are not included in the denominator.

5.5 COVID-19-related mortality

This is calculated as all transitions representing death, exiting the model. This is implemented as depletion

of the late active compartment.
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6 CALIBRATION

5.6 Notifications

Local case notifications are calculated as transitions from the early to the late active compartment for clinical

strata 3 to 5.

6 Calibration

6.1 General approach

The model was calibrated using an adaptive Metropolis (AM) algorithm. In particular, we used the algo-

rithm based on adaptive Gaussian proposal functions proposed by Haario et al. to sample parameters from

their posterior distributions [18]. We ran seven independent AM chains and combined the samples of the

seven chains to project epidemic trajectories over time. The definitions of the prior distributions and the

likelihood are detailed as follows.

6.2 Likelihood function

Likelihood functions are derived from comparing model outputs to target data at each time point nominated

for calibration. Let ci denote the average daily number of new confirmed COVID-19 cases in Malaysia

during week i, and ĉi
θ the associated predicted number according to the model when using the parameter

set θ . Similarly, let us denote the average daily number of ICU admissions during week i as, hi and ĥi
θ

the

associated predicted number of ICU admissions according to the model when using the parameter set θ .

Finally, let di denote the average daily number of COVID-19 deaths during week i, and d̂i
θ

the associated

predicted number of deaths according to the model with parameter set θ . Then the likelihood is defined as

follows:

L (θ) = ∏
i

f (ci|ĉi
θ ,σc)× f (hi|ĥi

θ
,σh)× f (di|d̂i

θ
,σd),

where f (.|µ,σ) is the probability mass function of the normal distribution with mean µ and standard

deviation σ . The parameters σc, σh, and σd were automatically estimated by the adaptive Metropolis

algorithm to improve calibration efficiency.
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6 CALIBRATION

6.3 Variation of symptomatic proportions and proportion hospitalised

Whether age-specific proportions of symptomatic individuals are significantly different in low- and middle-

income settings from those in high-income settings remains highly uncertain. For this application to the

Malaysia, we incorporated uncertainty around the age-specific proportions of symptomatic individuals by

applying an uncertainty adjuster:

s∗i =
si× γ

si(γ−1)+1
,

where s∗i is the modelled symptomatic proportion for age group i, si is the point estimate reported by

Davies et al. for the symptomatic proportion of age group i [14], and γ is the associated uncertainty adjuster

varied during model calibration.

Similarly, we incorporated uncertainty around the infection fatality rates (IFR) by applying an uncer-

tainty adjuster:

IFR∗i =
IFRi×β

IFRi(β −1)+1
,

where IFR∗i is the modelled IFR for age group i, IFRi is the point estimate reported by O’Driscoll et al.

for the IFR of age group i [4], and β is the associated uncertainty adjuster varied during model calibration.

6.4 Calibration parameters

Parameter name Distribution type Distribution parameters

Incubation period Truncated normal Mean 5.5 days, standard

deviation 0.97 days,

truncation <1 day

Infectious period (for clinical

strata 1 to 3)

Truncated normal Mean 6.5 days, standard

deviation 0.77 days,

truncation <4 days
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6 CALIBRATION

Continuation of Table 5

Parameter name Distribution type Distribution parameters

Risk of infection per contact Uniform 0.015 to 0.04

Proportion of symptomatic

cases that would be detected

with a daily per capita testing

rate of one test per ten

thousand population

Uniform Range 0.005 to 0.02

Infectious seed Uniform Range 75 to 225

Adjuster applied to

age-specific proportion of

infections leading to

symptoms (“Clinical fraction”)

Uniform 0.5 to 1.5

Adjuster applied to infection

fatality rate

Uniform 0.1 to 1

Relative infectiousness of

asymptomatic persons (per

unit time with active disease)

Uniform 0.15 to 0.6

Increased transmissibility of

VoC strains

Uniform 1.0 to 1.7

Start time of VoC emergence Uniform 300 to 400

Table 5 – Epidemiological calibration parameters.
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8 ORDINARY DIFFERENTIAL EQUATIONS

6.5 Calibration targets

We calibrated the Malaysia national model to three targets; case notifications, intensive care unit (ICU)

occupancy and infection-related deaths. Although the ICU occupancy and mortality data was too sparse for

the regional models, aggregating the data across space and to weekly national values allowed us to include

these two targets (ICU occupancy and mortality) in the national model. Therefore the regional models are

calibrated to only the notification data.

7 Model Initialisation

In the model, the number of initial infections is calibrated (Table 5) and these infectious seed are distributed

evenly among non-infectious exposed, infectious exposed, early active and late active compartments. The

initial susceptible population is determined based on the total population size using demographic data after

removing the number of infectious seed.

8 Ordinary differential equations

For the clearest description of the model, we refer the reader to our code repository, because our object-

oriented approach to software development is intended to be highly transparent and readable. For those who

prefer dynamical systems such as those presented in the form of ordinary differential equations, we present

the following.

dSa,v=0

dt
=−λa(t)×σa×Sa,v=0− rvSa,v=0

dEa,v=0

dt
= λa(t)×σa×Sa,v=0−αEa,v=0

dPa,c,v=0

dt
= pa,c(t)×αEa,v=0−θPa,c,v=0

dIa,c,v=0

dt
= θPa,c,v=0− γcIa,c,v=0

dLa,c,v=0

dt
= γcIa,c,v=0−δa,cLa,c,v=0−µa,cLa,c,v=0
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8 ORDINARY DIFFERENTIAL EQUATIONS

dRa,v=0

dt
= ∑

c
δa,cLa,c,v=0− rvRa,v=0

dSa,v=1

dt
= rvSa,v=0−λa(t)×σa× (1−Vi)×Sa,v=1

dEa,v=1

dt
= λa(t)×σa× (1−Vi)×Sa,v=1−αEa,v=1

dPa,c,v=1

dt
= pa,c(t)×αEa,v=1× (1−Vs,c )−θPa,c,v=1

dIa,c,v=1

dt
= θPa,c,v=1− γcIa,c,v=1

dLa,c,v=1

dt
= γcIa,c,v=1−δa,cLa,c,v=1−µa,c× (1−Vs,c )La,c,v=1

dRa,v=1

dt
= ∑

c
δa,cLa,c,v=1 + rvRa,v=0

where

λa = β

[
∑
j,c,v

ε×Pj,c,v×χv

N j
×Ca, j(t)+ ∑

j,c,v

I j,c,v× ιc×χv +L j,c,v×κc×χv

N j
×Ca, j(t)

]

∑
c

pa,c(t) = 1,∀t ∈ R

C0 = CH +CS +CW +CL

C(t) = h(t)×CH + s(t)×CS +w(t)×CW + l(t)×CL

l(t) =
re(t)+gr(t)+ pa(t)+ tr(t)

4

χv =


1, if unvaccinated

1−η , if vaccinated
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8 ORDINARY DIFFERENTIAL EQUATIONS

Symbol Explanation

S Persons susceptible to infection

E Persons in the non-infectious incubation period

P Persons in the infectious incubation period

I Persons in the early active disease period, before isolation or hospitalisa-

tion may occur

L Persons in the late active disease period, after isolation or hospitalisation

may have occurred

R Persons in the recovered period, from which re-infection cannot occur

Table 6 – Model states
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8 ORDINARY DIFFERENTIAL EQUATIONS

Symbol Explanation

t Time

a Compartment of age group a

c Compartment of clinical stratification c

v Compartment of vaccine stratification (unvaccinated v = 0, vaccinated v = 1 )

σ Relative susceptibility to infection

α Rate of progression from non-infectious to infectious incubation period

θ Rate of progression from infectious incubation to early active disease

γ Rate of progression from early active disease to late active disease

µ Rate of disease-related death

ε Relative infectiousness of pre-symptomatic compartment

ι Clinical stratification infectiousness vector for early active compartment

κ Clinical stratification infectiousness vector for late active compartments

β Probability of infection per contact between an infectious and susceptible indi-

vidual

j Index of the infectious compartments (infectious exposed, early active and late

active)

p Proportion progressing to each clinical stratification

rv Rate of vaccination

Vi Infection prevention efficacy of vaccine

Vs Severity prevention efficacy of vaccine

η Relative infectiousness of vaccinated persons
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8 ORDINARY DIFFERENTIAL EQUATIONS

Continuation of Table 7

Symbol Explanation

C Mixing matrix

CH Household contribution to mixing matrix

CW Workplace contribution to mixing matrix

CL Other locations contribution to mixing matrix

CS Schools contribution to mixing matrix

l Other locations macrodistancing function of time

w Function fit to Google mobility data for workplaces

s Function fit to Google mobility data for schools

re Function fit to Google mobility data for retail and recreation

gr Function fit to Google mobility data for grocery and pharmacy

pa Function fit to Google mobility data for parks

tr Function fit to Google mobility data for transit stations

Table 7 – Model parameters and symbols
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9 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

9 Supplemental figures and tables to main text

Figure 4 – Histograms of prior (blue lines) and posterior (red bars) distributions for epi-

demiological parameters for Malaysia. In the VoC emergence start time the lower bound

of the prior (300 days) corresponds to Oct 26, 2020 and the upper bound (400 days) corre-

sponds to Feb 03, 2021.
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9 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

Figure 5 – Trace plots for parameter estimates for the Malaysia national model. The seven

chains overlap for each parameter, indicating model convergence.

Parameter R̂ convergence statistics

Incubation period 1.0026278515154206

Duration actively infectious 1.0045388935382713

Contact rate 1.0150167259201839

Infectious seed 1.0109909263331651

Case detection rate 1.0066365586888029
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9 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

Continuation of Table 8

Parameter R̂ convergence statistics

Micro-distancing upper asymptote 1.0062214249492645

Infection fatality rate adjuster 1.0129447109441252

Symptomatic proportion adjuster 1.0055577502752915

Proportion admitted to ICU among those hospitalised 1.0176399853662594

Relative infectiousness of asymptomatic persons 1.01041499066837

Increased transmissibility of VoC strains 1.016826427108614

Start time of VoC emergence 1.006557178742028

Table 8 – R̂ convergence statistics
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9 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

Figure 6 – Posterior distributions of the micro-distancing parameter for the four regional

models, Kuala Lumpur (A), Johor (B), Penang (C) and Selangor (D).
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9 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

Figure 7 – Posterior distributions of the increased transmissibility of VoC strains for the

four regional models, Kuala Lumpur (A), Johor (B), Penang (C) and Selangor (D).
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9 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

Figure 8 – Model estimated proportion of symptomatic cases for the Malaysia nationwide

model.
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Figure 9 – Model calibration for the four regional models (A) Kuala Lumpur; (B) Johor; (C)

Penang and; (D) Selangor. The solid line is the median and the dark shading represents

25th to 75th centile credible interval; light shading 2.5th to 97.5th centile credible interval.
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9 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

Figure 10 – Modelled (orange bars) versus reported (blue bars) cumulative cases by age

group for the Malaysia national model.
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9 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

Figure 11 – Future projections of the COVID-19 epidemic in Kuala Lumpur under various

response scenarios and baseline. Upper-left, daily number of notifications; upper-right,

ICU beds occupied; lower-left, daily number of COVID-19-related deaths; lower-right, in-

cidence. For better visualisation, the median fits and projections are shown without un-

certainty bounds. The time before the intervention start is shown for comparison with the

previous epidemic
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9 SUPPLEMENTAL FIGURES AND TABLES TO MAIN TEXT

Figure 12 – Future projections of the COVID-19 epidemic in Selangor under various re-

sponse scenarios and baseline. Upper-left, daily number of notifications; upper-right, ICU

beds occupied; lower-left, daily number of COVID-19-related deaths; lower-right, incidence.

For better visualisation, the median fits and projections are shown without uncertainty

bounds. The time before the intervention start is shown for comparison with the previous

epidemic.
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Figure 13 – Future projections of the COVID-19 epidemic in Penang under various response

scenarios and baseline. Upper-left, daily number of notifications; upper-right, ICU beds

occupied; lower-left, daily number of COVID-19-related deaths; lower-right, incidence. For

better visualisation, the median fits and projections are shown without uncertainty bounds.

The time before the intervention start is shown for comparison with the previous epidemic.
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Figure 14 – Future projections of the COVID-19 epidemic in Johor under various response

scenarios and baseline. Upper-left, daily number of notifications; upper-right, ICU beds

occupied; lower-left, daily number of COVID-19-related deaths; lower-right, incidence. For

better visualisation, the median fits and projections are shown without uncertainty bounds.

The time before the intervention start is shown for comparison with the previous epidemic.
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Figure 15 – Relationship between micro-distancing upper asymptote and (a) VoC start time

and (b) VoC contact rate multiplier.

39



REFERENCES

References

[1] J. M. Trauer et al. Modular programming for tuberculosis control, the “AuTuMN” platform. BMC

Infectious Diseases, 17(1):546, dec 2017.

[2] C. G. McAloon et al. The incubation period of COVID-19: A rapid systematic review and meta-

analysis of observational research. Technical Report 8, aug 2020.

[3] J. Zhang et al. Patterns of human social contact and contact with animals in shanghai, china. Scientific

Reports, 9(1):15141, 2019.

[4] M. O’Driscoll et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature, nov 2020.

[5] J. Zhang et al. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside

Hubei province, China: a descriptive and modelling study. The Lancet Infectious Diseases, 20(7),

2020.

[6] S. A. Lauer et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly

Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine, 172(9):577–

582, may 2020.

[7] Q. Li et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia,

mar 2020.

[8] Q. Bi et al. Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases

and 1,286 of their close contacts. medRxiv, pp. 2020.03.03.20028423, mar 2020.

[9] M. T. Meehan et al. Modelling insights into the COVID-19 pandemic, jun 2020.

[10] X. He et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine,

pp. 2020.03.15.20036707, mar 2020.

[11] A. W. Byrne et al. Inferred duration of infectious period of SARS-CoV-2: rapid scoping review

and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ open,

10(8):e039856, aug 2020.

40



REFERENCES

[12] M. Pritchard et al. ISARIC Clinical Data Report 4 October 2020. medRxiv, pp. 2020.07.17.20155218,

jan 2020.

[13] ISARIC. ISARIC (International Severe Acute Respiratory and Emerging Infections Consortium)

COVID-19 Report: 08 June 2020. Technical report, 2020.

[14] N. G. Davies et al. Age-dependent effects in the transmission and control of COVID-19 epidemics.

Nature Medicine, pp. 2020.03.24.20043018, may 2020.

[15] J. Zhang et al. Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China.

Science, 368(6498):1481–1486, jun 2020.

[16] M. Pollán et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based

seroepidemiological study. Lancet (London, England), 0(0), jul 2020.

[17] Epidemiologische situatie COVID-19 in Nederland. Technical report.

[18] H. Haario et al. An adaptive Metropolis algorithm. Bernoulli, 2001.

41


