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Supplementary Information1

One-dimensional model of germline hydraulics2

Volume conservation and force balance3

Here we present the theoretical framework to discuss the hydraulics of the germline. We con-4

sider a one-dimensional representation of the gonad with positions x ∈ [0, L] along the distal-5

proximal axis, where L is the gonad-length (Fig. SN1A below) which is typically ∼ 400 µm6

(Extended Fig. S1D). We first consider volume conservation according to7

∂tAc + ∂x(vcAc) = S − J (1)

∂tAr + ∂x(vrAr) = J . (2)

HereAc andAr denote the cross-sectional areas that correspond to the germ cells and the rachis,

respectively. Note that volume conservation implies flux balance at steady state. The average

velocities of rachis cytoplasm and cells are denoted vr and vc, respectively. Material uptake

from outside into cells is denoted S, and J signifies the germ cell to rachis current. This current

is driven by the difference in cell pressure Pc and rachis pressure Pr, and given by

J = α(Pc − Pr) . (3)

Here, α ' r3h/(3lcη) is a hydraulic conductivity of the rachis bridges, η denotes fluid viscosity,8

rh is the radius of rachis bridges and lc is the average cell length along the distal-proximal axis.9

The dependence of hydraulic conductivity α on the rachis bridge radius rh results from pressure10

driven viscous flows through a circular orifice (Sampson flow)[1, 2]. The force balance in germ11

cells and rachis can be expressed according to12

−∂xPc = γovc + γr(vc − vr) (4)

−∂xPr = γr(vr − vc) , (5)
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Fig. SN1: A, Schematic of hydrodynamic fluxes in the gonad and corresponding physical vari-
ables. B, The amount of material exchange between germ cells and rachis (green arrows)
depends on their respective azimuthal angle θ.

where γo is a coefficient of friction between germ cells and the outside, and γr is an effective13

friction coefficient that describes frictional interactions between germ cells and the rachis fluid.14

These equations are supplemented by boundary conditions. The velocities of both germ cells as15

well as rachis fluid at the distal tip (x = 0) vanish: vc(0) = 0 and vr(0) = 0 . At the proximal16

end (x = L), we have vr(L) = 0. Note that volume conservation implies thatAcvc(L) =
∫
Sdx,17

i.e. the volume flux leaving the system at the proximal end Acvc(L) equals the total material18

uptake
∫
Sdx from the outside. For this one dimensional description to accurately capture the19

physical states of the gonad, it is implicitly assumed that neighboring cells at a given location20

x have equivalent pressures. Pressure differences lead to curved cell-cell interfaces. Hence we21

evaluate if this criteria of force balance between neighboring cells is satisfied experimentally by22

estimating the curvature of cell-cell interfaces as a proxy for pressure differences among neigh-23

bors. We quantified the average absolute curvature of intra-cellular interfaces along the gonad,24

and found that cell-cell interfaces have negligible curvature (. 0.02µm−1) everywhere except25

for the very proximal region (see Supplementary Figure. S4B). We conclude that neighboring26

cells have equivalent pressures prior to ∼ 80% gonad length.27
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Simple solutions for pressure and velocity profiles28

For simplicity we consider the scenario where the areasAc andAr are constant along the gonad.29

In this case volume balance in steady state reads30

∂xQc = S − α(Pc − Pr) (6)

∂xQr = α(Pc − Pr) , (7)

whereQc = Acvc andQr = Arvr are the cell and rachis volume fluxes, respectively. Combining31

these equations with the force-balance equations (Eqs. 4, 5) we obtain the velocity profiles32

which read33

∂2xQc = ∂xS +
α(γo + 2γr)

Ac
Qc −

2αγr
Ar

Qr (8)

∂2xQr = −α(γo + 2γr)

Ac
Qc +

2αγr
Ar

Qr . (9)

In redefined nondimensional units we obtain34

∂2xQc = ∂xS + βcQc − βrQr (10)

∂2xQr = −βcQc + βrQr . (11)

Here βc = α(γo + 2γr)/Ac and βr = 2αγr/Ar are effective coefficients. We solve equations35

10 and 11 for a given profile of material uptake S(x) and the boundary conditions Qc(0) =36

Qr(0) = Qr(L) = 0 employing a collocation method using the three-stage Lobatto IIIa formula.37

To specify the profile of material uptake we fit the function S(x) = a0 +
∑3

n=1(an cos(nx/L)+38

bn sin(nx/L) to the experimentally inferred profile of material uptake S shown in Fig. 1D.39

This provides us with a smooth and continuous representation S(x) of the data (Fig.1D, dashed40

line). We then fit numerically determined solutions of Eqs. 10 and 11 to the profile of cell41

and rachis flows Qc and Qr using βc and βr as fit parameters (Figs. 1C, S1C). The effective42

3



fit-parameters βc & βr define two length-scales β−1/2c,r . We represent the values obtained by the43

fitting procedure in terms of the gonad length L.44

Fit parameter value (L−2) 95% CI (L−2)
βc 86.3 ±14.7
βr 61.4 ±16.4

45

Both βc and βr are comparable in magnitude. This would be expected as the cell volume flux46

and rachis flux show comparable magnitudes and also range through comparable lengthscales.47

Analysis of the RNAi condition where apoptosis is inhibited48

To analyse the rachis flux profile under ced-3(RNAi), we first analyse the rachis flux profile

in the control condition L4440 investigated 96 hours after hatching, which is 24hrs later than

experiments in the non-RNAi condition shown in Figs. 1 and 2. We fit solutions to Eqs. 10 and

11 using the values of βc and βr obtained for the non-RNAi condition. We use a material uptake

profile βsS(x), where S(x) is the material uptake profile from Fig.1D, and βs is a dimensionless

factor scaling the amplitude of S(x). Through this we account for changes in amplitude but not

profile of material uptake between the two different time points of investigation 24 hours apart.

The corresponding fit for L4440 control condition is shown in Fig. S2D.

Based on the now determined values for βc, βr and the material uptake profile βsS(x), we can

predict the rachis flux profile for ced-3(RNAi) where apoptosis is suppressed. The observation

that no cells are extruded suggests that material only leaves the system at the proximal end. We

therefore postulate that the material uptake profile Sp for ced-3(RNAi) can be approximated as

Sp(x) =

{
βsS(x) ,∀x : S(x) > 0

0 ,∀x : S(x) < 0 .
(12)

Using this profile, we obtain the predicted rachis flux profile for ced-3(RNAi) shown in Fig. 2B.49

The agreement between prediction and data supports the idea that the suppression of apopto-50
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sis and the resultant inhibition of cell extrusion eliminates material leakage, but leaves other51

features of the system unchanged.52

Azimuthal mechanical stability of a cell pair53

The change in sign of the germ cell to rachis current J at x ' 0.6L implies an inversion of the

pressure difference Pc−Pr. We now discuss how the stability of a pair of cells located along the

gonad at position x depends on the pressure profiles in the gonad. We consider two cells with

total cross-section area Ac = A1 + A2 covering the azimuthal angles θ1 and θ2, respectively

with θ1 +θ2 = 2π (see Fig. SN2). The basal surface area of cell i = 1, 2 is A(i)
b = θiRblc, where

Rb is the radius of the germline. The volume of cell i = 1, 2 is given by Vi = Ailc, where lc is

the distal-proximal cell length. Because of material exchange the cell volume obeys

dVi
dt

= Silc − Jilc , (13)

where Silc is the rate of volume uptake of cell i, and Jilc denotes the rate of volume loss from

cell i to rachis, with Si = Sθi/(2π) and Ji = αi(P
(i)
c − Pr). We have introduced αi '

r3h,i/(3lcη), where the rachis bridge radius of cell i is given by rh,i. To determine the force

balances governing the volume changes we use a simplified mechanical model of the germ-cell

doublet, which can be captured in terms of a work function, typically expressed as,

E =
∑
κ

TκAκ , (14)

where Tκ denotes the cortical tension of the surface κ with area Aκ. We parametrize the cell54

geometry by the rachis radii Ri corresponding to cells i = 1, 2 as well as the relative difference55

in basal surface area λ = (A
(1)
b −A

(2)
b )/(A

(1)
b +A

(2)
b ) ( see Fig. SN2A ). For a germ-cell doublet56

we then write57

E(R1, R2, λ) = πTF

(
(1 + λ)

2
(R2

b −R2
1) +

(1− λ)

2
(R2

b −R2
2)

)
lc + (πTR(1 + λ)− TS)R1lc

+(πTR(1− λ)− TS)R2lc + 2TSRblc .
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A) B)

Fig. SN2: A) Schematic of the general doublet model. The geometric variables are de-
picted. B) Cortical tensions of the corresponding surfaces are schematically depicted.

The cell surface tensions TF , TS and TR are associated with surfaces as depicted in Fig. SN2B.

Here we ignore the tension of the basal/outer surface as it does not contribute to the radial force

balance of R1 and R2. The volumes of the cells are given by V1 = π(1 + λ)(R2
b − R2

1)lc/2

and V2 = π(1 − λ)(R2
b − R2

2)lc/2, and the corresponding cross-sectional areas are A1 =

π(1 + λ)(R2
b − R2

1)/2 and A2 = π(1 − λ)(R2
b − R2

2)/2. We use Langrange multipliers P1

and P2 to impose cell volumes V1 and V2 and the Lagrange multiplier Σ to impose the total

cross-sectional area Ac = A1 + A2. Therefore we minimize the function,

F = E + P1V1 + P2V2 + ΣAc , (15)

where Pi are the pressure differences Pi = Pr − P (i)
c for cell i = 1, 2 . Mechanical equilibrium

implies ∂F/∂Ri = 0 and ∂F/∂λ = 0, which yield expressions for the pressures differences Pi

as well as a force balance equation according to

P1 =
TR
R1

− TS
π(1 + λ)R1

− TF + Σ

lc
(16)

P2 =
TR
R2

− TS
π(1− λ)R2

− TF + Σ

lc
(17)

TS(R2
2 −R2

1) + 2TR(R1 −R2)lc = −P1(R
2
b −R2

1)lc + P2(R
2
b −R2

2)lc . (18)
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Using the expressions for the pressure differences Pi into Eq. 18 we obtain

πTR(R2−R1)(Rb−R1R2)(1−λ)2 = TSR2(R
2
b−R2

1)(1−λ)−TSR1(R
2
b−R2

2)(1+λ) . (19)

The difference in pressure ∆P = P2 − P1 is given by,

∆P =
TR
R2

− TR
R1

+
TS
π

(
1

R1(1 + λ)
− 1

R2(1− λ)

)
. (20)

The volume balance for the two cells can be written as

dV1
dt

= S

(
1 + λ

2

)
lc + α1

(
Pr − Pc −

∆P

2

)
lc (21)

dV2
dt

= S

(
1− λ

2

)
lc + α2

(
Pr − Pc +

∆P

2

)
lc . (22)

Note that the pressure difference ∆P can also be expressed as ∆P = P
(1)
c − P (2)

c . The balance

of total volume V = V1 + V2 with dV/dt = Acdlc/dt is given by

1

V

dV

dt
=

S

Ac
+
α1 + α2

Ac
(Pr − Pc) +

α2 − α1

Ac

∆P

2
. (23)

The difference in volumes ∆V = V2 − V1 obeys

1

V

d∆V

dt
= − S

Ac
λ+

α2 − α1

Ac
(Pr − Pc) +

α1 + α2

Ac

∆P

2
. (24)

These expressions lead to the following equation of motion for the relative volume difference

ν = (V2 − V1)/V ,

dν

dt
= − S

Ac
(λ+ ν)− Pc − Pr

Ac
(α2 − α1 − ν(α1 + α2)) (25)

+
∆P

2Ac
(α1 + α2 + ν(α2 − α1)) .

Here λ, αi as well as ∆P are in general ν dependent. In particular we use α1(ν) = α0(1−ν)3/8

and α2(ν) = α0(1 + ν)3/8, where α0 = (m3/3η)A3
c l

2
c , which is based on the idea that the
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rachis bridge radii depend on cell volume as rh,i ' mVi. The dynamics of the relative volume

difference ν can be written as,

dν

dt
= − S

Ac
(λ(ν) + ν)− α0

Pc − Pr
2Ac

ν(1− ν)(1 + ν) + α0
∆P (ν)

8Ac

(
1 + 6ν2 + ν4

)
. (26)

The function λ(ν) and ∆P (ν) can be obtained from force balance Eq.28 with imposed area

Ac. The area constraint requires,

λ =
2r20 − r21 − r22

r21 − r22
(27)

where we have introduced nondimensional variables ri = Ri/Rb and r20 = 1− Ac/(πR2
b). The

force balance 19 can be written as,

π(r1 − r2)(r1r2 − 1)(1− λ2)− σ(r1 + r2)(r1r2 − 1)λ+ σ(r1 − r2)(1 + r1r2) = 0 , (28)

where σ = TS/TR. Introducing the variables A = r21 + r22, B = 2r1r2 and A0 = 2r20 and

eliminating

λ =
A0 − A√
A2 −B2

(29)

in Eq.28, we obtain a quadratic equation for A given B, which reads

σBA2 +

(
B

2
− 1

)
(2A0π − σA0 + σB)A

−
(
B

2
− 1

)(
π(A2

0 +B2
)

+ σA0B)− σ
(
B

2
+ 1

)
B2 = 0 . (30)

From A and B we can determine,

r1 =
1

2

(√
A+B −

√
A−B

)
(31)

r2 =
1

2

(√
A+B +

√
A−B

)
(32)

ν =
A2 −B2 − (A0 − A)(2− A)

(2− A0)
√
A2 −B2

. (33)

From these expressions one can calculate dν/dt as a fucntion of ν given by Eq.26. Two58

examples are shown in Fig. SN3.59
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Fig. SN3: A) Left: Stability diagram of ν is shown for S > 0 and Pc > Pr. The symmetric state
ν = 0 is a stable fixed point and depicted with a solid circle. Right: Individual contri-
butions from different terms in Eq.26 are shown for the the associated stability diagram:
(i)(Green) ,(ii)(Red), (iii)(Brown) correspond to contributions due to material uptake S,
pressure difference between germ cell to rachis Pc − Pr and pressure difference between
the germ cells ∆P . B) Left: Stability diagram of ν is shown for S = 0 and Pc < Pr.
The symmetric state ν = 0 is an unstable fixed point and depicted with an empty cir-
cle. Right: Individual contributions from different terms are shown for the the associated
stability diagram.

In panel A of Fig. SN3 we consider a scenario akin to the distal region of the germline60

where material uptake S > 0 and Pc > Pr. In this scenario the symmetric state at ν = 0 is a61

stable fixed point. While contributions from S and Pc− Pr stabilize the symmetric state ν = 0,62

the pressure difference between the two cells ∆P destablizes the symmetric state. In panel B63

of Fig. SN3 we consider S = 0 and Pc < Pr. As a result the stabilizing effect of S is absent64

and contributions from Pc − Pr as well as ∆P make the symmetric state ν = 0 unstable. The65
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disappearance of material uptake S as well as change of sign of Pc − Pr leads to the change in66

stability of the symmetric state and we refer to this as the hydraulic instability.67

This analysis can also be presented in terms of an effective potential W given by,

dν

dt
= −dW

dν
(34)

The effective potentials W associated with stability diagrams in Fig. SN3 are depicted as insets68

of Fig. 2E, where we have normalized the potential by W (ν = 0).69

Eq.26 can be linearized around the symmetric state ν = 0 and is given by

dν

dt
' −α0

Ac

(
S

α0

(1− b) +
5

8
(Pc − Pr)−

∆P0

16

)
ν . (35)

Here the coefficients b and ∆P0 are,

b =
dλ

dν

∣∣∣∣
ν=0

=

(
π

σ
− 1 + r2

1− r2

)(π
σ
− 1
)−1

, (36)

∆P0 =
d∆P

dν

∣∣∣∣
ν=0

=
2TS
πRbr

(
2− 2σr2

(1− r2)(π − σ)

)
, (37)

where r = (r1 + r2)/2 and r2 − r1 << r. The symmetric state is stable iff

S

α0

(1− b) +
5

8
(Pc − Pr)−

∆P0

16
> 0 . (38)

We consider the case where S(1−b) and ∆P0 are positive everywhere. In the distal region, S is

sufficiently large such that S(1− b)/α0−∆P0/16 > 0 and therefore the equally-sized cell state

is stable. This is further ensured by Pc > Pr in this region. When S vanishes near 60% germ

line length, the hydraulic instability is driven by ∆P0 and supported by the pressure difference

Pc−Pr becoming negative in this region (see Extended Data Fig. S4B). For R1 = R2 = R, the

asymmetry can only arise in terms of the azimuthal angle and we find λ = −ν. In this case the

pressure difference (Eq.20) between the cells is given by,

∆P = ∆P1
2ν

1− ν2
, (39)
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where ∆P1 = TS/πR. Eq.26 then takes the following form,

dν

dt
= −α0

Pc − Pr
2Ac

ν(1− ν)(1 + ν) + α0
∆P1

4Ac

ν

1− ν2
(
1 + 6ν2 + ν4

)
. (40)

Here the stabilising effect originating from S is absent but the destablising effect of ∆P persist.70

Then the onset of the hydraulic instability is driven by the inversion of pressure difference71

Pc − Pr, in the same way as described for Eq.26.72

Identification of the transition point between the two growth modes73

We plot the standard deviation of cell volumes against the mean of cell volumes for 40 spatial74

bins along the gonad (see inset Fig. 1B, Fig. S2E). We find that they follow a linear relationship75

in the distal region, which transitions to another linear relationship with higher slope towards76

the proximal end. We identify this crossover point by fitting linear curves to the first three77

and last three points and identifying their intersection at ∼ 150fL mean cell volume. We then78

calculate the Euclidean distance of each point from this intersection of two lines. To define a79

region of transition we then use a span of 1.5dc where dc is the distance of the closest point80

to the intersection of the two lines. We find that this crossover region lies between 61.25% −81

68.75% gonad length in space along the distal to proximal axis in the unperturbed gonads and at82

73.75%− 78.75% gonad length for ced-3(RNAi). We use two additional metrics to evaluate the83

dispersion of the germ cell volume population, namely the Gini and the Hoover index[3]. These84

both show a monotonic increase beyond the above specified transition regions, respectively (see85

Fig. SN3 below).86
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Figure. SN4: Gini (blue dots) and Hoover (orange dots) indices in (A) non-RNAi and (B)
ced-3(RNAi) conditions. Vertical lines indicate the position of minima which are identical
for both measures.

Determination of the rachis flux Qr87

Starting from the velocity field obtained by performing PIV (inset of Fig. 1C, Fig. S2A) on the

midsection of the gonad. We acquire a centerline of the gonad by erosion based segmentation.

At each PIV grid point we identify the velocity component tangential to this centerline. For each

point along the centerline we pursue a cut orthogonal (⊥) to the centerline and determine the

tangential velocity components along this cut. We then fit a parabolic function to this orthogonal

velocity profile using

v⊥[r] = vmax⊥

(
1− r

Rr

)2

, (41)

using a hard tolerance criteria. Here, vmax⊥ denotes the peak velocity, and Rr is the resultant

rachis radius. We then integrate over this function to estimate the rachis fluxQr at this centerline

position according to

Qr =

∫
dφ

∫ +Rr

−Rr

v⊥[r]rdr =
vmax⊥

2
πR2

r . (42)
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Figure. SN5: Example of 20 individual velocity profiles perpendicular to the centerline.

The average velocity of fluid through rachis vr = Qr/Ar relates to the peak velocity for88

a parabolic flow as vr = vmax⊥ /2. Note that erosion based segmentation is vulnerable to high89

curvatures and as a result near the turn the centerline does not imitate the turn. Hence the flow90

into the turn is treated as a radial flow orthogonal to the centerline and contributes to the germ91

cell to rachis current J rather than to Qr.92

Determination of the germ cell volume flux Qc93

We start out by the assumption of conservation of cell density n (see Fig. S4 A) in the gonad

according to

∂tn+ ∂x(nvc) = (kd − ka)n , (43)

where nvc is the cell density flux, kd is the rate of mitosis and hence the birth rate, and ka is the

rate of apoptosis. We assume steady-state (Fig. S1D) and integrate over birth and death rates

(Fig. S1C) and find

vc[x] =
n[0]

n[x]
vc[0] +

1

n[x]

∫ x

o

(kd[x
′]− ka[x′])n[x′]dx′ . (44)
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Cell velocities at the distal-end are zero (vc[0] = 0). Combining with the cross-sectional areas94

of the gonad, we estimate the volume flux due to cell movement (Fig. S1E) as the product of95

cell velocity and cellular area (Qc = Acvc).96

Determination of the profile of material uptake S from the surrounding97

To infer the material uptake profile S of the germline from the surrounding environment, we

make use of volume conservation and steady-state and obtain

∂x(Qc +Qr) = S . (45)

Therefore, the spatial gradient of the total volume flux (i.e. the rachis flux Qr plus the cell98

volume flux Qc) informs us of material uptake at a given location. We use a 4-point central99

difference method to estimate this gradient and the corresponding 95% confidence intervals100

(Fig. 1D).101
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