
- 1 *Bmal1* in the striatum influences alcohol intake in a sexually dimorphic manner
- 2
- 3
- 4 Nuria de Zavalia^{*}, Konrad Schoettner, Jory A. Goldsmith, Pavel Solis, Sarah Ferraro, Gabrielle
- 5 Parent, and Shimon Amir*
- 7 Center for Studies in Behavioral Neurobiology
- 8 Department of Psychology
- 9 Concordia University
- 10 Montreal
- 11 Canada
- 12 * Correspondence: shimon.amir@concordia.ca, nuria.dezavalia@concordia.ca
- 13

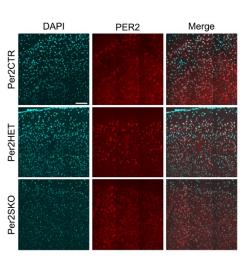
С

i

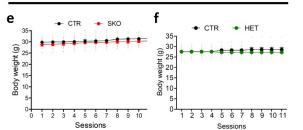
35-30-25-20-15-10-5-0-0

CTR

1 2 3 4 5 6 7 8 9 10 Sessions


SKO

Bmal1CTR Bmal1SKO Striatum SCN Hippocampus

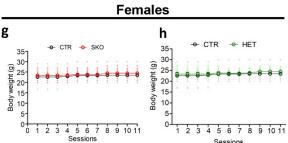

g

357

b

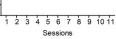
Males

j

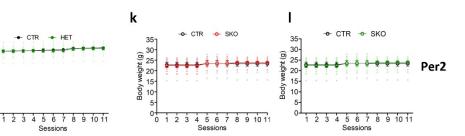

35-30-25-20-15-10-5-5-

0-

CTR


+ HET

Sessions

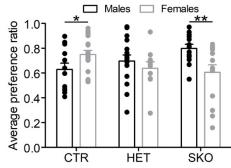


0

1 2 3 4 5 6 7 8 9 10 11 Sessions

Bmal1

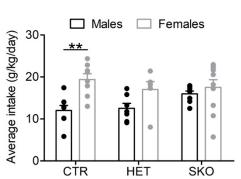

а

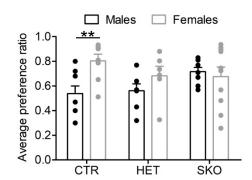

14 Supplementary Figure 1: *Bmal1* expression in the mouse striatum and body weight of *Bmal1*

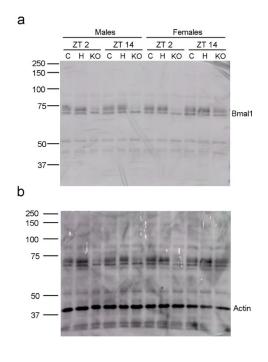
15 and *Per2* knockout mice.

16	a, Qualitative western blot analysis of BMAL1 in the dorsal striatum of control and Bmal1 knockout male
17	and female mice at two different times of the day. b , Quantitication of the blot intensity is shown. c , a
18	representative image of BMAL1 immunohistochemistry staining in the striatum, hippocampus and SCN of
19	control and Bmal1 knockout. d , a representative image of PER2 immunofluorescence staining in the cortex
20	of control, <i>Per2</i> heterozygote and knockout mice. PER2: red, DAPI: cyan. Scale bar = 100 μ m. e , daily body
21	weight of control and Bmal1 knockout male mice. Two-way repeated measure ANOVA (RM-ANOVA), no
22	significant effect, F= (1, 23) = 0.9306, p=0.3448. f ,daily body weight of control and <i>Bmal1</i> heterozygote
23	male mice. RM-ANOVA, no significant effect, F (1, 26) = 0.05852, p=0.8108. g, daily body weight of control
24	and <i>Bmal1</i> knockout female mice. RM-ANOVA, no significant effect, F (1, 29) = 0.8145, p=0.3742. h , daily
25	body weight of control and <i>Bmal1</i> heterozygote female mice. RM-ANOVA, no significant effect, F (1, 25) =
26	0.6254, p=0.4365. i, daily body weight of control and Per2 knockout male mice. RM-ANOVA, no significant
27	effect, F= (1, 14) = 0.9905, p=0.7576. j, daily body weight of control and <i>Per2</i> heterozygote male mice. RM-
28	ANOVA, no significant effect, F (1, 13) = 0.4200, p = 0.5282. k, daily body weight of control and Per2
29	knockout female mice. RM-ANOVA, no significant effect, F (1, 17) 0.02185, p= 0.9633. I, daily body weight
30	of control and <i>Per2</i> heterozygote female mice. RM-ANOVA, no significant effect, F (1, 13) = 0.2798, p=
31	0.6058.ZT: Zeitgeber time. e-I , the values express mean ± S.E.M. a-d , n= 3/genotype. e-h , CTR: control, HET:
32	<i>Bmal1</i> heterozygote, SKO: <i>Bmal1</i> knockout. e, f , CTR n = 12, HET n = 16, SKO n = 13. g, h , CTR n = 17, HET n = 10,
33	SKO n = 14. i-l, CTR: control, HET: <i>Per2</i> heterozygote, SKO: <i>Per2</i> knockout. i, j, CTR n = 8, HET n = 7, SKO n = 8. k,l,
34	CTR n = 9, HET n = 6, SKO n = 10.

Bmal1 b






d

94	Supplementary Figure 2: Deletion of <i>Bmal1</i> eliminates sex differences in alcohol drinking behavior.
95	a, average alcohol intake of male vs. female Bmal1 control, heterozygote and knockout mice.
96	Unpaired two-tailed t-test, CTR male vs female *** p< 0.0001, HET male vs female, NS, p= 0.06,
97	SKO male vs female, NS, p= 0.65. b , average alcohol preference of male vs. female Bmal1
98	control, heterozygote and knockout mice. Unpaired two-tailed t-test, CTR male vs female $*$ p<
99	0.05, HET male vs female, NS, p= 0.36, SKO male vs female, ** p< 0.01. c , average alcohol intake
100	of male vs. female Per2 control, heterozygote and knockout mice. Unpaired two-tailed t-test,
101	CTR male vs female ** p< 0.01, HET male vs female, NS, p= 0.06, SKO male vs female, NS, p=
102	0.49. d, average alcohol preference of male vs. female Per2 control, heterozygote and knockout
103	mice. Unpaired two-tailed t-test, CTR male vs female ** p< 0.01, HET male vs female, NS, p=
104	0.22, SKO male vs female, NS, p= 0.67.
105	NS = no significant differences. The value express mean ± S.E.M. a, c, CTR: Bmal1 control, HET:
106	Bmal1 heterozygote, SKO: Bmal1 Knockout. Males: CTR n = 12, HET n = 16, SKO n = 13. Females:
107	CTR n = 17, HET n = 10, SKO n = 14. b,-d , CTR: Per2 control, HET: Per2 heterozygote, 2SKO: Per2
108	Knockout. Males: CTR n = 8, HET n = 7 SKO n =8. Females: CTR n = 9, HET n = 6, SKO n = 10.
109	
110	

- 112
- 113

114 Supplementary Figure 3: Non-cropped Western blot gel from Supplementary Figure 1a.

- 115 **a**, Non-cropped anti-Bmal1 immunoblotting for BMAL1 in Supplementary Figure 1a. **b**, anti-Actin
- 116 immunoblotting for ACTIN in Supplementary Figure 1a.