## Supplementary information

## Fronto-striatal dopamine D2 receptor availability is associated with cognitive variability in older individuals with low dopamine integrity

Saana M. Korkki<sup>1\*</sup>, Goran Papenberg<sup>1</sup>, Nina Karalija<sup>2,3</sup>, Douglas D. Garrett<sup>4,5</sup>, Katrine Riklund<sup>2,3</sup>, Martin Lövdén<sup>6</sup>, Ulman Lindenberger<sup>4,5</sup>, Lars Nyberg<sup>2,3,7</sup>, Lars Bäckman<sup>1</sup>

<sup>1</sup>Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden

<sup>2</sup>Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden

<sup>3</sup>Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden

<sup>4</sup>Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

<sup>5</sup>Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany and London, UK

<sup>6</sup>Department of Psychology, University of Gothenburg, Gothenburg, Sweden <sup>7</sup>Department of Integrative Medical Biology, Umeå University, Umeå, Sweden

\*Corresponding author

## Supplementary information

As illustrated in Figure S1, the response time limitations imposed in the n-back task (maximum response time of 1.5 s) resulted in a truncated distribution of participants' response times for the higher-load conditions. In contrast to load 1, estimates of ISD RT and mean RT did not significantly correlate across participants for load 2, r = .11, p = .150, or load 3, r = .00, p = .997. Indeed, when examining only the slowest quartile of participants in each condition, we observed a significant negative association between ISD RT and mean RT for load 2, r = .31, p = .047, and load 3, r = .48, p = .001. Given the typically positive correlations between mean RT and ISD RT<sup>1</sup>, this suggests that within-person variability in response time may not have been accurately captured at the higher load conditions, especially for individuals with slower response speed. Thus, our main analyses focused on the 1-back condition, but we note that no significant correlations between IIV and D2DR availability (ps > .297), or grey- and white-matter integrity (ps > .102) were detected for the 2-back conditions across the whole sample.



Figure S1. Distribution of participants' response times across correct trials in the 2-back and 3-back conditions of the in-scanner working memory task.

| Region                 | Mean (SD)  |
|------------------------|------------|
|                        |            |
| Caudate                | 2.18 (.31) |
|                        | /          |
| Putamen                | 3.35 (.27) |
|                        |            |
| Superior frontal gyrus | .16 (.05)  |
|                        |            |
| Middle frontal gyrus   | .20 (.05)  |
|                        |            |
| Inferior frontal gyrus | .21 (.04)  |
|                        |            |

Table S1. Mean <sup>11</sup>C-raclopride  $BP_{ND}$  (SD) across striatal and frontal subregions (n = 178).

Table S2. Partial correlations between ISD RT and D2DR availability (n = 176 for perceptual speed; n = 165 for 1-back), grey-matter volume (n = 178 for perceptual speed; n = 167 for 1-back), white matter hyperintensity burden (n = 168 for perceptual speed; n = 158 for 1-back), and white matter microstructure (n = 174 for perceptual speed; n = 165 for 1-back) across the whole sample, controlling for sex, education, and mean RT. Bootstrap 95% confidence intervals are displayed in brackets, p-values uncorrected.

|                      | F   | Perceptual spee | d    |     | 1-back     |      |  |  |
|----------------------|-----|-----------------|------|-----|------------|------|--|--|
|                      | r   | CI              | р    | r   | CI         | р    |  |  |
| D2DR availability    |     |                 |      |     |            |      |  |  |
| Striatum             | 03  | [18, .12]       | .670 | 09  | [25, .07]  | .245 |  |  |
| Frontal cortex       | 06  | [21, .11]       | .462 | 15  | [28,01]    | .060 |  |  |
| Grey matter volume   |     |                 |      |     |            |      |  |  |
| Striatum             | .07 | [08, .20]       | .395 | 08  | [22, .06]  | .285 |  |  |
| Frontal cortex       | .10 | [07, .25]       | .198 | 10  | [24, .04]  | .187 |  |  |
| White matter lesions |     |                 |      |     |            |      |  |  |
| Lesion number        | 02  | [17, .13]       | .822 | 01  | [15, .13]  | .915 |  |  |
| Lesion volume        | .03 | [10, .17]       | .668 | .15 | [.00, .28] | .073 |  |  |
| DTI                  |     |                 |      |     |            |      |  |  |
| FA SLF SFOF CC       | .10 | [07, .25]       | .217 | .10 | [06, .26]  | .198 |  |  |
| MD SLF SFOF CC       | 05  | [20, .11]       | .533 | .02 | [13, .17]  | .813 |  |  |

Table S3. Partial correlations between mean RT and D2DR availability (n = 176 for perceptual speed; n = 165 for 1-back), grey matter volume (n = 178 for perceptual speed; n = 167 for 1-back), white matter hyperintensity burden (n = 168 for perceptual speed; n = 158 for 1-back), and white matter microstructure (n = 174 for perceptual speed; n = 165 for 1-back) across the whole sample, controlling for sex and education. Bootstrap 95% confidence intervals are displayed in brackets, p-values uncorrected.

|                      | F   | Perceptual spee |      | 1-back |           |      |
|----------------------|-----|-----------------|------|--------|-----------|------|
|                      | r   | CI              | р    | r      | CI        | р    |
| D2DR availability    |     |                 |      |        |           |      |
| Striatum             | .06 | [10, .21]       | .431 | .02    | [11, .15] | .770 |
| Frontal cortex       | .09 | [07, .24]       | .244 | .04    | [12, .19] | .609 |
| Grey matter volume   |     |                 |      |        |           |      |
| Striatum             | 03  | [19, .13]       | .670 | .08    | [05, .22] | .317 |
| Frontal cortex       | 03  | [19, .12]       | .704 | .00    | [16, .16] | .977 |
| White matter lesions |     |                 |      |        |           |      |
| Lesion number        | .08 | [07, .23]       | .285 | 01     | [19, .16] | .879 |
| Lesion volume        | .00 | [16, .17]       | .972 | 05     | [21, .11] | .545 |
| DTI                  |     |                 |      |        |           |      |
| FA SLF SFOF CC       | .04 | [12, .20]       | .589 | 02     | [17, .13] | .789 |
| MD SLF SFOF CC       | .01 | [18, .19]       | .938 | .00    | [17, .17] | .991 |

Table S4. Partial correlations between fronto-striatal D2DR BP<sub>ND</sub> and ISD RT in each subgroup after controlling for sex, education, and mean RT. Bootstrap 95% confidence intervals are displayed in brackets, and significant correlations (p < .05, two-tailed, uncorrected) are highlighted in bold.

|                  |                   | Striatum  |      |                 | Frontal cortex |      |
|------------------|-------------------|-----------|------|-----------------|----------------|------|
|                  | r                 | CI        | р    | r               | CI             | р    |
| Perceptual speed |                   |           |      |                 |                |      |
| Class 1 (n = 97) | 06                | [26, .14] | .567 | 08              | [28, .13]      | .463 |
| Class 2 (n = 39) | 05                | [40, .30] | .765 | 39 <sup>b</sup> | [65,06]        | .019 |
| Class 3 (n = 40) | 02                | [30, .28] | .931 | .28             | [01, .54]      | .089 |
| WM 1-back        |                   |           |      |                 |                |      |
| Class 1 (n = 93) | .04               | [22, .27] | .723 | .00             | [19, .17]      | .978 |
| Class 2 (n = 39) | 36 <sup>a,b</sup> | [66,04]   | .032 | 35              | [61,05]        | .034 |
| Class 3 (n = 33) | .14               | [23, .42] | .462 | 01              | [34, .31]      | .974 |

Significant difference in correlation magnitudes between <sup>a</sup>Class 2 and Class 1, and <sup>b</sup>Class 2 and Class 3 (p < .050).

|                  | Striatum |           |      | Frontal cortex |           |      |
|------------------|----------|-----------|------|----------------|-----------|------|
|                  | r        | CI        | р    | r              | CI        | р    |
| Perceptual speed |          |           |      |                |           |      |
| Class 1 (n = 97) | .04      | [19, .26] | .717 | .01            | [20, .24] | .893 |
| Class 2 (n = 39) | .08      | [27, .41] | .622 | .10            | [22, .41] | .540 |
| Class 3 (n = 40) | .06      | [30, .44] | .726 | .20            | [13, .45] | .238 |
| WM 1-back        |          |           |      |                |           |      |
| Class 1 (n = 93) | 10       | [31, .13] | .335 | 10             | [26, .08] | .345 |
| Class 2 (n = 39) | .12      | [18, .38] | .498 | .05            | [25, .40] | .758 |
| Class 3 (n = 33) | .25      | [12, .51] | .179 | .38            | [12, .68] | .037 |
|                  |          |           |      |                |           |      |

Table S5. Partial correlations between fronto-striatal D2DR BP<sub>ND</sub> and mean RT in each subgroup after controlling for sex and education. Bootstrap 95% confidence intervals are displayed in brackets, and significant correlations (p < .05, two-tailed, uncorrected) are highlighted in bold.

## References

1. Jensen, A. R. The importance of intraindividual variation in reaction time. *Personality and Individual Differences* **13**, 869–881 (1992).