
   

Supplementary Figures 

 

 

Supplementary Figure S1. Behavioral profile of B6 male and female mice aged of 5 weeks, 3 months 

and 7 months. We depicted the total time spent in each behavior over the three nights. Each black dot 

corresponds to an individual in A, B, E, H, I, J, K, L, M and N with similar shape for the two individuals 

of the pair, while in C, D, F, and G each dot corresponds to a pair since the behaviors are symmetrical 

(Mann-Whitney U-tests used to test for differences between sexes within each age class; Kruskal-

Wallis test followed by Wilcoxon paired test if significant to test for differences between 5 weeks and 

3 months and between 3 months and 7 months within each sex). Uncorrected p-values: ns: not 

significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001. P-values followed by ° survived after correction 

for multiple testing. 
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Supplementary Figure S2. Behavioral profile of B6 male and female mice aged 5 weeks, 3 months 

and 7 months. We depicted the mean duration of each behavior over the three nights. Each black dot 

corresponds to an individual in A, B, E, H, I, J, K, L, M and N with similar shape for the two individuals 

of the pair, while in C, D, F, and G each dot corresponds to a pair since the behaviors are symmetrical 

(Mann-Whitney U-tests used to test for differences between sexes within each age class; Kruskal-

Wallis test followed by Wilcoxon paired test if significant to test for differences between 5 weeks and 

3 months and between 3 months and 7 months within each sex). Uncorrected p-values: ns: not 

significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001. P-values followed by ° survived after correction 

for multiple testing. 
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Supplementary Figure S3. Behavioral profile of B6 and Shank3-/- female mice aged 3 months. We 

depicted the total time spent in each behavior over the three nights. Each black dot corresponds to an 

individual in A, B, E, H, I, J, K, L, M and N with similar shape for the two individuals of the pair, 

while in C, D, F, and G each dot corresponds to a pair since the behaviors are symmetrical (Mann-

Whitney U-tests used to test for differences between genotypes). Uncorrected p-values: ns: not 

significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001. P-values followed by ° survived after correction 

for multiple testing. 
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Supplementary Figure S4. Behavioral profile of B6 and Shank3-/- female mice aged 3 months. We 

depicted the mean duration of each behavior over the three nights. Each black dot corresponds to an 

individual in A, B, E, H, I, J, K, L, M and N with similar shape for the two individuals of the pair, 

while in C, D, F, and G each dot corresponds to a pair since the behaviors are symmetrical (Mann-

Whitney U-tests used to test for differences between genotypes). Uncorrected p-values: ns: not 

significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001. P-values followed by ° survived after correction 

for multiple testing. 
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Supplementary Figure S5. Timeline of USV burst emission in B6 male pairs. We represented the 

amount of USVs per burst as a function of the time of emission over the three days of recording in B6 

male pairs, recorded at 5 weeks, 3 months and 7 months.  
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Supplementary Figure S6. Timeline of USV burst emission in B6 female pairs. We represented the 

amount of USVs per burst as a function of the time of emission over the three days of recording in B6 

female pairs, recorded at 5 weeks, 3 months and 7 months.  
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Supplementary Figure S7. Variations of acoustic features between males and females in B6 pairs at 

5 weeks (males: 630 USVs, females: 7167 USVs), 3 months (males 688 USVs, females: 26357 USVs) 

and 7 months (males: 241 USVs, females: 33954 USVs) of age. (A) duration of USVs, (B) start 

frequency, (C) end frequency, (D) difference between the frequency at the end of the USV and the 

frequency at the start of the frequency, (E) minimum frequency, (F) maximum frequency, (G) mean 

frequency, (H) frequency range, (I) total variations of the frequency, (J) linearity index, (K) number of 

frequency modulations, (L) number of frequency jumps, (M) mean power of the USVs, (N) peak 

power, (O) general slope, and (P) harsh index. Linear Mixed model with sex as fixed factor and pair 

as random factor; ns: not significant, uncorrected p-values: *: p < 0.05, **: p < 0.01, ***: p < 0.001. 

P-values followed by ° survived after correction for multiple testing over acoustic variables. 
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Supplementary Figure S8. Evolution with increasing age of acoustic features in B6 males and in B6 

females. (A) duration of USVs, (B) start frequency, (C) end frequency, (D) difference between the 

frequency at the end of the USV and the frequency at the start of the frequency, (E) minimum 

frequency, (F) maximum frequency, (G) mean frequency, (H) frequency range, (I) total variations of 

the frequency, (J) linearity index, (K) number of frequency modulations, (L) number of frequency 

jumps, (M) mean power of the USVs, (N) peak power, (O) general slope, and (P) harsh index. For each 

sex separately, Kruskall-Wallis test followed by Student’s T-tests between 5 week and 3 months and 

between 3 months and 7 months, p-values corrected for multiple testing over acoustic variables and 

age classes; ns: not significant, uncorrected p-values: *: p < 0.05, **: p < 0.01, ***: p < 0.001. P-values 

followed by ° survived after correction for multiple testing over acoustic variables. 
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Supplementary Figure S9. Variations of acoustic features between B6 females and Shank3-/- females 

aged 3 months. (A) duration of USVs, (B) start frequency, (C) end frequency, (D) difference between 

the frequency at the end of the USV and the frequency at the start of the frequency, (E) minimum 

frequency, (F) maximum frequency, (G) mean frequency, (H) frequency range, (I) total variations of 

the frequency, (J) linearity index, (K) number of frequency modulations, (L) number of frequency 

jumps, (M) mean power of the USVs, (N) peak power, (O) general slope, and (P) harsh index. Linear 

Mixed Model with genotype as fixed factor and pair as random factor (B6 26357 USVs versus Shank3-

/- 33162 USVs); ns: not significant; uncorrected p-values: *: p < 0.05, **: p < 0.01, ***: p < 0.001. P-

values followed by ° survived after correction for multiple testing over acoustic variables. 
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Supplementary Figure S10. Smaller body size might explain the lower power in USVs from Shank3-

/- compared to WT more than the distance to the microphone during USV emission. Location of the 

pairs of mice and distance to the microphone during USV emission in (a) WT mice and (b) Shank3-/- 

mice. Left graphs: The mean position of the pair of mice over the whole USV duration is represented 

only when the two mice were detected within 10 cm from one another. Blue points represent USVs 

that were emitted with a power in the lowest 50th percentile of the power distribution for each 

experiment separately. Red points represent USVs that were emitted with a power in the highest 50th 

percentile of the power distribution for each experiment separately. The position of the microphone is 

depicted by a black dot in the middle of the right hand side of the cage. Right graphs: The power of the 

USVs recorded did not appeared to be correlated with the distance between the microphone and the 

position of the pair of the mice (the two mice were within 10 cm from one another). (c) Mean body 

surface measured on the masking detected by the Live Mouse Tracker system on the first xx hours of 

tracking in Shank3-/- female mice and in age-matched WT female mice. Mann-Whitney U-test was 

used for statistical comparison.  
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Supplementary Figure S11. Sex-related variations in acoustic features across contexts in B6 mice 

aged 5 weeks. Linear mixed model with sex as fixed factor and pair as random factor; ns: not 

significant; uncorrected p-values: *: p < 0.05, **: p < 0.01, ***: p < 0.001. P-values followed by ° 

survived after correction for multiple testing over acoustic variables and contexts. 
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Supplementary Figure S12. Sex-related variations in acoustic features across contexts in B6 mice 

aged 3 months. Linear mixed model with sex as fixed factor and pair as random factor; ns: not 

significant; uncorrected p-values: *: p < 0.05, **: p < 0.01, ***: p < 0.001. P-values followed by ° 

survived after correction for multiple testing over acoustic variables and contexts. 
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Supplementary Figure S13. Sex-related variations in acoustic features across contexts in B6 mice 

aged 7 months. Linear mixed model with sex as fixed factor and pair as random factor; ns: not 

significant; uncorrected p-values: *: p < 0.05, **: p < 0.01, ***: p < 0.001. P-values followed by ° 

survived after correction for multiple testing over acoustic variables and contexts. 
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Supplementary Figure S14. Age-related variations in acoustic features across contexts in B6 males 

recorded at 5 weeks, 3 months and 7 months of age. Student’s T-tests between 5 weeks and 3 months 

and between 3 months and 7 months; ns: not significant; uncorrected p-values: *: p < 0.05, **: p < 

0.01, ***: p < 0.001. P-values followed by ° survived after correction for multiple testing with two 

tests over acoustic variables and contexts.  
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Supplementary Figure S15. Age-related variations in acoustic features across contexts in B6 females 

recorded at 5 weeks, 3 months and 7 months of age. Student’s T-tests between 5 weeks and 3 months 

and between 3 months and 7 months; ns: not significant; uncorrected p-values: *: p < 0.05, **: p < 

0.01, ***: p < 0.001. P-values followed by ° survived after correction for multiple testing with two 

tests over acoustic variables and contexts.  



 
21 

 



  Supplementary Material 

 22 

 

Supplementary Figure S16. Comparisons of the acoustic structure across contexts between B6 and 

Shank3-/- females. Linear mixed model with genotype as fixed factor and pair as random factor; ns: not 

significant; uncorrected p-values: *: p < 0.05, **: p < 0.01, ***: p < 0.001. P-values followed by ° 

survived after correction for multiple testing over acoustic variables and contexts (in black: values in 

B6 females are higher than in Shank3-/- females; in red: values in Shank3-/- females are higher than in 

B6 females).  
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Supplementary Figure S17. Variations of the acoustic features of USVs emitted in different 

behavioral contexts in 5-week-old pairs of female B6 mice. All acoustic traits measured for each USV 

are depicted. (Linear Mixed Models: fixed factor=context, random factor=pair). Blue colors indicate 

that the acoustic feature of USVs given during y-event are lower than the acoustic feature of USVs 

given in x-event; red colors indicate that the acoustic feature of USVs given during y-event are higher 

than the acoustic feature of USVs given in x-event; the effect size is represented by the color scale 

while the significance levels are represented by the size of the circles. 
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Supplementary Figure S18. Variations of the acoustic features of USVs emitted in different 

behavioral contexts in 3-months-old pairs of female B6 mice. All acoustic traits measured for each 

USV are depicted. (Linear Mixed Models: fixed factor=context, random factor=pair). Blue colors 

indicate that the acoustic feature of USVs given during y-event are lower than the acoustic feature of 

USVs given in x-event; red colors indicate that the acoustic feature of USVs given during y-event are 

higher than the acoustic feature of USVs given in x-event; the effect size is represented by the color 

scale while the significance levels are represented by the size of the circles. 
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Supplementary Figure S19. Variations of the acoustic features of USVs emitted in different 

behavioral contexts in 7-months-old pairs of female B6 mice. All acoustic traits measured for each 

USV are depicted. (Linear Mixed Models: fixed factor=context, random factor=pair). Blue colors 

indicate that the acoustic feature of USVs given during y-event are lower than the acoustic feature of 

USVs given in x-event; red colors indicate that the acoustic feature of USVs given during y-event are 

higher than the acoustic feature of USVs given in x-event; the effect size is represented by the color 

scale while the significance levels are represented by the size of the circles. 
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Supplementary Figure S20. Variations of the acoustic features of USVs emitted in different 

behavioral contexts in 3-months-old pairs of female Shank3-/- mice. All acoustic traits measured for 

each USV are depicted. (Linear Mixed Models: fixed factor=context, random factor=pair). Blue colors 

indicate that the acoustic feature of USVs given during y-event are lower than the acoustic feature of 

USVs given in x-event; red colors indicate that the acoustic feature of USVs given during y-event are 

higher than the acoustic feature of USVs given in x-event; the effect size is represented by the color 

scale while the significance levels are represented by the size of the circles. 
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Supplementary Figure S21. Variations in mean speed and duration of each behavioral event 

according to the presence or absence of USVs in B6 and Shank3-/- females aged 3 months. Variations 

of the mean speed of the animal performing the behavior (left panel) and of the event duration (right 

panel) for (A) train2, (B) follow, (C) approach contact and (D) break contact. Significant differences 

using Mann-Whitney U-tests within each individual after Bonferroni correction (24 tests conducted for 

each behavioral event and variable tested) are depicted by the color of the segments linking the mean 

value with and without USVs: light grey: not significant, medium grey: adjusted p<0.05, dark grey: 

adjusted p<0.01, black: adjusted p<0.001. 
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Supplementary Figure S22. Number of USVs per USV bursts across the different contexts of 

emission in females B6 aged 5 weeks and 7 months as well as in female Shank3-/- aged 3 months. 

(Linear Mixed Models with context as fixed factor and pair as random factor). Blue colors indicate that 

the number of USVs per burst given during y-event are lower than the number of USVs per burst given 

in x-event; red colors indicate that the number of USVs per burst given during y-event are higher than 

the number of USVs per burst given in x-event; the effect size is represented by the color scale while 

the significance levels are represented by the size of the circles. 
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Supplementary Tables 

Supplementary Table I. Validation scores by comparison with manual annotation of USVs. 

Sequence 

type 

Number of 

USVs 

(Ground 

Truth) 

False 

positive 

False 

negative 

(Missed) 

True 

Positive 

Precision (nb TP 

/ (nbTP+nbFP)) 

Recall 

(nbTP / 

nbGT) 

5 weeks 

females 

554 107 137 417 0.79 0.75 

3 months 

females 

982 105 172 810 0.88 0.82 

7 months 

females 

1384 296 310 1074 0.78 0.77 

5 weeks 

males 

162 52 32 130 0.71 0.8 

3 months 

males 

132 48 44 88 0.64 0.66 
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Supplementary Table II. Description of the acoustic variables measured for each USV 

Trait list for USV 

Trait 

(codename) 

Description 

duration Duration of the USV, in millisecond. 

frequencyDynamicHz Difference between the maximum and the minimum peak frequency of the 

USV. 

startFrequencyHz Peak frequency at the beginning of the USV 

endFrequencyHZ Peak frequency at the end of the USV 

diffStartEndFrequencyHz endFrequencyHZ - startFrequencyHz 

minFrequencyHz Minimum peak frequency 

maxFrequencyHz Maximum peak frequency 

meanFrequencyHz Mean of the peak frequencies over each t in the USV 

frequencyTVHz Total variation of the peak frequency for each t (sum of the absolute values of 

the difference between consecutive peak frequencies). 

meanFrequencyTVHz FrequencyTVHz divided by the number of points in the USV. 

linearityIndex Sum of the euclidean distance to the linear regression divided by the number of 

points in the USV. 

meanPower Mean of the power for the USV 
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nbModulation Number of times where the signal gets over and below the linear regression of 

the signal. Note that the signal should overtake linear regression by 876Hz 

(which corresponds to 3 times the  frequency accuracy of the 1024 FFT) 

Harsh index This index reflects the frequency width of the peak signal. We compute a power 

threshold over which frequencies are considered.  Then we measure the number 

of adjacent frequencies over this threshold. The result is normalized by the 

duration of the USV. Code is available in ComputeHarshIndex.py, on the 

gitHub repository. 

slope Difference between the last and the first frequency of the linear regression of the 

signal. 

slopeNormalized Corresponds to slope / durationMs 

nbJump The number of jumps is computed if the frequency dynamic of the USV is over 

10 kHz. Then if the frequency changes from one t  to the next over more than ⅓ 

of the frequency dynamic, we set one jump. 
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Supplementary Table III. Description of the characteristics for each USV burst 

Trait list for USV Burst 

Trait Description 

nbUSV Number of USVs contained in the burst 

durationMs Duration of the burst, in millisecond. 

meanDuration Mean duration of USVs contained in the burst 

stdDuration Standard deviation of the durations of USVs contained in the burst 

meanInterval Mean interval (silence duration) between the USVs 

meanFrequency Mean of mean peak frequency of USVs contained in the burst 

mean power Mean power of USVs contained in the burst 
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Supplementary Methods 

1 Motivation to create a new recording and analysis pipeline 

To detect and analyze USVs within background noise while monitoring the behaviors, automation was 

needed to handle large data sets, reduce processing time and avoid variability in human-generated 

errors. Existing systems (listed on the MouseTube website; (Torquet et al., 2016)) did not completely 

fulfil our needs. Indeed, some systems provide a classification of USV types without automated USV 

detection (e.g., VoiCE, (Burkett et al., 2015)). Other systems provide both automatic detection of USVs 

and extraction of acoustic features (A-MUD, (Zala et al., 2017); USVSEG, (Tachibana et al., 2020); 

Ax, (Seagraves et al., 2016)). Some even classify USVs into call types, either in a pre-determined 

repertoire (Mouse Song Analyzer v1.3, (Arriaga et al., 2012; Chabout et al., 2015)) or in an open 

repertoire determined by the data themselves (MUSE, (Neunuebel et al., 2015); MUPET, (Van 

Segbroeck et al., 2017); DeepSqueak, (Coffey et al., 2019)). Nevertheless, most of these systems do 

not handle background noise, and only MUSE provides the synchronization with behavioral 

monitoring, along with a heavy triangulation system that could not be easily replicated and adapted to 

our Live Mouse Tracker behavioral monitoring system. 

 

2 USV Segmentation Method 

2.1 Method parameters 

We aimed to create a method with a minimum of parameters. Nevertheless, we still have one: is the 

vocalization emitted by an adult or a pup? Indeed, the major difference is the recording protocol. Pups 

are recorded at a close range, with low environmental noise. Juvenile and adult mice are recorded with 

the microphone placed at a distance to cover the surface of the test cage. Also, as they move freely, 

noise generated by their interactions with the environment is important. Therefore, as the signal to 

noise ratio is better in pup recordings than in adult conditions, we lower our detection threshold for 

pups. In addition, as the range of emission of pups rises up to 140 kHz, we increase the maximum 

frequency allowed for detection. 

2.2 Filtering spectrum data 

For each step, we provide pseudo code. For an easier reading, we removed the boundary check 

conditions that exists in the real code. 

For each time point of the spectrum, we center the data by removing the mean of all magnitudes for all 

frequencies at the current time point.  

for each timePoint in spectrogram 

    mean_magnitude_for_current_T = mean ( spectrum[t] ) 

    for each frequency in spectrogram 

    spectrum[timePoint][frequency] -= mean_magnitude_for_current_T 
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We then use a filter that creates continuity in the signal. It basically fills the gap in the signal if a 

direction is found in the spectrum’s curves. To perform this filtering, we first create a filter bank for a 

number of angles. The following code pre-computes the filters for the different orientations: 

  

filterWidth = 5 

filterHeight = 1 

filterList = List 

for angle from -80 to 80 with a step of 20 

    filter = createFilter() 

    for width from -filterWidth to filterWidth 

    for thick from -filterHeight to filterHeight 

    offset_x = cos ( angle ) * width 

    offset_y = sin ( angle ) * width 

offset_x+= cos ( angle + 90 ) * thick 

offset_y+= sin ( angle + 90 ) * thick 

filter.storePoint( x , y ) 

filterList.add( filter ) 

  

Then, we apply those pre-computed filters on each point of the spectrogram, and we keep the maximum 

response. This code is parallelized for each time point for maximum performance. 

for each timePoint in spectrogram 

for each frequency in spectrogram 

    max = -infinite 

    for filter in filterList:  

           val = 0 

           for offset_point in filter:     

                  val+= spectrum[ t+offset_point.x ][ f+offset_point.y ] 

if val > max: 

max = val 

spectrumSmoothed[t][f] = max / numberOfPointInFilter 
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We then filter the vertical signal to remove noise (seen as strong vertical scratches in the spectrum). 

The following pseudo code removes for each frequency the local mean frequency of the spectrum, 

using a sliding window of +/- 1.5 kHz. 

  

frequencyWindow = 10 // The window frequency is then ((10*2)+1)*(300000/1024*2) = 3076Hz 

for each timePoint in spectrogram 

    result = List 

    for each frequency in spectrogram 

           sum = 0 

           for offsetFrequency from -frequencyWindow to frequencyWindow 

    sum+=spectrum[timePoint][frequency+offsetFrequency] 

mean = sum / (frequencyWindow *2+1) 

result[frequency] = mean 

  

    for each frequency in spectrogram 

    spectrum[timePoint][frequency] -= result[frequency] 

  

2.3 Constant and blinking frequency canceler 

In the experiments, we observed noise due to light, fan, power sources and air-conditioning. They 

appear and disappear randomly during experiment, at unpredictable frequencies, and can switch in 

frequency. We process the spectrum to find the frequencies of those noise to store them in a “frequency 

cancelation list”. 

  

detectionThreshold= 0.1f 

minFrequencyConsidered = 100 // ( 30kHz) 

maxFrequencyConsidered = 512-100 // (120kHz) 

  

if vocs are from pups 

maxFrequencyConsidered = 512 // (150kHz) 

    detectionThreshold = 0.05 

  

valueList = List 

for each frequency from 100 (30kHz) to 512-100 (120kHz) in spectrogram       
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    for each timePoint in spectrogram 

           valueList.append( spectrum[timePoint][frequency] ) 

mean = mean ( valueList ) 

std = standardDeviation( valueList ) 

  

threshold= mean+0.15*std 

cancelFrequencyList = List 

for each frequency from minFrequencyConsidered to maxFrequencyConsidered    

    nbValOver = 0 

    for each timePoint in spectrogram 

           val = spectrum[timePoint][frequency] 

if val > threshold 

    nbValOver+=1 

if nbValOver > number of time point * 0.4: 

    cancelFrequencyList.append( frequency ) 

  

for frequencyCanceled in cancelFrequencyList 

    for each timePoint in spectrogram 

           spectrum[timePoint][frequencyCanceled] = 0 

 

2.4 Vocalization segmentation 

On the filtered signal, we now consider all values over 0 in spectrum. 

  

     // remove vertical noise 

     for ( int x = 0 ; x < width ; x++ ) 

     { 

            double sum = 0; 

            for ( int y = 0 ; y < height ; y++ ) 

            { 

                   double val = buffer[x+ ( y )*width ]; 

                   sum+=val; 
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            } 

            double m = sum/height; 

            for ( int y = 0 ; y < height ; y++ ) 

            { 

                   buffer[x+ ( y )*width ]-=m*20d; 

            } 

     } 

  

for each frequency from spectrum 

    for each timePoint in spectrogram 

           if spectrum[timePoint][frequency] < threshold 

                  spectrum[timePoint][frequency] = 0 

  

maskList = perform connected component detection 

filteredMask = List 

  

for mask in maskList: 

nbPoint = mask.nbPoint 

nbInSameTimePoint = getHowManyMaskAtSameTimePoint( mask, maskList ) 

meanStdOfMask = getMeanStd( mask, spectrum ) 

  

status = unknown 

if meanSTD < 0.15: 

status = rejected 

if nbPoint < 5: 

status = rejected 

if meanSTD > 1 

    status = accepted 

if meanSTD > 0.15 and meanSTD < 1 and nbPoint > 50: 

    status = accepted 

if nbInSameVertical==0 and status is not rejected 

    status = accepted 
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if nbInSameVertical > 3 and nbPoint < 150 

    status = rejected 

if status == accepted 

keptMaskList.append( mask ) 

Then masks are merged together if they are sharing a time point. They are then temporally merged 

again if the silence between the signals is below 40 ms. 

2.5 Spectrum signal extraction 

The final extraction of the signal is the maximum magnitude per time point that belongs to the mask 

of the time point (if available). 

  

vocList = List 

for each mask in fusedMaskList 

    voc = new Voc 

for t from mask.startT to mask.endT 

    maxMagnitude = -infinity 

    bestFound = False 

    maxFrequency = 0 

    for frequency in spectrum 

           if mask.contains( t , frequency ) 

                  value = spectrum[t][frequency]                

                  if value > maxMagnitude 

                        maxMagnitude = 0 

                        bestFrequency = frequency 

                        bestFound = True 

    if bestFound 

           voc.addPoint( t , frequency ) 

if voc.nbPoint > 0 

    vocList.append( voc ) 
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2.6 USV Detection validation 

To perform the validation, we consider the beginning and the end of each USV. We run our 

segmentation algorithm on a set of manually annotated USVs (10 files for each experiment). If the 

USV boundaries match at +/- 40 ms, we consider that the USV has been correctly detected 

(Supplementary Table I). 

Nevertheless, this metric is based on the start and end time of the sequences, which raises two concerns: 

- After the processing, we checked again the ground truth. We found that most discrepancies 

between the ground truth and the automatic segmentation emerge from the merging of two parts 

of USV connected by a low-power signal in the manual annotation, while the two parts were 

considered separately by the automatic segmentation. In that case, the penalty is very high, as 

this leads to two false positives and one false negative. 

- The second concern is that our metric does not check if we segment correctly the peak 

frequency itself. This would have required the development of a dedicated annotation tool. 

Nevertheless, we believe that such method should be introduced in our further developments. 

 

3 Filtering out wave files containing only noise 

During an experiment, we do not record continuously the audio information. We use Avisoft-

RECORDER automatic triggering capability which monitors the audio and starts the recording when 

a predetermined power threshold is reached. Therefore, the dataset of an experiment is composed of 

thousands of files that may contain USVs or just noise due to the activity within the cage. Therefore, 

data of an experiment can be preprocessed to filter out wave files containing only noise, which 

represent 50% of the files generated in our experiment. 

An expert sorted files containing USVs from files containing noise to train a random forest classifier. 

We use the following features as machine learning features: for each file, we extract the mean power 

of the whole file, the number of presumed USVs detected, the duration of the USVs over the overall 

length of the file, the average duration of USV and its standard deviation, the mean peak frequency 

and the standard deviation of the peak frequency. 

We then train the random forest classifier. We provided a pre-trained classifier but one can re-train the 

classifier with its own data. One just needs to start the python script and point two different folders 

(noise and USVs) to train the system. For our experiments, we trained the system with 451 files 

containing USVs and 247 with only noise. The accuracy of the training is 97%, using 10 folds. 

Then, the system can be used in predictive mode to sort dataset containing both USVs and noise. The 

script copies the file in a noise and USV folder, so that the user can easily control the sorting accuracy. 

3.1 Avisoft record and synchronization with Live Mouse Tracker 

The system is designed to work for an unlimited duration. As USVs are infrequent events, we do not 

record the sound continuously. We instead use the automatic record trigger functionality of Avisoft-

RECORDER. The automatic trigger of Avisoft-RECORDER monitors the sound level and start 
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recording a sound if the current sound level within a given frequency range is over a given threshold. 

The sound is recorded as long as the sound level is over the threshold. This function takes a hold time 

parameter: if Avisoft-RECORDER detects another signal during the hold period, the record is not 

interrupted. The hold period also adds a record period around the first and the last signal over threshold. 

In our experiment, we use a hold time of one second. 

To synchronize USV recording with the tracking, we use the “Trigger control” of Avisoft-

RECORDER. This function allows to launch an external program at each start and end of records. We 

use the free software PacketSender (https://packetsender.com/) to perform communication between 

Avisoft-RECORDER and Live Mouse Tracker (LMT). Through PacketSender, we send an UDP string 

packet containing the file number currently recorded by Avisoft-RECORDER. This information is 

recorded by LMT within the database as an “USV event”. The goal of the synchronization is to match 

the USV record with the current data frame number recorded by LMT. 

3.2 USV Toolbox, an open-source, free and online USV analysis pipeline 

The currently available methods to detect and analyze mouse USVs need specific installations and 

software. To facilitate the testing of our own algorithm, we provide a website to test the method or to 

process data online: https://usv.pasteur.cloud. The user simply drags and drops his/her wave file, waits 

a few seconds (depending on the length of the sample file) and finally evaluates the quality of the USV 

segmentation and the data extracted from the sound file. The goal of this website is to provide 

immediate access to the method without installing any software. 

The first panel of the website is dedicated to evaluate USV detection. The first spectrogram represents 

the original data and the second one provides the annotated data. The player under this spectrogram 

allows to listen to the sound file slowed down by twenty times. The other panels display: 

- the length of the wave file given as input. 

- the number of USVs detected within the wave file. 

- a timeline displaying the USVs detected over the whole file and their temporal organization in 

USV bursts, in which the intervals between USV are shorter than one second. 

- the frequency characteristics of each USV within the sound file (in kHz). Each vertical black 

bar displays the min/max peak frequency of the USV (and therefore also the frequency range) while 

the black dot displays the mean peak frequency and the red dot displays the peak frequency with the 

maximum amplitude in each USV. 

- the duration of each USV (in ms). 

- the power (i.e., amplitude) of each USV, depicted in arbitrary unit. 

- the proportion of USVs with frequency modulations. 

- the proportion of USVs containing one or more frequency jump(s). 

- a table gathering all acoustic variables extracted on each USV of the sound file. 

https://packetsender.com/
https://usv.pasteur.cloud/
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The user can download all these results for his/her own sound file. These results are deleted after one 

hour. Data downloaded from this web page can be directly used with the scripts that we provide with 

the present study. To perform the analysis on thousands of files, we also provide the desktop version 

of the analysis program, working in batch mode (link available on https://usv.pasteur.cloud after 

publication). 

3.3 USV analysis toolbox 

As for Live Mouse Tracker, we provide an API in Python for the biologists to process USVs. This 

package allows one to re-create all data representations used in this study with its own data. This API 

is available on gitHub (will be released after publication process). 

For Live Mouse Tracker, we provided a full API in Python to process event classification, and to 

process queries. 

 

4 Selection of representative acoustic variables 

We conducted a principal component analysis (PCA in Python with the package scikit-learn version 

0.24.1) to select representative acoustic variables. The first four components explained 80% of the 

variance. Component 1 is represented by duration, frequency modulations and harsh index. Component 

2 is represented by frequency characteristics. Component 3 is represented by power measures. 

Component 4 is represented by the frequency slope between the start and the end of the vocalization. 

Altogether, we selected duration, frequency range and harsh index as representative variables to be 

presented in main figures, while all other variables will be depicted in supplementary material. 

 

5 Correlation, metrics and coefficients used in this study 

- USVs or Burst versus events: 

Number of frames in USV or bursts in common with a behavioral event / total number 

of frames of the behavioral events. This correlation reflects how much a vocal event (i.e. either 

USV or USV burst) is related to a behavioral event, and ponderates it by the total duration of the 

behavioral event. Therefore common events such as “Single idle” or “Contact” are disadvantaged as 

their total length is very high. Events are not exclusive, and therefore USVs or burst can be related to 

more than one event. 

- Ratio of USVs or Burst linked to event: 

 Number of frames in USV or USV bursts in common with behavioral event / total 

number of frames of the vocal event. This ratio provides the ratio of frames correlated with an 

event over the total number of frames of the vocal event. With this measure, the size of the 

behavioral event does not matter. This measure reflects the proportion of vocal events that matches 

with a given behavioral event. Events are not exclusive, and therefore USVs or burst can be related to 

more than one event. 

 

https://usv.pasteur.cloud/
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6 Determining intervals between USVs to define USV burst 

A burst is a sequence of vocalizations. Within a burst, the silence intervals between two consecutive 

vocalizations do not exceed a threshold. In the literature, this threshold varies between 170 and 500 

ms, depending on the contexts of recordings and the sex and strain of mice recorded (e.g., 170 ms 

(Hertz et al., 2020); 230 ms (Ey et al., 2013; Chabout et al., 2015); 275 ms (Castellucci et al., 2018); 

500 ms (von Merten et al., 2014)). They are based on a cutoff on the distribution of intervals. 

In our experiments, the distribution of intervals below 2s for all 3mo B6 Females (Supplementary 

Figure SUP_USV) has a maximum at 100-130ms. The classical method would set a threshold at 

500ms, which would group 93% (19198 out of 20637) of the USVs in bursts. To question this 

threshold, we took advantage of all the behavioral events that we measured. 

In our experiments, we make the assumption that vocalizations find their meaning in relation to the 

behavioral events of the mice. We determined this threshold by linking the behavioral events with the 

USVs. Therefore, the same way we computed correlations between USVs and behavioral events, we 

computed the same correlation between USV bursts and behavioral events (see correlation methods 

“USVs or Burst versus events”). In our method, we simulated all sets of bursts using different 

thresholds, from 0ms to 2000ms, and found how much USV bursts defined with each threshold 

correlate with events. The Supplementary Table SUP_USV_Table and Supplementary Figure 

SUP_USV B displays the evolution of the correlation with behavioral events as a function of the 

threshold for the Train2 event. We then extended this example to all the behavioral events 

(Supplementary Figure SUP_USV C). At zero, all vocalizations are separated, therefore bursts 

exactly fits the vocalizations and their correlation with the event is the lowest possible. Then, as we 

raise the maximum silence’s duration between USVs, bursts grow and gradually fill gaps between 

USVs, which makes them more correlated. The correlation always increases, but with different growth 

rates. Using 250ms step thresholds, we observe that between 0 and 250ms, the correlation ratio is raised 

by 1.2, then from 250ms to 500ms, this ratio also increases by a 1.17 factor, and between 500ms and 

750ms, by 1.18. After 750ms, the ratio is lower: 1.04, 1.02, and 1.01 for 750-1000, 1000-1250, and 

1250-2000, respectively. The optimal threshold is the one that maximizes the correlation while being 

located just before the plateau. Regarding this criteria, we set this threshold at 750ms for females B6 

3mo. Rising this threshold over 750ms would not raise significantly the correlation of the burst with 

events. Using this method makes more significant bursts than building them with an arbitrary 250ms 

or 500ms threshold. 

 

A) 
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B) 

 

C) 

 

Figure SUP_USV: Interval distribution and simulation of burst as a function of the intervals for WT 

mice. A) Interval distribution for 3mo Female WT. Yellow, orange, red: 90%, 95%, 99% percentile of 

distribution. B) Simulation of burst generation as a function of the interval duration for 3mo Female 

WT. C) Simulation for 3mo Female WT F13-F14 of burst generation for each event. 
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Supplementary Table SUP_USV_Table: growing ratio based on all events. Data represented as mean 

+/- std. 

correlations' 

ratio 

0 - 250 250 - 500 500 - 750 750 - 1000 1000-1250 1250-1500 1500-1750 1750-2000 

WT 1.21 +/- 0.02 1.17 +/- 0.09 1.18 +/- 0.03 1.04 +/- 0.03 1.02 +/- 0.01 1.01 +/- 0.005 1.01 +/- 0.008 1.01 +/- 0.005 

Shank3 1.87 +/- 0.05 1.25 +/- 0.05 1.1 +/- 0.01 1.06 +/- 0.01 1.01 +/- 0.005 1.01 +/- 0.01 1.03 +/- 0.01 1.009 +/- 0.005 

 

For Shank3-/- mice, we observed that the distribution of intervals is similar as WT (Supplementary 

Figure SUP_USV_SHANK3) and Supplementary Table SUP_USV_Table, but it is skewed 

toward short intervals.  

 

A) 

 

B) 
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C) 

 

Figure SUP_USV_SHANK3: Interval distribution and simulation of burst as a function of the 

intervals for Shank3-/- mice. A) Interval distribution for 3mo Shank3-/- females. Yellow, orange, red: 

90%, 95%, 99% percentile of distribution. B) Simulation of burst generation as a function of the 

interval duration for 3mo Shank3-/- females. C) Simulation for one pair of 3mo Shank3-/- females of 

burst generation for each event. 

 

Distribution of intervals depending on age, sex, mutation 

The distribution of intervals (Supplementary Figure SUP_USV_INTERVALS below) is quite 

similar for all different sex, train and age. Nevertheless, a few differences arise: Shank3-/- females emit 

less vocalizations with very low intervals than the others. 5 weeks B6 females tend to emit more 

vocalizations with low intervals. For males, there is not enough data to draw a conclusion or compare 

results. 
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Figure SUP_USV_INTERVALS: Distribution of intervals depending on age, sex, mutation. Vertical 

blue bars: 250ms, 500ms, 1000ms. Yellow, orange, red: 90%, 95%, 99% percentile of distribution. 

 

7 Vocalization are synchronized with behavioral events 

To perform this analysis, we have a strong assumption that vocalizations are linked with the behaviors 

that Live Mouse Tracker can detect. We proved this point by randomly shifting USVs within 10 

minutes around their original position. In that case, the graph shows no correlations between simulated 

USVs bursts and behavioral events. As we reduce the random distribution of USVs around their 

original position with a random factor (Supplementary Figure BURST_SIMULATION) of 10 

minutes (A), 1 minute (B), 10 seconds (C), or no random factor (D), we observed that the curve tends 

to grow faster as the random factor decrease, up to no random, where the best correlation is observed. 
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A) 

 

B) 

 

C) 

 

D) 
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Figure BURST_SIMULATION: displays the correlation of bursts with the Train2, several 

simulations are displayed here using randomized dataset with a vocalization shuffling parameter of (A) 

10 minutes, (B) 1 minute, (C) 10 seconds, (D) no random. 
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