
Bao et al. Page 16 of 26

Supplement

Data Collection

We generated five datasets using a MinION sequencer (Table 2) for this paper.

The first four datasets used the standard Rapid Sequencing Kit (SQK-RAD004)

protocol on FLO-106D MinION Flow Cell. The HeLa&Zymo dataset used the Zy-

moBIOMICS Microbial Community DNA Standard, and Datasets 2�4 used the

ZymoBIOMICS HMW DNA Standard with di↵erent barcodes specified in Table 2.

The Respiratory Metagenome data collection method is described in [17].

The theoretical composition of the ZymoBIOMICS Microbial Community DNA

Standard [12] includes 8 types of bacteria with 12% each of: Listeria monocyto-

genes (Lis), Pseudomonas aeruginosa (Pse), Bacillus subtilis (Bac), Escherichia

coli (Esc), Salmonella enterica (Sal), Lactobacillus fermentum (Lac), Enterococcus

faecalis (Ent), Staphylococcus aureus (Sta); and 2 types of fungi (2% each of Sac-

charomyces cerevisiae and Cryptococcus neoformans). The theoretical composition

of the ZymoBIOMICS HMW DNA Standard [14] includes 7 types of bacteria with

14% each of Listeria monocytogenes, Pseudomonas aeruginosa, Bacillus subtilis,

Escherichia coli, Salmonella enterica, Enterococcus faecalis, Staphylococcus aureus;

and 1 type of fungus (Saccharomyces cerevisiae, 2%).

The HeLa&Zymo dataset contains 200ng of HeLa DNA and 200ng of Zymo-

BIOMICS Microbial Community DNA Standard computed by volume and listed

concentrations. The sequenced samples were basecalled using Guppy v3.6.1 and

aligned with reference downloaded from NCBI using Minimap2. We assigned the

species of these sequences using the Minimap2 alignment because no species bar-

codes were used in this dataset. Due to the limited fungus sequences, only the

bacterial sequences were kept for training, validation, and testing. The first 1500

signals for each read (about 150bp of sequence on average) were removed to avoid

adapter sequences and signal instability.

The assembly of the Human&Zymo datasets each started with 400ng of Human

GM12878 DNA and 400ng of ZymoBIOMICS HMW DNA Standard. They were

barcoded using the SQK-RBK004 barcodes 1 and 2, 3 and 4, 5 and 6 respectively

as indicated in the table. Then each dataset was generated using 200 ng of bar-

coded GM12878 (by volume) and 200ng of HMW Zymo (by volume) with a total of

400ng pooled in 10ul. For the Human&Zymo datasets, the extracted samples were

basecalled using Guppy v3.6.1 with “–barcode kits SQK-RBK004” specification to

separate the reads and identify the barcodes. The barcodes were then used to iden-

tify the species of each read. The first 2000 (about 200bp worth of sequences on

average) signals were removed to avoid barcode overfitting and signal instability.

Based on the adapter, barcode and barcode flanking sequence description from the

Nanopore Community [24, 25], 2000 signals should be more than enough to remove

all above.

Each extracted signal read was normalized with fast5 scaling and o↵set. All reads

were also normalized using Z-scored median absolute deviation. The extreme signal

values with a modified z-score larger than 3.5 were replaced by the average of closest

neighbors.



Bao et al. Page 17 of 26

Model Dataset Layers Channels Window Size Stride Val Acc Test Acc

VGG 1000 1M/20k/20k 2 [20] [19, 5] [6] 65.58 63.94
2 [100] [19, 5] [6] 67.06 65.85
4 [20, 50] [19, 5, 6] [3, 2] 70.93 69.33
4 [40, 60, 100, 100] [19, 5, 6] [3, 2] 71.78 70.61
6 [20, 50, 75] [19, 5, 6, 3] [3, 1, 1] 70.42 69.36
6 [40, 75, 100] [19, 5, 6, 3] [3, 1, 1] 71.61 69.99
8 [20, 20, 20, 20] [20, 6, 6, 3, 3] [2, 1, 1, 1] 72.21 71.16
8 [30, 30, 30, 30] [20, 6, 6, 3, 3] [2, 1, 1, 1] 74.21 72.60
8 [50, 50, 50, 50] [20, 6, 6, 3, 3] [2, 1, 1, 1] 76.63 75.99
8 [20, 50, 75, 75] [19, 5, 6, 3, 3] [3, 1, 1, 1] 72.95 70.68
10 [10, 20, 40, 80, 80] [5, 5, 5, 5, 5] [1, 1, 1, 1, 2] 77.46 76.73

Model Dataset Block Layers Val Acc Test Acc

ResNet 1000 200k/10k/10k BottleNeck [2,2,2,2] 72.99 72.04
BottleNeck [1,1,1,1] 72.73 71.67
BottleNeck [1,1,1,1,1] 72.12 70.98
BottleNeck [2,2,1,1] 72.91 71.07
BottleNeck [1,1,2,2] 72.81 71.45

1M/20k/20k Basic [2,2,2,2] 80.21 79.74
BottleNeck [2,2,2,2] 78.85 78.71

+GroupChannel [2,2,2,2] 77.95 77.56
+LSTM BottleNeck [2,2,2,2] 80.28 79.56
+AdamW BottleNeck [2,2,2,2] 79.90 79.88

Bonito 1000 1M/20k/20k 1*2 [8,8,16,16] 72.44 72.63
2*2 [8,8,8,16,16] 73.49 74.36

Model Dataset Channels Window Size Hidden size Layers Bidirectional Val Acc

CNN 3000+LSTM 1M/20k/20k 50 19 50 2 Yes 64.538
75 19 75 4 Yes 64.238

CNN 3000+GRU 50 19 50 2 Yes 64.398
75 19 75 4 Yes 64.692

Table S1: Selected Model Architecture Experiment Results and Hyperparameter

Tuning Performance Report



Bao et al. Page 18 of 26

Model Architecture Experiments and Hyperparameter Tuning

In this section, we describe some of the additional models and hyperparameter

settings that we explored while developing SquiggleNet. Table S1 summarizes these

results. Most of the model architectures were trained on the HeLa&Zymo dataset

using 1000 signals per sequence, after removing the first 1500 signals. We used this

shorter input length and a subset of the training dataset to enable more rapid model

testing. We then re-trained some of the more promising models with 3000 signals

per read. Each model was trained for 2 to 5 epochs until the validation accuracy

started to plateau or show signs of overfitting.

The experiments based on the VGG 1000 architecture indicated that a model with

more layers and more channels could generally o↵er better performance. However,

the lack of shortcut skips in the architecture limited the possible depth of the VGG

models.

We thus next experimented with a ResNet model with di↵erent numbers of layers,

di↵erent numbers of blocks in each layer, di↵erent block types, and several other

modifications. We found that increasing the number of blocks in each layer boosted

performance somewhat, but increasing the number of layers did not necessarily

improve the performance. Increasing the size of the training dataset boosted the

model performance by ⇠8% according to Table S1. We introduced a layer of LSTM

in the middle of our ResNet model, and this increased performance by a small

margin, but took much longer to train.

Recurrent Neural Network (RNN) models such as LSTM and GRU gave little

advantage over CNN based models and also required significantly more resources to

train. For the last set of experiments presented in Table S1, we used 3000 signals per

read, introduced one layer of CNN with window size 19 to reduce the input size, and

followed with various RNN architectures. The performance slowly increased from

random guessing (50%), but plateaued around 65%. This could indicate that local

features extracted by convolution provide su�cient information for classification,

and long-range dependencies extracted by the recurrent network only help by a

small amount.

Other models we tried include: a down-sized Bonito [26, 27], stacks of LSTM

layers with variational window sizes, di↵erent hyperparameter settings, and di↵erent

training datasets. After full consideration of model size, speed, performance, and

training time, we settled on the best performing model architecture to perform the

main experiments in the paper.

Comparison of Models Trained on HeLa&Zymo and Human&Zymo

In addition to the best-performing model trained on the HeLa&Zymo dataset,

we conducted the same set of test experiments on a model trained on the Hu-

man&Zymo b12 dataset. This dataset consists of a 1:1 mix of human DNA and

Zymo HMW DNA, as described in Supplement Section Data Collection. We tested

on all five datasets, which include di↵erent sample preparations, flow cells, sample

components, and human:bacteria ratios. The performance can be found in Figure

S1. The overall performance is almost as well as Figure 2. This may be because

the Human&Zymo b12 dataset contains less training data than the HeLa&Zymo

dataset. Overall, this analysis indicates that the model achieves high accuracy



Bao et al. Page 19 of 26

Figure S1: Overall Performance across five test Datasets with

Model trained on Human&Zymo b12: Accuracy, True Positive Rate

(TPR, RECALL), True Negative Rate (TNR), Precision, and the AUROC

score of the model trained on the HeLa&Zymo training set, and tested on

five test sets with bacterial sequences as the target.

whether trained on HeLa DNA (which is a highly mutated cancer cell line) or

GM12878 DNA (which should look more like healthy human DNA), when tested

on the other type of data.

Comparison Experiment Method Details

The performance and e�ciency comparison experiment was conducted on dataset

Human&Zymo b34 with 1:4 Human and Zymo mix. For a fair read-in and write-

out time comparison across the platforms, all the reads were pre-truncated into

3000 signals, 6000 signals, and full length, after removing the first 2000 signals for

adapters and barcode. Any reads shorter than the minimum input requirements

were discarded. The ground truth labels for each read were obtained by the SQK-

RBK004 barcode 3 and 4, basecalled by Guppy v3.6.1. Any reads that were labeled

as other barcodes or not labeled were discarded.



Bao et al. Page 20 of 26

SquiggleNet was tested on 1) a single-usage Intel(R) Xeon(R) CPU E5-2697v3

@ 2.60GHz machine with a single TITAN Xp GPU with batch size one (fast5 file,

about 4000 sequences each), and 2) a single-usage 3.5 GHz Dual-Core Intel Core

i7 Macbook Pro with a single thread. Over 90% of the compute time on GPU was

spent on file read-in and write-out (over 40% of the time on CPU).

When testing the Guppy+Minimap2 method, we used 4 callers and 4 runners

per GPU for Guppy, and 32 threads for Minimap2 sequence alignment. Indexes for

both human and Zymo community reference genome were pre-generated. The test

datasets with 3000 signals per read, 6000 signals per read, and full length reads

were basecalled by Guppy and then aligned using Minimap2 with the pre-generated

index. The resulting read IDs were cross-referenced with the ground truth labels

for barcode 3 and 4 to calculate the overall accuracy.

When testing the UNCALLED method, we used 32 threads to process 3000 sig-

nals, 6000 signals, and full-length reads. BWA index was pre-generated for the Zymo

community reference genome. Unfortunately, UNCALLED struggles to map repet-

itive references longer than 100Mbp, such as the human genome. Therefore, we had

to treat all the reads that weren’t classified as Zymo to be human reads as an ap-

proximation for the performance computation. The resulting read IDs were cross

referenced with the ground truth labels for barcode 3 and 4, to calculate the overall

accuracy.

DNA Methylation Di↵erences Between Human and Bacterial DNA

Avg mAs/KB Avg mCs/KB
Bacterial 1.72 3.53
Human 0.01 16.27

Table S2: Average number of methylated A (mA) and methylated C (mC) nu-

cleotides in the first 1000 nucleotides of human and bacterial DNA sequences

Since SquiggleNet achieves higher classification accuracy than base calling fol-

lowed by sequence alignment (given 3000 signals), we hypothesized that the neural

network may be using other information besides just nucleotide sequence. One pos-

sible such source of information is methylation. We therefore investigated whether

there are systematic methylation di↵erences between the human and bacterial DNA

sequences.

To do this, we used Guppy v3.6.1 to output the methylation probability for each

sequence in Dataset Human&Zymo b34. For each base pair with greater than zero

percent chance to be an A or C (the only nucleotides for which Guppy will pre-

dict methylation), we computed the most likely base call: A, methylated A, C, or

methylated C. We then calculated the total and average numbers of methylated As

and methylated Cs in the first 1000 bases of both human and bacterial sequences.

As shown in Table S2, bacterial sequences contain on average about 2 methylated

A nucleotides and 4 methylated C nucleotides per kilobase, whereas the human

sequences contain on average 0 methylated As and 16 methylated Cs per kilobase.

This suggests that methylation is indeed a possible feature that could help to classify

sequences as bacterial or human.



Bao et al. Page 21 of 26

Figure S2: SquiggleNet Integrated Gradients and Signal Dynamics

Four sample signal chunks, 2 positive signals (top), and 2 negative signals

(bottom). Each signal chunk was colored with corresponding predicted nu-

cleotide (from Guppy basecalling results). Methylated As were colored in

red, and methylated Cs were colored in green. Each squiggle was also col-

ored by the value of the integrated gradient. A higher integrated gradient

value (purple) indicates that the model is more excited by that part of the

signal, and thus that it contributes more to the final classification decision.

Model Interpretation Using Integrated Gradients

We used the method of integrated gradients (IG) [15] to investigate the relationship

between convolutional filters, sequencing signal dynamics, and classification results

from SquiggleNet. Integrated gradients computes the amount of gradient change for

each corresponding input, and by doing so, o↵ers interpretation on which part of the

input contributes the most to the model’s decision. The IG approach gives a way

of attributing model outputs to specific input features. In our case, IG can tell us

which electrical signal values over the course of the sequencing time most strongly

influence SquiggleNet’s decision to classify the sequence as positive or negative.

To investigate this, we adapted an existing PyTorch implementation [28] of IG

so that it works for 1-D squiggles, rather than 2-D images. We used a squiggle

whose value is identically the mean pore conductance (which is identically 0 after

normalization) as the background signal required by IG. This is analogous to using

an all-black image (the standard background signal for performing IG on image

data). Then we simultaneously plotted the raw squiggle, base calls, and integrated

gradients . Figure S2 shows the results for two positive and two negative sequences,

with one positive and one negative containing a methylated nucleotide. The attri-

bution is clearly strongest at positions where the signal changes direction and/or

changes by a large amount. Attribution also tends to be high at the nucleotide

boundaries predicted by the base caller. This suggests that SquiggleNet has learned

filters related to the nucleotide composition of the signal and uses the results to

make classification decisions.



Bao et al. Page 22 of 26

Throughput Estimation Model

The throughput estimation model computes the total amount of time t and the

number of base pairs l needed to achieve x targeted reads, and compares these

values with and without read-until.

The estimation model assumes the average targeted read length to be z̄, and the

average non-targeted read length to be h̄. It assumes the total number of func-

tioning pores k is constant throughout the sequencing run. It also assumes all the

functioning pores are actively sequencing or in the process of getting a new read.

All the other parameter values can be found in table S3.

Table S3: Throughput Estimation Model Parameters
Description Symbol Value
Total sequencing time t
Total base pair sequenced l
Number of targeted reads x 1000
Number of total reads n = x/a
Number of pores alive k 400
Average sequencing speed v 450 bp/s
Average read length: target z̄ 40000 bp
Average read length: non-target h̄ 40000 bp
Concentration: target a 0.1
Concentration: non-target b = 1� a 0.9
Classifier TPR p1 90%
Classifier TNR p2 90%
Time: attract a new read t0 0.01s
Time: initial sequencing t1 1s
Time: decision time t2 0.8s
Time: reject a read t3 0.01s

Without Read-Until, the total sequencing time two and the total number of base

pairs lwo needed for x targeted sequences are:

lwo = [z̄a+ h̄b]n

two = [(t0 + z̄/v)a+ (t0 + h̄/v)b] · n/k

With Read-Until, the total sequencing time tru and the total number of base pairs

lru needed for x targeted sequences are:

lru = [(t1v + t2v)((1� p1)a+ bp2) + z̄ap1 + h̄b(1� p2)]n

tru = [(t0+t1+t2+t3)bp2+(t0+t1+t2+t3)a(1�p1)+(t0+z̄/v)ap1+(t0+h̄/v)b(1�p2)]·n/k

Several parameters cancel out and thus do not a↵ect the sequencing length ratio

lwo/lru or the sequencing time ratio two/tru. These parameters include: the number

of targeted reads x, the number of total reads n, and the number of active nanopores

k. Several hyperparameters were set to default values based on SquiggleNet’s statis-

tics and the sample means from multiple sequencing experiments. These include av-

erage sequencing speed (v = 450 bp/s), classification TPR (p1 = 90%), classification

TNR (p2 = 90%), initial sequencing time (t1 = 1s), and decision time (t1 = 0.8).

The average read length for target and non-target reads are both set to 40000 bp.

We set the target concentration to 10% and non-target read concentration to 90%.



Bao et al. Page 23 of 26

We also investigated how t0, the time to attract a new read, or t3, a↵ect the

throughput ratio. We varied these two parameters from 0 to 1 second and plotted the

resulting throughput ratio for both sequencing length and sequencing time (Figure

S3). Neither parameter significantly a↵ected the throughput ratio.

Figure S3: The influence of t0 and t3 on Read-Until Throughput: As

t0 and t3 change from 0 to 1 second, the sequencing time and length ratio

(without/with read-until) are not e↵ected significantly.

Model Performance on Di↵erent Test Dataset Composition Ratio

Figure S4: Robustness of SquiggleNet Performance Across Varying

Test Set Composition: The TPR, FNR, TNR, and FPR are independent of

the test dataset Zymo:HeLa ratio and remain around 90%.

Because the trained model makes predictions independently for each individual

sequence, the true positive, false positive, false negative, and true negative rates are

independent of the distribution of the test set. In contrast, the ratio of sequences in

the training dataset is important, which is why we conducted training with equal

numbers of positive and negative sequences. To confirm this, we used the model



Bao et al. Page 24 of 26

pretrained on the HeLa&Zymo dataset (same as reported in Figure 2), and tested

it on datasets with HeLa&Zymo composition ratios ranging from 100:0, 99:1, 19:1,

3:1, 1:1, to 1:3, 1:19, 1:99 to 0:100. As Figure S4 shows, the TPR/TNR/FNR/FPR

values are not significantly a↵ected by the test composition ratio and remain around

90%. The absolute number of positive and negative predictions will of course vary

with the composition of the test dataset, but this behavior is desirable.

Model Performance on Odd and Even HeLa Chromosomes

We trained a new model on the HeLa & Zymo dataset using even chromosomes for

training, and odd for testing, each with a 1:1 ratio of HeLa and Zymo sequences.

We omitted all chromosomes with non-numeric names–including the mitochondrial

chromosome, sex chromosomes, and other contigs–rather than arbitrarily designat-

ing them as odd or even. Otherwise we followed the training procedure exactly as

described in the Methods. The analysis indicates that SquiggleNet can correctly

classify reads from missing chromosomes (Table S4). The performance is about 6%

higher than what we obtained using all chromosomes. This is possibly due to the

chromosomes we excluded, which may be enriched for low-quality sequences. In ad-

dition, the human mitochondrial chromosome is somewhat phylogenetically similar

to prokaryotic DNA, so excluding it may have also boosted the performance.

Accuracy Precision TPR (Recall) TNR
96.84% 96.97% 96.65% 97.02%

Table S4: Model Performance on Odd and Even HeLa Chromosomes


