Supplementary Appendix

Phenotypic detection of hemin-inducible trimethoprim-sulfamethoxazole hetero-resistance in *Staphylococcus aureus*

Dennis Nurjadi^{1#}, Quan Chanthalangsy¹, Elfi Zizmann¹, Vanessa Stuermer, Maximilian Moll¹, Sabrina Klein¹, Sébastien Boutin¹, Klaus Heeg¹, Philipp Zanger^{1,2}

¹Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany

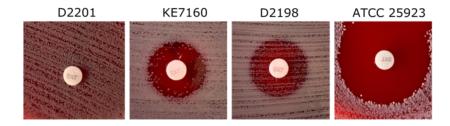
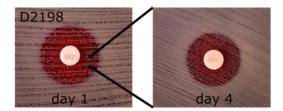
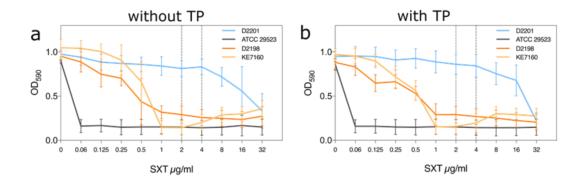

²Heidelberg Institute of Global Health, Heidelberg University Hospital, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany

Table of contents

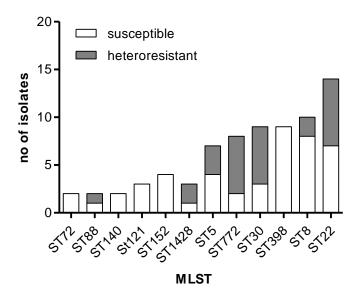
Supplementary Figure S1. The different phenotypic resistance growth characteristics on Mueller-Hinton Agar supplemented with 5% horse blood	. 2
Supplementary Figure S2. Stability of heteroresistance phenotype	
Supplementary Figure S3. Photometric population analysis profile.	. 4
Supplementary Figure S4. Association between MLST and heteroresistance phenotype in Staphylococcus aureus.	. 5
Supplementary Figure S5. Auxotrophy testing.	


Supplementary Figure S1. The different phenotypic resistance growth characteristics on Mueller-Hinton Agar supplemented with 5% horse blood.

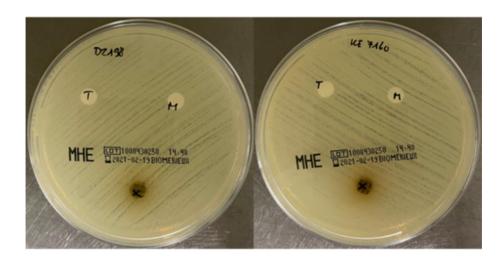
D2201=fully resistant phenotype; KE7160=low-density heteroresistance phenotype; D2198=high-density heteroresistance phenotype; ATCC25923=fully susceptible phenotype


Supplementary Figure S2. Stability of heteroresistance phenotype.

Agar diffusion of a colony of trimethoprim-sulfamethoxazole resistant phenotype subcultured for 4 consecutive days exhibited similar heteroresistance phenotype as the original clone.


Supplementary Figure S3. Photometric population analysis profile.

Photometric growth analysis, measured at OD_{590nm} in various trimethoprim-sulfamethoxazole (1:19) concentrations in Mueller-Hinton broth without (a) and with 2.5 UI/ml thymidine phosphorylase (b). SXT concentration is expressed as concentration of trimethoprim component. Abbreviations: TP=thymidine phosphorylase, SXT=trimethoprim-sulfamethoxazole


Supplementary Figure S4. Association between MLST and heteroresistance phenotype in *Staphylococcus aureus.*

The heteroresistant phenotype towards trimethoprim-sulfamethoxazole is not confined to a particular ST-group. Only MLST with ≥ 2 isolates (n=81/95) were included in this analysis. Two isolates with fully resistant phenotype were not included in the figure. Abbreviations: MLST=multi-locus sequence typing; ST=sequence type

Supplementary Figure S5. Auxotrophy testing.

Staphylococcus aureus isolates D2198 and KE7160 did not exhibit thymidine, menadione or hemin auxotrophy. Both isolates exhibited normal growth on Mueller-Hinton agar and the presence of thymidine (T), menadione (M) or Hemin (X) did not change growth characteristics of the colony.

