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 27 

I. Supplementary Materials and Methods 28 
 29 

1. Data Retrieval and Harmonization 30 
1.1. Genomic Metadata Retrieval 31 

 32 

We searched for all available Salmonella enterica assemblies recovered from food-animals 33 

released until the end of 2018 in three public genomic data repositories: the National Center 34 

for Biotechnology Information (NCBI) Nucleotide database(1), EnteroBase(2) and 35 

Pathosystems Resource Integration Center (PATRIC)(3). For NCBI Nucleotide, we queried 36 

Entrez Programming Utilities using the taxonomic identification of S. enterica 37 

(“taxid28901”)(4). Resulting accession numbers were retrieved and used to retrieve 38 

associated metadata. For both EnteroBase and PATRIC, the entire metadata tables were 39 

downloaded. 40 

 41 

1.2. Metadata Standardization 42 
 43 

Metadata tables were imported into R (version 3.6.0)(5). Manipulation of metadata was 44 

performed with the tidyverse(6) (version 1.3.0), data.table(7) (version 1.12.8) and plyr(8) 45 

(version 1.8.6) packages.  46 

All entries that did not report a country of origin or geographic coordinates were removed. 47 

Thereafter, we inspected isolation sources and to identify food-animal key words that allowed 48 

to reduce the datasets, but would maximize the number of hits. The resulting filtered datasets 49 

were then manually curated to exclude entries that did not meet the criteria of food-animal. 50 

We considered four levels of data aggregation for host attribution: 51 



• Source Niche: highest level of aggregation and indicates whether samples were 52 

recovered from food-products (Food) or from the animals themselves (Poultry or 53 

Livestock); 54 

• Generic Host: aggregation within animal-production group such as poultry, swine, 55 

bovine, ovine and caprine. The categories dairy, meat and environment were also 56 

introduced when no specific animal was given. The category environment denotes 57 

food-animal-related samples not collected directly from the animal or their food-58 

products such as drag swabs, poultry litter, eggshells, animal bedding and barns; 59 

• Source Type: indicates the specific animal from which the samples were collected; 60 

• Source Details: contains the original sample description as input by the submitter. 61 

 62 

Geographic coordinates were retrieved from metadata tables when available. Coordinates 63 

expressed in cardinal directions were converted to decimal degree. For entries without 64 

coordinates, an addresse was constructed based on the available information of the isolation 65 

location (country, province, state, region, city, zip code, etc.). We queried addresses for their 66 

decimal degree coordinates with the geocode function of the ggmap  package(9) (version 67 

3.0.0). Assemblies returning no coordinates were inspected manually and queried in Google 68 

Earth Pro(10). A column with country’s three-letter code based on the ISO 3166-1 guidelines 69 

was also assigned.  70 

Isolation dates were harmonized according to the ISO 8601 format (year-month-day) using 71 

lubridate(11) and anytime(12) packages. A dedicated column for year of isolation was also 72 

created. Finally, the NCBI BioSample and BioProject (when available) were also kept.  73 

 74 



1.3. Creation of a Consensus Dataset and Assembly Download 75 
 76 

We used the BioSample identifier to compare entries across databases and created a 77 

consensus dataset by removing duplicate entries. We primarily kept entries from EnteroBase 78 

given the dedicated pipeline this database has towards short-read sequences assembly, 79 

quality control, and molecular typing). Then we retrieved data from PATRIC and finally from 80 

NCBI RefSeq(13). EnteroBase derived assemblies were kindly provided by the curators, 81 

PATRIC assemblies were downloaded through the PATRIC Command Line Interface(14), NCBI 82 

assemblies were downloaded from the RefSeq database(13). Each entry has the original 83 

identifier from the database and a column indicating from which database it retrieved from. 84 

 85 

2. Curation of Predicted Phenotypes  86 
 87 

We extracted the predicted phenotypes from ResFinder database 88 

(https://bitbucket.org/genomicepidemiology/resfinder_db/src/master/, accessed 27th May 89 

2020). We retrieved the predicted antibiotic family (Antibiotic Class) and specific antibiotics 90 

(Phenotype) to which they confer resistance. All antimicrobial resistance genes (ARGs) found 91 

in our dataset can be found in Supplementary Table 2. Phenotypes of genes with unassigned 92 

predicted phenotypes were inputted based on the closest match sequence match. In brief, 93 

we retrieved the sequence of such ARGs based on the available NCBI accession number and 94 

used Basic Local Alignment Search Tool (BLAST)(15) against the CARD database. Predicted 95 

phenotypes were assigned based on the gene with the best alignment score, but with a 96 

minimum of 97% identity. When no matches were found in CARD, we used NCBI’s BLAST(16) 97 

instead. For the matches with the highest identity and coverage, we inspected the referred 98 



manuscripts where such ARG and their respective resistance phenotypes were described. 99 

Finally, for ß-lactamase genes, we added cephalothin manually to the Phenotype column. This 100 

is because early generation cephalosporins were not included in the ResFinder phenotype list, 101 

although TEM-types(17), AmpC(18), OXA-Types(19) hydrolyze these ß-lactams. We removed 102 

aac(6')-Iaa from the dataset as this gene has been described as intrinsic to S. enterica and 103 

does not cause phenotypic resistance(20, 21).  104 

In the case of point mutations, we only kept those that have known resistance phenotype in 105 

the PointFinder database (22), which can extracted directly from the staramr output(23).  106 

 107 

3. Multidrug Resistance Score Calculation 108 
 109 

We devised a metric to summarize multidrug resistance based on the number of different 110 

classes of antimicrobials an isolate is predicted to have resistance based on its content in 111 

ARGs (acquired ARGs or point mutations). We call this metric the Multidrug Resistance Score 112 

(MDR Score). We based this metric on microbiological resistance. In brief, microbiological 113 

resistance is identified when the minimal inhibitory concentration (MIC) is above the 114 

epidemiological cut-off (ECOFF) value(24) – the highest MIC for organisms devoid of 115 

phenotypically detectable acquired resistance mechanisms(25).  We assume that all identified 116 

ARGs are functional and thus resulting MICs would be above the ECOFF. For the majority of 117 

ARGs, the phenotype would not be affected. However, it could affect the predicted 118 

phenotype ß-lactamase genes since for some variants the amino acid changes result in 119 

different resistance phenotypes(26). Although only 0.44% of the ß-lactamase genes had a 120 

coverage and identity below 100% in our study. 121 



To calculate the MDR Score, we used a list of antimicrobials of clinical importance 122 

Enterobacteriaceae in relation to acquired resistance(27). We used cephalothin as a surrogate 123 

for cefazolin since they are both early generation cephalosporins. 124 

The MDR score was computed as follow: 125 

• For each genome, the unique predicted resistance phenotypes were identified, and 126 

antibiotics were grouped into the different molecular classes: 127 

o Aminoglycosides 128 

o Penicillins   129 

o Early Generation Cephalosporins 130 

o Cephamycins 131 

o 3rd Generation Cephalosporins 132 

o 4th Generation Cephalosporins 133 

o Monobactams 134 

o Carbapenems 135 

o Penicillins in combination with b-lactamase inhibitors 136 

o Quinolones 137 

o Trimethoprim 138 

o Sulphonamides 139 

o Phenicols 140 

o Tetracyclines 141 

o Polymyxins 142 

o Fosfomycin 143 

 144 



• The MDR Score will increase by one when an antibiotic is assigned to one of the 145 

described molecular classes. If more ARGs confer resistance to the same molecular 146 

class, the MDR score still only increases by one. 147 

• All genomes for which no ARGs are identified are assigned a MDR score of zero. 148 

 149 

4. Final Dataset 150 
 151 

The final dataset comprises 22,102 assemblies that belong to non-Typhoidal Salmonella. The 152 

final metadata table contains the following: 153 

• Assembly ID: name of assembly ID as identified in the database; 154 

• Database: name of repository from which said assembly was recovered; 155 

• Collection Date: isolation date; 156 

• Year: isolation year; 157 

• ISO3: 3 letter code of the country of isolation; 158 

• Latitude and Longitude: coordinates in decimal degree; 159 

• Serovar: Salmonella’s Serovar; 160 

• ST: Salmonella’s sequence type; 161 

• BioSample: NCBI BioSample accession number; 162 

• BioProject: NCBI BioProject accession number; 163 

• Acquired Resistance: whether this assembly was found to contain ARGs or not; 164 

• MDR Score: calculated MDR Score; 165 

 166 



 167 
5. Model Weights Calculation 168 

For the temporal trend analysis of resistance, we need to weight the observations relative to 169 

their representativeness in our dataset. To achieve this, we weighted all observations by the 170 

countries’ Population Correction Unit (PCU) for each host (expressed as proportion) and 171 

corresponding isolation year times the proportion of genomes contributed by a given a 172 

country for a given year. We calculated PCU as described by Tiseo and colleagues (28) for all 173 

countries as follows: 174 

𝑃𝐶𝑈!,# = 𝐴𝑛!,#. (1 +	𝑛!,#,. -
𝑌!

𝑅$%
&%,!

0 175 

where Ank,s is the number of animal type, k, for each production system, s (intensive or 176 

extensive), in each country; nk,s is the number of production cycles for each animal type in 177 

each production system; Yk is the quantity of meat in each country for each animal type; and 178 

RCW/LW,k is the carcass weight to live weight ratio for each animal type. The PCU allows for 179 

direct comparisons of animals raised for food in across countries. For some countries, PCU 180 

data was unavailable before 1999 for Belgium, before 1991 for Belarus, before 1992 for Czech 181 

Republic and Slovakia before, and before 1991 for Belarus, Croatia, Estonia, and Lithuania. In 182 

addition, no PCU data existed prior to 1985. In such cases, we assigned the PCU value 183 

corresponding to the earliest available year in the time series.  PCU data can be found in 184 

Supplementary Dataset S1. 185 

 186 

 187 
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II. Appendix Figures 263 
 264 
 265 



 266 
Figure S1. Number of genomes identified in public repositories and number of genomes 267 
excluded throughout the curation process. NCBI - National Center for Biotechnology 268 
Information (NCBI) Nucleotide database; PATRIC - Pathosystems Resource Integration 269 
Center. 270 
 271 
 272 
 273 

Initial Search Result
NCBI

n = 11,549
EnteroBase
n = 174,904

PATRIC
n = 17,548

Isolation Source non-Food-
Animal (n = 162,073)

Assemblies With a Food-Animal Host
NCBI

n = 3,489
EnteroBase
n = 26,357

PATRIC
n = 12,082

Animal-Related Assemblies with Coordinates
NCBI

n = 1,968
EnteroBase
n = 24,551

PATRIC
n = 1989

Food-Animal Related Assemblies
NCBI

n = 39
EnteroBase
n = 21,743

PATRIC
n = 414

Deduplicated Assemblies
NCBI

n = 94
EnteroBase
n = 24,525

PATRIC
n = 498

Duplicated BioSamples Across 
Databases (n = 3,391)

Non-US (n = 2921)

Final Dataset (n = 22,102) 
NCBI

n = 38
EnteroBase
n = 21,689

PATRIC
n = 375

Non enterica subspecies 
(n = 73)

No Coordinates (n = 13,420)

Failed Quality Control
(n = 21)



 274 

Figure S2. Distribution of the number of genomes per year. 275 

 276 

 277 

Figure S3. Distribution of the of Multidrug Resistance Score (MDR Score) across the United 278 

States. The dot size represents the number of genomes available for a single geographic 279 

coordinate. A. Distribution of the MDR Score between 2000-2009; B. Distribution of the MDR 280 

Score between 2010-2018. 281 
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 284 

Figure S4. Distribution of the Multi Drug Resistance Score (MDR Score) per host per serovar 285 

in 2000s (2000-2009) and 2010s (2010-2018). 286 
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 291 

Figure S5. Correlation plot between the most frequent serovars in bovine and resistance 292 

phenotypes. Only correlations with an adjusted p value below 0.05 are shown. Non-293 

significant correlations are displayed as blank squares. 294 
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 295 

Figure S6. Correlation plot between the most frequent serovars in poultry and resistance 296 

phenotypes. Only correlations with an adjusted p value below 0.05 are shown. Non-297 

significant correlations are displayed as blank squares. 298 
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300 

Figure S7. Correlation plot between the most frequent serovars in swine and resistance 301 

phenotypes. Only correlations with an adjusted p value below 0.05 are shown. Non-302 

significant correlations are displayed as blank squares. 303 
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III. Legends for Appendix Tables 308 
 309 
 310 
Table S1. Metadata file for the 22,102 genomes included for the dataset. Assembly_ID – 311 

assembly identifier from the original database; Database – database from which assembly 312 

was retrieved; Collection_Date – isolation date; Year – isolation year; Country - isolation 313 

country; ISO3 – three letter country code; Latitude – latitude geographic coordinate; 314 

Longitude – longitude geographic coordinate; Generic_Host – food-animal host; 315 

Source_Niche – indicates wether samples derive from food or from the animal itself; 316 

Source_Type – specific animal species; Source_Details – details as available in the database 317 

of origin; ST – Salmonella  Sequence Type; Serovar – Salmonella Serovar; BioSample – 318 

National Center for Biotechnology Information BioSample accession number; 319 

Number_Contigs – number of contigs in assembly; BioProject – National Center for 320 

Biotechnology Information BioProject accession number; MDR_Score – calculated Multidrug 321 

Resistance Score; Acq_Resist – whether assembly contains acquired resistance gene or not. 322 

 323 

Table S2. Output from ResFinder. File_Name – assembly name; Contig – contig name; Start – 324 

start position in the contig of the gene identified; End – end position in the contig of the gene 325 

identified; Gene – antimicrobial resistance gene identified; Coverage – proportion of gene 326 

present in the sequence; Coverage_Map – visual representation of alignment of our sequence 327 

against the reference; Gaps – gaps in the sequence versus the reference; Perc_Coverage – 328 

proportion of the gene covered;  Perc_Identity – proportion of nucleotide matches against 329 

reference; Database – reference database; Accession - National Center for Biotechnology 330 

Information accession number; Product – gene product; Class – predicted resistance to 331 

antimicrobial classes; Phenotype – predicted resistance to individual antimicrobials; 332 



Mechanism of resistance – ResFinder specification of mechanism of resistance if available; 333 

Notes – further notes provided by the ResFinder on specific genes; Required_gene – genes 334 

required to cause resistance phenotype if any. Gene_clean – Harmonized gene name.  335 

Table S2 can be found in the Zenodo repository in the following link: 336 

https://zenodo.org/record/5519129#.YUzEj21Bw4g 337 

 338 

 339 

Table S3. Output from staramr PointFinder module. Assembly_ID - assembly identifier from 340 

the original database, Gene – gene identified with mutation. Mutation designation in 341 

brackets; Type – mutation type; Position – amino acid position where mutation occurred; 342 

Mutation – specific mutation; Perc_Identity – proportion of nucleotide matches against 343 

reference; Perc_Overlap – proportion of the overlap between query and reference; HSP 344 

Length/Total Length – high scoring pair length over the length of the gene; Contig – contig 345 

name; Start – start position in contig; End – end position in contig. 346 

 347 

Table S4. Fitted MDR Score values for all years and hosts. Year – isolation year; Generic_host 348 

– animal host; mdr_score – fitted MDR Score; se.fit - standard error; upp_95 – upper bound 349 

of 95% confidence interval; low_95 – lower bound of 95% confidence interval. 350 

 351 

Table S5. Fitted antimicrobial resistance prevalence for individual classes for all years, hosts. 352 

Year - isolation year; Generic_Host – animal host; Phenotype - antimicrobial class; Prevalence 353 

– fitted prevalence; low_CI – lower bound of 95% confidence interval; upp_CI – upper bound 354 

of 95% confidence interval. signif – wether covariate “Year” was statistically significant or not; 355 

 356 



Table S6. Fitted antimicrobial resistance genes’ prevalence for all years, hosts. Year – isolation 357 

year; Generic_Host – animal host; Gene_Dummy – acronym used to identify antimicrobial 358 

resistance gene; Prevalence – fitted prevalence; se.fit – standard error; Gene_clean – 359 

antimicrobial resistance gene. 360 

 361 

Table S7. Fitted serovar prevalence for all years, hosts. Year – isolation year; Generic_Host – 362 

animal host; Serovar – Salmonella serovar; Prevalence – fitted prevalence; se.fit – standard 363 

error. 364 

 365 

Table S8. Fitted serovar prevalence for 2018 and hosts. Year – isolation year; Generic_Host – 366 

animal host; Serovar – Salmonella serovar; Prevalence – fitted prevalence; se.fit – standard 367 

error. 368 

 369 

IV. Legend for Dataset S1 370 
 371 
 372 

Dataset S1. PCU data for all countries between 1985 and 2018. Each column corresponds to 373 

a food-animal/year combination. “Ca” refers to bovine, “Ch” refers to poultry, and “Pg” refers 374 

to swine. 375 

 376 


