1	Supplementary	Information	for
---	---------------	-------------	-----

2	RNase 2	Z	oxidative	degradation	impedes	tRNA	maturation	and	is	involved	in
---	---------	---	-----------	-------------	---------	------	------------	-----	----	----------	----

3 streptococcal translation regulation in response to oxidative stress

- 4 Yuzhu Dong^{a,b,1}, Huichun Tong^{a,b,1,*}, Qingqing Hu^{a,b}, Xiuzhu Dong^{a,b,*}
- 5 ^aState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese
- 6 Academy of Sciences, Beijing 100101, China
- ⁷ ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China
- 8
- Ũ
- 9
- 10
- 11 This file contains:
- 12 Figures S1 to S11
- 13 Table S1

16 Fig. S1. Sequences (A) and the genomic organizations (B) of the 50 S.

17 oligofermentans tRNA genes. A. Sequences of the 50 tRNA genes of S.
18 oligofermentans are retrieved from KEGG database, and the accession numbers and
19 amino acid trigrams are provided. Nucleotides in parentheses are the anticodons and
20 those in red are reversely complemented to form the acceptor stem. The last one in each

21	sequence is the discriminator nucleotide. B. Schematics show the genomic
22	organizations of the S. oligofermentans tRNA genes (solid bullets) with other genes
23	(empty bullets). The amino acid trigram represents its carrier tRNA gene with the
24	accession numbers shown. Number inside parenthesis at the 3' end of each tRNA gene
25	represents the 3' trailer length of the tRNA precursor. The tRNA genes shown in the
26	same colored bullets carry the same amino acid.

Fig. S2. Urea-PAGE analysis of So-RNaseZ cleaving four tRNA precursors. The 29 140 nt tRNAPro (I872_t10754), 126 nt tRNAMet (I872_10730), 128 nt tRNALeu 30 (I872_t10780) and 209 nt tRNA^{Arg} (I872_t10790) precursor fragments were obtained 31 by in vitro transcription, and 50 ng of each tRNA precursor was used as the nucleolytic 32 substrates. Nucleolytic assay was initiated by addition of So-RNaseZ protein in a 33 gradient increased molar ratio as indicated, and incubated at 37°C for 30 min as 34 described in "Materials and Methods". Nucleolytic products were separated on 10% 35 Urea PAGE gel. Schematics at top show the lengths of 5' extension, tRNA gene and 3' 36 trailer in each tRNA precursor. Red and yellow arrows indicate the cleaving products 37 comprising of tRNA gene or 5' extension and tRNA gene for tRNA^{Arg} precursor, and 38 3' trailer, respectively. M, RNA molecular weight marker is shown at the left. 39

Fig. S3. Mass spectrometry analysis of So-RNaseZ protein and the disulfide linkages. A. Ten microgram recombinant So-RNase Z protein in 500 μL PBS was reduced with 10 mM DTT, and the molecular weight was identified by MALDI-TOF analysis. One main peak with molecular mass of 35.461 kDa was identified corresponding to the predicted molecular mass of recombinant So-RNaseZ plus 6 Histidine tag (35.15 kDa). B. The So-RNaseZ protein bands named "o", "dd" and "id" in Figure 2A were sliced and trypsin digested as described in "Materials and Methods",

48	and then subject to LC-MS/MS identification. The upper panel shows the LC-MS/MS
49	spectrum of a 4-charged peptide fragment with the precursor mass of 3468.7258 that
50	was identified as Cys149-Cys149 linked peptide as shown in insert. The lower panel
51	shows the LC-MS/MS spectrum of a 6-charged peptide fragment with precursor mass
52	of 4766.3212 that was identified as an intra-molecular Cys38-Cys149 linked peptide
53	(insert).

Fig. S4. qPCR determines the So-*rnaseZ* transcript levels in anaerobically grown 62 S. oligofermentans treated (+) with or without (-) H2O2. Total RNAs were extracted 63 64 from the mid-exponential cells using TRIzol reagent. After quality confirmation on 1% agarose gel, cDNAs were generated from 2 µg of total RNA with random primers using 65 Moloney murine leukemia virus reverse transcriptase, and then qPCR was implemented. 66 Experiments were repeated three times on triplicate samples. Transcript copies were 67 calculated as per 1000 16S rRNA copies, and the averages \pm SD of three independent 68 experiments are shown. 69

Fig. S5. Determination of H₂O₂ oxidized So-RNaseZ degradation by the S. 77 oligofermentans cell lysate. The recombinant So-RNaseZ6His protein (10 µg) was first 78 79 reduced with 10 mM DTT at 37°C for 1 h, and then super-filtrated to remove DTT. An aliquot of So-RNaseZ protein was treated with 500 µM H₂O₂ for 30 min, and leaving 80 another aliquot untreated as a control. After 30 min co-incubation with or without the 81 82 cell lysate of S. oligofermentans at 37°C, So-RNaseZ6His protein was run on 12% SDS-PAGE gel and the abundance was determined by western blot using the anti-His 83 antibody. Band intensities were measured using Image J, and expressed as the 84 85 percentiles of the protein treated with and without H₂O₂ among their respective abundance in non-cell lysate treatments. Experiments were repeated three times, and 86 87 the averages \pm SD of three experiments are shown beneath the representative gel.

Fig. S6. Circular dichroism (CD) spectra of the wild-type and cysteine mutated 98 So-RNaseZ. The So-RNaseZ6His (WT) Cys38 and Cys149 were each mutated into 99 100 serine to construct So-RNaseZC38S6His (C38S) and So-RNaseZC149S6His (C149S), respectively. The three proteins were diluted into 200 µl CD buffer (10 mM K₃PO₄, 101 100 mM NaF, pH 7.5) to make a final concentration of 5 µM. CD spectra were collected 102 103 in 0.1 cm quartz cuvettes from wave length of 190 to 260 nm at 0.5 nm interval with a 60 nm/min scan rate at Chirascan circular dichroism spectrometer (Applied 104 photophysics Ltd) under a constant nitrogen purge. Data were acquired at 25 °C, and 105 processed using the pro-Data Viewer 4.2.15 (Spectra Manager software) (Jasco, USA). 106 Each spectrum represents the average of three scans of a sample. Protein secondary 107 structures were analyzed via website Dichroweb (http://dichroweb.cryst.bbk.ac.uk), the 108 109 output results were shown below the figure.

Fig. S7. Assay of H₂O₂ or Fenton chemistry-generated hydroxyl radical caused the 117 cellular So-RNaseZ degradation. The S. oligofermentans RNaseZ-6His strain was 118 anaerobically grown in Fe²⁺-lack chemically defined FMC medium and BHI broth, 119 respectively. Until OD_{600} of ~ 0.3-0.4, an aliquot of the culture was 30 min treated with 120 500 µM H₂O₂, and leaving another aliquot untreated. Cells were then sonicated and the 121 122 lysates were run on 12% SDS-PAGE gels. The cellular So-RNaseZ abundance was examined by western blot using anti-His antibody. Band intensities were measured 123 using Image J, and expressed as the percentiles of the So-RNaseZ protein in the 124 bacterium grown in the corresponding medium not treated with H₂O₂. Molecular weight 125 marker is shown at the left. Experiments were repeated three times, and the averages \pm 126 SD of three experiments are shown beneath the representative gel. 127

131 Fig. S8. Determination of tRNA precursor degradation by S. oligofermentans cell lysates. A. Western blot assayed the cellular So-RNaseZ protein content. Various 132 amounts of purified So-RNaseZ protein (ng) and cell lysates (µg) of the RNaseZ-6His 133 strain were run on 12% SDS-PAGE gel and So-RNaseZ protein was detected using 134 anti-His antibody (left panel). Band intensities were measured using Image J. Band 135 intensities of purified So-RNaseZ protein were plotted against So-RNaseZ protein 136 amount (right panel). Referenced to the linear regression equation, 43 ng of So-RNaseZ 137 protein was calculated in 50 µg cell lysate. B. The 116 nt tRNA^{Ala} (I872 t10692), 128 138 nt tRNA^{Leu} (I872_t10780) and 140 nt tRNA^{Pro} (I872_t10754) precursor fragments were 139 140 obtained by *in vitro* transcription. Four aliquots of 50 ng of each tRNA precursor were prepared; one aliquot was untreated as a control, two aliquots were incubated with 10 141

µg cell lysate of anaerobically cultured S. oligofermentans that were 30 min treated 142 with $(+H_2O_2)$ or without 0.5 mM H_2O_2 $(-H_2O_2)$, respectively, and the other one was 143 incubated with 15 ng So-RNaseZ protein (RNaseZ), by referenced to the So-RNaseZ 144 abundance in 10 µg cell lysate estimated in A. After 30 min incubation, the samples 145 were separated on 10% Urea PAGE gel and stained with SYBR Gold Nucleic Acid Gel 146 Stain. Schematics at top show the lengths of the tRNA gene and 3' trailer in each 147 precursor. Yellow arrow indicates the tRNA precursors, red and green arrows indicate 148 the cleaving products comprising of tRNA gene and 3' trailer, respectively. M, RNA 149 molecular weight marker with length shown at the gel left. 150

Fig. S9. Phylogenetic analysis of the So-RNaseZ orthologs and its Cys38/Cys149 in 161 Streptococcaceae that encode CCA-less tRNAs. Sequences of So-RNaseZ protein 162 163 and its orthologs from all species of Streptococcaceae were obtained from KEGG database, and aligned using ClustalW. The phylogenetic tree was constructed using the 164 Neighbor-joining method with bootstrap values of 1000 replicates. The bar of 0.05 165 166 represents the evolution distance. Orange and blue bars at right indicate the presence of Cys38 and Cys149 in the RNase Z orthologs, respectively; and numbers represent the 167 percentiles of CCA-less tRNAs in the respective species. 168

172 Fig. S10. Comparison of the wild-type and cysteine mutated So-RNaseZ activities. The 104 nt tRNA^{Arg} (I872 t10790) precursor fragment, comprising of 74 nt mature 173 tRNA^{Arg} and 30 nt 3' trailer, was obtained by *in vitro* transcription, and 50 ng was used 174 175 as the nucleolytic substrates. Nucleolytic assay was initiated by addition of a gradient of increasing molar ratio of wild-type So-RNaseZ6His protein (WT) and Cys38 and 176 Cys149 serine substituted So-RNaseZC38S6His (C38S) and So-RNaseZC149S6His 177 178 (C149S), respectively, and incubated at 37°C for 30 min as described in "Materials and Methods". Nucleolytic products were separated on 10% Urea PAGE gel. Red and 179 yellow arrows indicate the cleaving products of mature tRNA gene and 3' trailer, 180 respectively. RNA molecular weight marker is shown at the gel left. 181

Fig. S11. Comparison of So-RNaseZ abundance (A) and protein synthesis (B) of 194 the statically and anaerobically grown S. oligofermentans. A. Western blot assayed 195 the So-RNaseZ abundance in RNaseZ-6His cells. Early mid-exponential cells of 196 statically or anaerobically grown RNaseZ-6His were collected and lysed. Same 197 amounts of total cell protein were loaded on 12% SDS-PAGE gels, and the So-RNaseZ 198 abundance was examined by western blot using anti-His antibody. Cell lysate from 199 statically grown wild-type (WT) cells was included as a control. Western blot signal 200 intensities of the So-RNaseZ protein were measured using Image J, and expressed as 201 the percentages of anaerobic culture. Triplicate experiments were performed, and 202 averages ± SD are shown below one representative image. B. Strain RNaseZ-6His was 203 cultured as described in A, and puromycin was added 10 min before cell collection. 204

205	Western blot assayed puromycin integration using the anti-puromycin antibody (upper
206	panel), and same contents of total proteins were run on 12% SDS-PAGE gels and
207	stained with Coomassie brilliant blue (lower panel). Molecular weight marker is shown
208	at each gel left. Triplicate experiments were performed, and one representative result is
209	shown.

Strain, plasmid or primer	Characteristics and description	Reference or sources
Strain		
E. coli		
DH5a	supE44 lacU169 (80 lacZM15) hsdR17 recA1	TransGen
	endA1 gyrA96 thi-1 relA1 luxS	Biotech, Beijing,
		China
BL21 (DE3)	F- ompT hsdS (rBB - mB -) gal dcm (DE3)	TransGen
		Biotech, Beijing,
		China
S. oligofermentans		
Wild-type	WT, Kan ^s Sp ^s	1
RNaseZ-6His	WT RNaseZ::6His; Kan ^r ; wild-type with RNaseZ	This study
	fused with 6×His tag at C-terminus	
So-RNaseZcom	WT RNaseZ::Kan; pDL278-SoRNaseZ6His;	This study
	Kan ^r ; Sp ^r ; wild-type with So- <i>rnaseZ</i> deletion and	
	carrying pDL278-SoRNaseZ6His plasmid	
So-RNaseZC38Scom	WT RNaseZ::Kan; pDL278-	This study
	SoRNaseZC38S6His; Kan ^r ; Sp ^r ; wild-type with	
	So- <i>rnaseZ</i> deletion and carrying pDL278-	
	SoRNaseZC38S6His plasmid	
So-RNaseZC149Scom	WT RNaseZ::Kan; pDL278-	This study
	SoRNaseZC149S6His; Kan ^r ; Sp ^r ; wild-type with	
	So- <i>rnaseZ</i> deletion and carrying pDL278-	
	SoRNaseZC149S6His plasmid	
So-RNaseZover	WT pDL278-Pldh-SoRNaseZ6His; Spr; wild-	This study
	type harboring pDL278 plasmid with So-	
	RNaseZ6His driven by lactate dehydrogenase	
	promoter	
pDL278RNaseZ-6His	WT RNaseZ::6His; Kan ^r ; RNaseZ-6His strain	This study
	carrying pDL278 plasmid	
Plasmid		
	17 *	2
pALH124	Kan ⁴	2
nDI 278	Spr	3
pDL2/0	sp	3

211 Table S1. Strains, plasmids and primers used in this study*

pDL278-	pDL278 carrying SoRNaseZ6His; Sp ^r	This study
SoRNaseZ6His		
pDL278-	pDL278 carrying SoRNaseZC38S6His; Sp ^r	This study
SoRNaseZC38S6His		
pDL278-	pDL278 carrying SoRNaseZC149S6His; Sp ^r	This study
SoRNaseZC149S6His		
Primer	Sequence (5'-3')	Purpose
RNaseZ-6His upF	CTGGTTCCCGTCTGCCTTATC	RNaseZ-6His
		construction
RNaseZ-6His upR	CTAAGGATCCCTAGTGGTGGTGGTGGTGG	RNaseZ-6His
	TGTAACTCCACCTCTTCCAAG	construction
RNaseZ-6His dnF	CTAAGGATCCTTTTCCAATTTAGGACAGTT	RNaseZ-6His
	TC	construction
RNaseZ-6His dnR	GCTCCTTCCAACCAAAATCAGTCGG	RNaseZ-6His
		construction
GipDL278F	CACCACCACTAGTCTAGAGTCGACCTGCA	So-RNaseZcom
	GG	construction
GipDL278R	CAGAAAAGGAGAAATCACCTGGCCGTCG	So-RNaseZcom
	TTTTAC	construction
PoperonF	CGACGGCCAGGTGATTTCTCCTTTTCTGA	So-RNaseZcom
	ACTTTTA	construction
PoperonR	GTAATTGCATCTTTTTTCCTTGAAAAAATT	So-RNaseZcom
	TTAATTTTTC	construction
<i>rnz</i> -comF	AGGAAAAAAGATGCAATTACAATTTTTAG	So-RNaseZcom
	GAACCG	construction
<i>rnz</i> -comR	GGTCGACTCTAGACTAGTGGTGGTGGTGG	So-RNaseZcom
	TGGTGTAACTCCACCTCTTC	construction
rnz-deleteupF	GATTTGGCCCTGAAATACGGCGG	So-RNaseZcom
		construction
rnz-deleteupR	CCTAGGATCCGTAATTGCATGTTATTCTTTC	So-RNaseZcom
	TAAATG	construction
rnz-deletedownF	GGA <i>GGATCC</i> GGAGTTATAGTTTTCCAATTT	So-RNaseZcom
	AG	construction
rnz-deletedownR	CAGTCGGTCATGGGGCAAGAGC	So-RNaseZcom
		construction
rnzC38SF	GGTCTGGATGTTTGATTCCGGTGAAGGTA	So-
	CCCAG	RNaseZC38Scom
		construction
rnzC38SR	CTGGGTACCTTCACCGGAATCAAACATCC	So-
	AGACC	RNaseZC38Scom
		construction
rnzC149SF	GCTAGACCACACGATTTTCTCTGTGGGTTA	So-
	TCGGGTCATGC	RNaseZC149Sco

m construction

rnzC149SR	GCATGACCCGATAACCCACAGAGAAAATC	So-
	GTGTGGTCTAGC	RNaseZC149Sco
		m construction
PLDHF	CCGGAATTCTAAAAAATGCCTCGTTTCAAT	So-RNaseZover
	ATTAAATC	construction
PLDHR	CCGGTTCCTAAAAATTGTAATTGCATTTCT	So-RNaseZover
	AAACATCTCCTTATTATTTTTAG	construction
Pldh-rnzoverF	CTAAAAATAATAAGGAGATGTTTAGAAAT	So-RNaseZover
	GCAATTACAATTTTTAGGAACCGG	construction
Pldh-rnzoverR	ACGCGTCGACCTAGTGGTGGTGGTGGTGG	So-RNaseZover
	TGTAACTCCACCTCTTCC	construction
TransArgF	TAATACGACTCACTATAGGGAGAATGAAA	In vitro
	AGGTATCGGTCTC	transcription for
		RNaseZ activity
TransArgR	CTTACAAGATCTATTATAAATAAAATTTC	In vitro
		transcription for
		RNaseZ activity
TransAlaF	TAATACGACTCACTATAGGGGGGGGCCTTA	In vitro
	GCTCAG	transcription for
		RNaseZ activity
		and Northern blot
TransAlaR	CAATTTTCAATGGACAAGTTTAGAATAGTC	In vitro
		transcription for
		RNaseZ activity
Northern AlaR	GTTTATTTTCTTGTTACTATTTGATATAGTT	In vitro
	ATTC	transcription for
		Northern blot
TransProF	TAATACGACTCACTATAGGGCGGGAAGTA	In vitro
	GCTCAG	transcription for
		RNaseZ activity
TransProR	CAAAAAACGGCTCCAGCCGTTATTTAAA	In vitro
	ТАС	transcription for
		RNaseZ activity
TransLeuF	TAATACGACTCACTATAGGGGCGGAGGTG	In vitro
	GTGGAACGG	transcription for
		RNaseZ activity
TransLeuR	CAAAAGAAAAACTCTTGTCAACTTG	In vitro
		transcription for
		RNaseZ activity
TransMetF	TAATACGACTCACTATAGGGCGCGGGATG	In vitro
	GAGCAGCTAG	transcription for
		RNaseZ activity
		i use user uservity

TransMetR	GACACATGGAGCTTCAATCC	In vitro
		transcription for
		RNaseZ activity
Ala probe	5'-biotin-	Mature tRNA ^{Ala}
	CGAACCGCTGACCTCCTGCGTGCAAAGCA	Northern blot
	GGCGCTCTCCCAG	
Pro probe	5'-biotin-	Mature tRNA ^{Pro}
	CCTGCGACACCTTGGTCCCAAACCAAGT	Northern blot
	ACTCTACCAAGCTGAGCTACTTCCCG	
Leu probe	5'-biotin-	Mature tRNA ^{Leu}
	GATTTGAACCCTCACACCCGTACGGGCAC	Northern blot
	ATGCGCCTGAAGCATGCGTGTCT	
pretRNA ^{Ala} probe	5'-biotin-	tRNA ^{Ala} precursor
	CTATTTGATATAGTTATTCAATTTTCAATGG	Northern blot
	ACAAGTTTAGAATAG	
pretRNA ^{Pro} probe	5'-biotin-	tRNA ^{Pro} precursor
	AAAAAACGGCTCCAGCCGTTATTTAAAT	Northern blot
	ACAGTAATGATTAGAAAATTCTAAACCAA	
	CAATATA	
pretRNA ^{Leu} probe	5'-biotin-	tRNA ^{Leu} precursor
	CATAATTTTTCAAAAGAAAAACTCTTGTC	Northern blot
	AACTTGGACAAGAGTTCCTGTTCGA	
5S rRNA probe	5'-biotin-	5S rRNA
	CACAGGGGGCAACCCCCAACTACTTCCGG	Northern blot
	CGTTCTAGGGCTTAACTTCTGTGTTCGGCA	
	TGGGTACAGGTGTAT	
Ala3RACEF	GGGGCCTTAGCTCAGCTGGG	tRNA ^{Ala} 3' race
Ala3RACER	ATTGATGGTGCCTACAG	tRNA ^{Ala} 3' race
Ala5RACEF	CAGACTGGATCCGTCCTC	tRNA ^{Ala} 5' race
Ala5RACER	CAATTTTCAATGGACAAGTTTAGAATAGTC	tRNA ^{Ala} 5' race

212 *: Kan, kanamycin; Sp, spectinomycin; r, resistant; s, sensitive.

213 Italic nucleotide bases indicate restriction enzyme digestion sites.

215 **References**

- 2161.Tong H, Gao X, Dong X. 2003. Streptococcus oligofermentans sp. nov., a novel
- oral isolate from caries-free humans. *Int J Syst Evol Microbiol* 53:1101-1104.
- Liu Y, Zeng L, Burne RA. 2009. AguR is required for induction of the
 Streptococcus mutans agmatine deiminase system by low pH and agmatine.
 Appl Environ Microbiol 75:2629-2637.
- 221 3. LeBlanc DJ, Lee LN, Abu-Al-Jaibat A. 1992. Molecular, genetic, and functional
- analysis of the basic replicon of pVA380-1, a plasmid of oral streptococcal
- 223 origin. *Plasmid* 28:130-145.