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Estimation of uSEM within GIMME

In practice, the A (containing contemporaneous effects) and Φ (containing lagged effects) matrices
above are contained within the B matrix and can be reduced to:

[ηt−1||ηt] = B[ηt−1||ηt] + ζt (1)

Here, [ηt−1||ηt] indicates the horizontally concatenated variables at a previous time point (t-1) and at the
next time point (t). Considering the B matrix in this way, the full SEM can be represented using standard
SEM notation:

S = Λ(I − B)−1Ψ(I − B)−1Λ′ + Θ (2)

where Ψ is the covariance matrix of the variables at a lag of one and the regression errors (with the
diagonals being the variance), Λ the matrix of loadings for the observed variables on the latent variable
eta, S the observed sample covariance matrix, and Θ the covariance matrix of measurement errors. An
important set of constraints is followed to enable estimation. One, the search restricts the candidate paths
in the beta matrix such that directed pathways cannot be backwards in time (i.e., ηt cannot predict ηt−1).
Two, the relations among the ηt−1 variables are constrained to zero in the B matrix and are captured as
covariances in Ψ. Three, in the absence of a measurement model (i.e., latent constructs indicated by
multiple variables), Λ is a 2p × 2p identity matrix and the variance for measurement errors in Θ is set
to zero. In the B submatrices Φ and A, there are only p variables (see Kim et al., 2007). The following
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matrices depict the structures of the candidate paths, or paths that will be considered in the model search,
in the B matrix and the estimated elements in the Ψ matrix:

B =



0 0

0 0
Φ11 Φ12 Φ1p

Φ21

Φ(p−1)p

Φp1 Φp(p−1) Φpp︸                               ︷︷                               ︸
Lagged

0 0

0 0
0 A12 A1p

A21

A(p−1)p

Ap1 Ap(p−1) 0

︸                              ︷︷                              ︸
Contemporaneous

Ψ =



Ψ11

Ψ21

Ψp1 Ψp(p−1)

0 0

0 0︸                  ︷︷                  ︸
Lagged

0

0 0 Ψ(2p)(2p)

︸                       ︷︷                       ︸
Contemporaneous

Since the rows are not independent, the estimation of these models is considered to be quasi-maximum
likelihood estimation. This approach is optimal for model searching since it is computationally
inexpensive yet yields parameter estimates which have about the same properties as those obtained with
full maximum likelihood estimation (cf. Hamaker, Dolan, & Molenaar, 2002). It is well known that
autoregressive parameters in a stationary ARMA(p,0) process may be estimated by LISREL analysis of
the block-Toeplitz matrix (van Buuren, 1997) and given the equivalence in solutions between LISREL
and lavaan, it follows that lavaan also can estimate AR models. Assuming normality, the parameters
obtained are moment estimates that have been shown to approximate true ML estimates well (Hamaker,
Dolan, & Molenaar, 2002), but may yield slightly greater bias (Chow et al., 2010). In the case of missing
data, full information maximum likelihood is conducted as it is found to enable robust estimation (Enders
& Bandalos, 2001) and is the default approach used by S-GIMME.

Empirical fMRI Data Example

fMRI Data Acquisition Procedures

Participants were all right-handed native English speakers without a history of psychiatric illness or
neurological disorder. Before participating in the study, all persons gave written informed consent in
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accordance with the requirements of the Institutional Review Board at the University of North Carolina
(UNC) at Chapel Hill. The in-scanner working memory paradigm utilized in this study was an N-back
task (Table 1; Kirchner, 1958). The stimuli for this task included both upper- and lower-case letters that
appeared on the screen, one at a time, for 3 seconds each. Letters were mixed upper- and lower-case to
avoid responses based on purely perceptual features of the stimuli, and to encourage a deeper level of
working memory processing associated with task success. Stimuli were presented in six blocks, with 72
letters appearing in each block. Prior to the scanning sessions, participants were familiarized with the
task, provided with verbal instructions for the task, and completed practice sessions for each of the three
variants of the N-back task used in the scanner. Participants only began the scan session once they could
successfully complete all three tasks outside of the scanner with 100% accuracy.

The task was divided into three conditions defined by working memory load: 0-back, 1-back, and
2-back. Each condition was presented over two consecutive blocks within the scanner, and condition
order was randomized across participants. Prior to beginning each block, participants were provided
with written instructions for the upcoming task to re-familiarize them with response criteria and task
instructions. In each task condition, participants were told to respond yes or no with their dominant hand
for each letter that appeared on the screen. The 1-back data were used for the present example. During
the 1-back condition (moderate working memory load), participants were told to respond yes any time
the letter on the screen was the same as the previous letter, and no for any letter that was not the same as
the previous letter.

MRIs were acquired using a Siemens Allegra 3-T scanner. Participants’ heads were held in place
using cushions and a headrest. An initial localizing scan was followed by a high resolution T1-weighted
structural scan for anatomical visualization (160 1-mm slices, TR=1750 msec, TE=4.38 msec). Next,
functional scans were collected during memory retrieval. Whole brain, gradient-echo, echo planar images
(50 interleaved 3-mm slices, TR=3sec, TE=30 msec, Flip angle=90 degrees, 3Œ3Œ3mm) were acquired
at an angle parallel to the long axis of the hippocampus, identified during the T1 scan.

fMRI Data Preprocessing

Images were preprocessed and analyzed using Statistical Parametic Mapping (SPM)8 (Wellcome De-
partment of Cognitive Neurology, London, UK) software implemented as a suite of commands in MAT-
LAB (MathWorks, Natick, MA). Images were co-registered with each person’s anatomical scan, slice-
time corrected, realigned, normalized, and smoothed (convolved to an isotropic Gaussian kernel). Brain
regions of interest (ROIs) within the fronto-parietal network (which is often associated with working
memory) were identified using coordinates from previous research (Dosenbach, et al., 2011). Specifi-
cally, the bilateral ROIs selected were: dorsolateral prefrontal cortext (DLPFC), precuneous, intraparietal
sulcus (IPS), inferior parietal lobule (IPL), and the frontal cortex. The midcingulate was also used, for a
total of 11 ROIs. Time series were pulled from these ROIs using MarsBar MATLAB toolbox, with 4mm
spheres used for the parietal and midcingulate ROIs and 10mm spheres for the frontal ROIs

Walktrap

As a random walk approach, Walktrap was originally created to enable greater computational efficiency
for larger matrices without sacrificing the reliability for smaller matrices. Walktrap begins by estimating
the transition probability of going from one individual (“node”) in a given graph to another individual in a
random walk of a given number of steps. For example, in a random walk of one the transition probability
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between two individuals would be the probability of one of the individuals going to the other individual
given all possible individuals in the graph (e.g., brain regions of interest or variables). This probability
should be relatively high if individuals are in the same subgroup and low if individuals are in different
subgroups. The sequence that the random walk takes across multiple steps is a Markov chain. Here, we
use a walk of length 4, as this has been shown to provide a reasonable balance between being too long
(and thus being identical to certain properties already available in the similarity matrix) and too short to
provide information about the topology of the matrix under a series of simulated data (Pons & Latapy,
2006). Hence each element rbetween,i j (or si j) in a given similarity matrix rbetween (or s, depending on
the feature selection approach) is recast into a transition matrix P4, with P4

i j depicting the probability of
going from individual i to j in 4 steps. The rationale behind using the probability as opposed to the raw
correlation or count matrix (as would be done in traditional clustering) rests heavily on the observations
that the two individuals i and j in the same cluster tend to have: (1) high transition probabilities and (2)
similar probabilities to other individuals in the cluster (Pons & Latapy, 2006).

The distances between all individuals are then computed using the probability vectors P4
i. and P4

j. for
each set of individuals at a walk of 4 is:

zi j = ∥D−1/2P4
i. − D−1/2P4

j.∥ (3)

where D is the average weight in the correlation matrix or count of edges for the count matrices (Rubinov
& Sporns, 2010), and ∥.∥ is the Euclidean norm of Rn. By extension, PC1 j indicates the probability of
going from cluster C1 (equivalently, “community,” “subgroup,” or “class”) to individual j, and PC1C2 the
probability of going from cluster C1 to C2.

From the resulting distance matrix individuals are merged in an agglomerative manner based on Wards
criterion (Ward, 1963) to merge two clusters (with each individual being in its own community to start):

σq = 1/2
∑
C∈Pq

∑
i∈Cq

z2
iC (4)

through a greedy search which minimizes σq for each step q, where Pq indicates the partition solution
at that step. Further details of the algorithm and properties can be found in Pons & Latapy (2006).

These steps are conducted in an iterative fashion by merging communities at each step that decreases
σq and selecting the Pq corresponding to the lowest σq as the final solution for that step. Modularity is
then used to evaluate and choose the best partition (Pons & Latapy, 2006). When the average strength
of path weights for individuals within a subgroup is larger than what is expected for individuals who are
in subgroups, modularity rises (Newman, 2006; Rubinov & Sporns, 2010). Hence, the researcher does
not have to define a priori the number of subgroups, nor does the researcher have to subjectively decide
where in the dendrogram to make the cut. The present paper evaluates the performance of recovering the
underlying subgroup structure using Walktrap on matrices obtained from the three approaches for feature
selection described above (i.e., lag-0, lag-1/lag0, and S-GIMME).

Detailed Results from Omitted Variables Analysis

Supplemental Table 4 provides information on recall and precision given the omission of each variable
separately. Of course, certain variables will likely have a greater impact on the precision of results if they
relate to a large number of other variables. For these variables, an increase in false positive relations may
occur given that an indirect effect will be induced for two given variables that are in turn related to a third
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variable (but not themselves directly related). In particular, variables that are common causes for two
other variables or mediate two variable may evidence a greater rate of false positives. The absence of the
mediating or causal variable third variable may erroneously surface as direct effects between these two
variables.

As seen in Figure 5 of the main text, variables 1, 3, and 5 serve as mediators between two other vari-
ables at the group level. Removing these from analysis consistently decreased precision in the recovery of
effects (see Table 1) from the average 97% for this condition (see Supplemental Table 3) for path precision
when all variables are included. However, notable differences emerged. The omission of variable 5 still
had highly acceptable path precision (96%), while omitting variables 1 and 3 evidence more deleterious
impacts (86% and 91% average recall precision, respectively). In terms of common causes, only variable
8 was a common cause of two other variables for all individuals simulated. Omission of this variable
resulted in a greater number of false positives (as indicated by a path precision of 90%) than the omission
of variable 3 (91%) but fewer than seen for omitting variable 1 (86%). The explanation for these findings
seems to be that variables 1, 3, and 8 are the only variables that have 6 paths directly connecting them
to other variables at the group and subgroup levels. They also had the lowest path precision. Variable 5
only has 4 paths relating it to other variables, which might explain why omitting this variable did not have
deleterious effects even though it is a mediator. Hence it seems that the extent to which an omitted variable
results in spurious connections relates more so to the number of variables to which it was connected than
the specific nature of that relation (i.e., mediator or common cause).
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Supplemental Tables

Supplemental Table 1. Hubert-Arabie Adjusted Rand Indices. (ARAIHA). Note: N indicates sample size; K
indicates number of subgroups; Lag0 indicates the lag-zero correlation matrices; Lag1 indicates the block-Toeplitz
matrix with lag-0 and lag-1 cross-correlations; averages for each method are followed by standard deviations in
parentheses.

Condition Equal Subgroup Sizes Unequal Subgroup Sizes

Lag0 Lag1 S−GIMME Lag0 Lag1 S−GIMME
N=25, K=2 .93 (12) .92 (.11) .98 (.05) .91 (.17) .89 (.24) .98 (.07)
N=25, K=3 .45 (.17 .43 (.15) .91 (.14) .55 (.14) .47 (.16) .93 (.12
N= 25, K= 4 .36 (.16 .33 (.12) .80 (.19) .48 (.22) .38 (.22) .73 (.16)
N= 75, K=2 .94 (.07) .91 (.09) .99 (.03) .94 (.09) .93 (.09) .99 (.05)
N=75, K=3 .58 (.18) .55 (.15) .98 (.04) .63 (.21) .59 (.17) .98 (.04)
N=75, K=4 .50 (.16 .53 (.16) .94 (.10) .55 (.17) .59 (.14) .83 (.13)
N=150, K=2 .96 (.04) .95 (.04) .99 (.02) .9 (.19) .91 (.12) 1.00 (.02)
N=150, K=3 .57 (.21) .54 (.12) .98 (.03 .55 (.22) .56 (.14) .99 (.02)
N=150, K=4 .52 (.14) .58 (.12) .96 (.06) .56 (.16) .61 (.12) .90 (.11)
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Supplemental Table 2. Average Ramsey Indices for GIMME. Note: N indicates sample size; K indicates
number of subgroups; Eq. indicates equal subgroup sizes; Uneq. indicates unequal subgroup sizes; averages for
each method are followed by standard deviations in parentheses.

Condition GIMME
Path Recall Path Precision Dir. Recall Dir. Precision

N=25, K=2, Eq. 88.28 (1.23) 96.92 (1.55) 85.43 (1.5) 94.1 (3.83)
N=25, K=3, Eq. 89.45 (0.92) 98.11 (1.22) 86.87 (1.27) 95.99 (2.83)
N=25, K=4, Eq. 90.16 (0.86) 97.88 (1.28) 87.49 (0.91) 96.28 (2.12)

N=25, K=2, Uneq. 91.29 (1.62) 95.44 (1.5) 87.39 (2.44) 91.94 (4.39)
N=25, K=3, Uneq. 89.64 (1.07) 97.55 (1.85) 86.78 (1.63) 95.11 (3.77)
N=25, K=4, Uneq. 90.12 (1.08) 97.05 (1.67) 86.88 (1.66) 94.12 (3.6)

N=75, K=2, Eq. 87.94 (0.77) 97.1 (1.76) 85.21 (1.32) 94.7 (4.08)
N=75, K=3, Eq. 89.21 (0.67) 98.54 (0.57) 86.83 (0.88) 97.06 (1.4)
N=75, K=4, Eq. 90.17 (0.58) 98.53 (0.62) 87.66 (0.64) 97.4 (0.84)

N=75, K=2, Uneq. 90.82 (1.13) 95.87 (1.13) 86.6 (1.19) 92.18 (2.24)
N=75, K=3, Uneq. 89.65 (0.81) 98.41 (0.71) 86.66 (1.21) 95.98 (2.3)
N=75, K=4, Uneq. 90.47 (0.78) 97.87 (0.96) 87.27 (1.17) 95.62 (2.09)
N=150, K=2, Eq. 87.74 (0.68) 97.42 (1.24) 85.24 (0.94) 95.58 (2.38)
N=150, K=3, Eq. 89.34 (0.55) 98.68 (0.38) 86.98 (0.84) 97.22 (1.34)
N=150, K=4, Eq. 90.14 (0.48) 98.59 (0.33) 87.63 (0.52) 97.48 (0.43)

N=150, K=2, Uneq. 91.28 (0.62) 95.95 (0.92) 86.31 (1.05) 91.51 (2.64)
N=150, K-3, Uneq. 89.64 (0.8) 98.29 (0.65) 86.41 (1.02) 95.63 (2.06)
N=150, K=4, Uneq. 90.46 (0.72) 98.19 (0.79) 86.9 (0.99) 95.36 (2.15)
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Supplemental Table 3. Average Ramsey Indices for S-GIMME. Note: N indicates sample size; K indicates
number of subgroups; Eq. indicates equal subgroup sizes; Uneq. indicates unequal subgroup sizes; averages for
each method are followed by standard deviations in parentheses.

Condition S−GIMME
Path Recall Path Precision Dir. Recall Dir. Precision

N=25, K=2, Eq. 88.28 (1.23) 96.92 (1.55) 85.43 (1.5) 94.1 (3.83)
N=25, K=3, Eq. 89.45 (0.92) 98.11 (1.22) 86.87 (1.27) 95.99 (2.83)
N=25, K=4, Eq. 90.16 (0.86) 97.88 (1.28) 87.49 (0.91) 96.28 (2.12)

N=25, K=2, Uneq. 91.29 (1.62) 95.44 (1.5) 87.39 (2.44) 91.94 (4.39)
N=25, K=3, Uneq. 89.64 (1.07) 97.55 (1.85) 86.78 (1.63) 95.11 (3.77)
N=25, K=4, Uneq. 90.12 (1.08) 97.05 (1.67) 86.88 (1.66) 94.12 (3.6)

N=75, K=2, Eq. 87.94 (0.77) 97.1 (1.76) 85.21 (1.32) 94.7 (4.08)
N=75, K=3, Eq. 89.21 (0.67) 98.54 (0.57) 86.83 (0.88) 97.06 (1.4)
N=75, K=4, Eq. 90.17 (0.58) 98.53 (0.62) 87.66 (0.64) 97.4 (0.84)

N=75, K=2, Uneq. 90.82 (1.13) 95.87 (1.13) 86.6 (1.19) 92.18 (2.24)
N=75, K=3, Uneq. 89.65 (0.81) 98.41 (0.71) 86.66 (1.21) 95.98 (2.3)
N=75, K=4, Uneq. 90.47 (0.78) 97.87 (0.96) 87.27 (1.17) 95.62 (2.09)
N=150, K=2, Eq. 87.74 (0.68) 97.42 (1.24) 85.24 (0.94) 95.58 (2.38)
N=150, K=3, Eq. 89.34 (0.55) 98.68 (0.38) 86.98 (0.84) 97.22 (1.34)
N=150, K=4, Eq. 90.14 (0.48) 98.59 (0.33) 87.63 (0.52) 97.48 (0.43)

N=150, K=2, Uneq. 91.28 (0.62) 95.95 (0.92) 86.31 (1.05) 91.51 (2.64)
N=150, K-3, Uneq. 89.64 (0.8) 98.29 (0.65) 86.41 (1.02) 95.63 (2.06)
N=150, K=4, Uneq. 90.46 (0.72) 98.19 (0.79) 86.9 (0.99) 95.36 (2.15)

Supplemental Table 4. Average Ramsey Indices for Omitted Variable Analysis. Note: Dir. indicates
direction. Averages for are followed by standard deviations in parentheses.

Omitted Variable Path Recall Path Precision Dir. Recall Dir. Precision
1 96.46 (0.58) 86.12 (1.33) 93.88 (0.84) 79.9 (1.76)
2 96.17 (0.25) 99.64 (0.1) 93.56 (0.29) 99.35 (0.24)
3 96.06 (0.46) 91.35 (0.88) 93.47 (0.51) 87.23 (0.89)
4 96.23 (0.3) 92.71 (0.88) 93.53 (0.35) 88.98 (1.12)
5 95.95 (0.3) 95.51 (0.32) 93.23 (0.81) 89.51 (1.4)
6 96.17 (0.29) 97.68 (0.27) 93.49 (0.28) 97.33 (0.37)
7 96.41 (0.38) 95.01 (1.15) 94.28 (0.55) 88.69 (1.16)
8 95.91 (0.97) 89.76 (0.98) 92.04 (1.13) 81.58 (1.6)
9 96.17 (0.36) 96.82 (1.05) 93.72 (0.4) 94.81 (1.78)

10 96.18 (0.33) 99.41 (0.61) 93.55 (0.67) 94.45 (1.42)


