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Appendix 1. Perception of Task Characteristics

In order to investigate individual-level characteristics that could potentially explain the observed vari-

ability in revealed risk preferences across the four risk preference elicitation tasks, subjects in the exper-

iment were asked to answer additional questionnaires. For each participant, to avoid confusion, speci�c

questions on the tasks followed the same ordering in which the tasks were completed. To simplify dis-

crimination between the four di�erent decision problems, the tasks were labeled with color names and

highlighted in the respective color whenever displayed to subjects (see Appendix 7 for screenshots of

the entire experiment).

Immediately after subjects had made their decision in any of the four tasks, they self-reported how

risky they perceive their decision to be and how con�dent they feel with the particular choice(s) they

made. Each decision, as participants have just completed it, was depicted on screen and questions

were answered on a scale from 1 (“not at all risky/con�dent”) to 7 (“very risky/con�dent”): (i) “How

risky do you consider your own decision (indicated above)?” and (ii) “How con�dent do you feel with

your decision indicated above?” Experimental results of the answers to these questions are reported in

Panels A and B of Fig. 3.

After completing all elicitation methods, participants answered additional questionnaires explicitly

comparing the four tasks. For completing the comparative questionnaires, subjects received a pay-

ment of e3.00. Questions were answered on a scale from 1 (“not agree at all”) to 7 (“fully agree”) and

read as follows: (i) “the task is easy to understand and can be answered straightforwardly,” (ii) “the task

involves complex calculations and requires deliberating on the trade-o� between expected outcomes

and the inherent riskiness of the di�erent outcomes,” and (iii) “completing the task is annoying and

boring.” Experimental results of the answers to these questions are reported in Panels C–E of Fig. 3,

respectively. Tab. 3 reports correlations between the questionnaire items and the preference stability

index.

Table 3: Correlations of the preference stability index (PSI ) and responses to the questionnaire items. The lower

triangular matrix depicts Spearman rank correlations; the upper triangular matrix reports polychoric correla-

tions. p-values are reported in parentheses (n = 198). * p < 0.05, ** p < 0.01, *** p < 0.001.

PSI Risk. Conf. Simp. Comp. Bore.

PSI 0.127*** 0.025 −0.050 0.053 0.049

(0.001) (0.502) (0.231) (0.163) (0.273)

Riskiness 0.143*** −0.028 −0.015 0.093* 0.080

(0.000) (0.464) (0.713) (0.014) (0.072)

Con�dence 0.023 −0.025 0.191*** −0.005 −0.076

(0.516) (0.481) (0.000) (0.906) (0.086)

Simplicity −0.048 −0.038 0.156*** −0.394*** −0.177***

(0.179) (0.281) (0.000) (0.000) (0.000)

Complexity 0.076* 0.099** −0.008 −0.358*** 0.127**

(0.032) (0.006) (0.829) (0.000) (0.004)

Boredom 0.032 0.078* −0.045 −0.129*** 0.107**

(0.372) (0.028) (0.206) (0.000) (0.003)
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Figure 3: Subject-level demeaned scores (left y-axis) and mean levels (right y-axis) for self-reported answers

to survey questions on (A) riskiness of own decision, (B) con�dence in own decision, (C) simplicity of task in-

structions, (D) complexity of calculations involved, and (E) boredom, separated by tasks. In all panels, error bars

indicate 95% con�dence intervals; n = 198. bret, cem, mpl, and scl denote the “bomb” risk elicitation task, the

certainty equivalent method, the multiple price list, and the single choice list, respectively.

Several characteristics in subjects’ responses to the �ve questions as depicted in Fig. 3 seem noteworthy:

First, general levels of mean responses on con�dence and simplicity of choices across tasks are fairly

high, but rather low for answers on boredom and complexity. In general, this can be considered as good

news for experimental research on risk preferences. Second, there is substantial variation in response

levels of riskiness, con�dence, simplicity, and complexity. Thus, subjects seem to perceive the tasks
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and their choices across methods quite di�erently. In addition to the �ndings reported in the paper,

this result calls for more caution in choosing a particular method to elicit risk preferences. Third, while

perceived complexity of the tasks seems to clearly relate to subjects’ mistakes, as reported in the paper,

self-assessed con�dence on a subject’s decision does not. We conjecture that the assessed con�dence

does encompass a variety of subjects’ attributes, rather than only relating to complexity and di�culty

of methods.

At the very end of the experiment, participants were asked to state their preferences for a task in future

experiments (as a single choice). Of the 198 subjects, 30.8% prefer the bret, 31.3% the cem, 21.7% the

mpl, and 16.2% the scl.
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Appendix 2. Task Comprehension and Numeracy

Subjects were asked to estimate (i) the expected payo�, (ii) the probability to earn less than e5.50, and

(iii) the probability to earn more than e14.50 for the risk neutral decision (depicted as a screenshot) in

each of the four tasks. On average, subjects’ responses deviate from the correct answers by 164.4% (sd
= 92.4%) in the bret, 111.7% (sd = 69.7%) in the cem, 177.0% (sd = 95.6%) in the mpl, and 57.7% (sd =

60.9%) in the scl.

In addition, to assess participants’ numerical skills, we included an eight-item Rasch-validated numer-

acy inventory (Weller et al., 2013), including two items on cognitive re�ection.
1

The numeracy inven-

tory was incentivized with e0.50 for each correct answer. On average, participants correctly answered

5.49 (sd = 1.57) out of 8 questions.

While subjects have rather high levels of numeracy, their estimation of expected returns and probabil-

ities show strong deviations from the correct answers. Furthermore, it is noteworthy that actual errors

in estimations are not necessarily in line with the perceived complexity of tasks. While subjects seem

to be able to assess the susceptibility to errors in making choices in the tasks, as argued in the paper,

this self-assessment seems not to be directly related to the ability to calculate expected returns and

probabilities. This supports the—often implicitly made—assumption that subjects can reveal their pref-

erences in the tasks without explicitly being able to correctly solve the calculations behind the tasks’

lotteries.

1

The inventory proposed by Weller et al. (2013) includes two of the three cognitive re�ection test items introduced by Frederick

(2005). As these questions have been used repeatedly in our laboratory and correct answers to the questions might be known,

we replaced these items by two questions proposed by Toplak et al. (2014).
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Appendix 3. Domain Attribution

In comparing the four elicitation methods, subjects were also asked whether they associate the decision

problem with an investment, gambling, or insurance domain using a drop-down �eld with the three

possible options. Responses per task are reported in Fig. 4. The means of the preference stability index

for the six pairwise comparisons of risk preference elicitation methods, separated by attributions to the

same domain or di�erent domains, are reported in Tab. 4.

Figure 4: Subjects’ attribution of domains—(i) investment, (ii) gambling, and (iii) insurance—separated by risk

preference elicitation methods. n = 198. bret, cem, mpl, and scl denote the “bomb” risk elicitation task, the

certainty equivalent method, the multiple price list, and the single choice list, respectively.

Table 4: Means of the preference stability index for the six pairwise comparisons of risk preference elicitation

methods, separated by whether the tasks are perceived to belong to the same domain or to di�erent domains.

Number of observations per class are reported in parentheses. Test statistics and p-values of χ2(1)-tests on

di�erences between “same domain” and “di�erent domain” are depicted in the lower panel.

Domain . . . bret–cem bret–mpl bret–scl cem–mpl cem–scl mpl–scl

same 50.0% (42) 21.7% (46) 35.8% (81) 54.2% (118) 70.8% (89) 50.0% (86)

di�erent 50.4% (143) 20.9% (139) 33.7% (104) 68.7% (67) 68.8% (96) 48.5% (99)

χ2(1) 0.002 0.016 0.093 3.686 0.091 0.042

p-value 0.968 0.900 0.761 0.055 0.763 0.837
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Appendix 4. Preference Stability Index

Experimental data vs. simulation outcomes. Fig. 1 in the main text in the main text shows the

distribution of the preference stability index observed in the experiment as well as the results from

three di�erent simulation exercises. The distributions depicted in Panels B and D clearly di�er from

the distribution of stability index resulting from the experimental data in location and shape. However,

the question how to properly compare the distributions depicted in Panels A and C of Fig. 1—which

seem to share many similarities—by means of a statistical test requires some consideration. In the simu-

lation exercise, choices for each of the four tasks are drawn independently from the choice distribution

observed in the experiment. To avoid sampling errors, we choose a sample size of n = 10, 000 in all

simulation exercises—a number that is su�ciently large to ensure that the simulated distribution resem-

bles the distribution of choices per task observed in the experiment. However, comparing the sample

of n = 185 in the experiment with the n = 10, 000 simulated subjects using a Kolmogorov-Smirnov

test is not a sensible means to examine whether the distributions di�er in location and/or shape, since

the test’s critical value is inversely related to the number of observations.

We thus re-run the simulation exercise with n = 185 observations. To avoid potential sampling biases,

we repeat this exercise 10,000 times, with randomly varied seeds—i.e., we apply a Bootstrapping proce-

dure. The results of this supplementary analysis are not conclusive: The Kolmogorov-Smirnov statistic

D = supx |F1,n(x)− F2,m(x)| varies from 0.049 to 0.190 and suggests that the di�erence between the

distributions is statistically insigni�cant in about 70% of the iterations; the remaining 30% of iterations

yield p-values below the 5% signi�cance threshold.

Since p-values are uniformly distributed under the null hypothesis, we would expect a share of 5%

signi�cant results (false positives) if there would in fact be no di�erence between the distributions

(i.e., if the null hypothesis would be actually true). Thus, our �nding that about 30% of the iteration

runs result in statistically signi�cant di�erences could be an indication that the alternative hypothesis

is true, i.e., that the distributions do indeed di�er, but the test is not su�ciently powered to reliably

detect the e�ect. Assuming that the alternative hypothesis is true, the comparison of distributions with

n1 = n2 = 185 would only have a statistical power of about 30%, suggesting that the true e�ect size

might be rather small.

Preference Stability per Task. Apparently, the four risk preference elicitation methods di�er sub-

stantially in the number of choices, the mapping of choices into crra parameter intervals, and the range

of the codomain. Given the distinct mechanics of the four tasks, the “contribution” of each task to the

overall preference stability index may vary. Our conclusions about the extent of preference (in)stability

might thus be driven by only one or two tasks.

Splitting up the overall index into its components (i.e., the six pairwise comparisons) reveals substan-

tial variation: the share of subjects with overlapping crra intervals vary between 21.1% and 68.1%.

All pairwise di�erences between the pairwise stability scores are statistically signi�cant at a 5% level

(Wilcoxon signed rank tests), except for the di�erences between (i) bret–cem and mpl–cem and (ii)

cem–mpl and cem–scl. Given the small number of tasks, however, it is not possible to reliably infer

whether this variation is attributable to particular mechanics of particular methods.

To examine whether any of the tasks stands out in terms of its contribution to the overall preference sta-

bility index, we determine the preference stability index on a per-task basis. In particular, we construct

an index for each of the four risk preference elicitation methods separately, restricting our attention to

those pairwise comparisons of methods in which the particular task is involved. For each task, we con-

struct a measure aggregating the binary indicators of whether the crra parameter interval associated

with the choice in a particular task overlap with the crra parameter intervals of the three other tasks
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in the experiment. That is, the index for the bret, for instance, captures the comparisons bret–cem,

bret–mpl, and bret–scl.
2

The distributions of indices per task – together with the distribution of scores resulting from a simu-

lation exercise assuming independent draws from the empirical distributions – are presented in Fig. 5.

Apparently, the distributions of the preference stability indices associated with each task vary in both

shape and location. While the median score is 1 out of 3 for the bret and the mpl, it is 2 out of 3 for

the cem and the scl. The means vary between 1.06 (bret) and 1.78 (cem), with standard deviations

varying between 0.82 (mpl) and 1.09 (cem). This variation might stem from a number of task-speci�c

mechanics such as the number of choices (e.g., the size of the implied parameter intervals), the map-

ping from choices into crra parameter intervals (e.g., the symmetry of interval ranges), or the range

of the codomain (e.g., the availability of risk-loving preferences). Yet, even though the contribution

of the four tasks does not appear to be unitary, the patterns of per-task preference stability indicate

that there is substantial variation in revealed preferences across methods. Put di�erently, the per-task

analysis suggests that the results based on the aggregate measure (as reported in the main text) seem

to be robust, and that all of the tasks contribute to the overall preference stability index.

It is reassuring that the overall indication of the simulation exercise assuming independence between

the tasks (see Figure 5) appear robust on the per-task level too. Similar as for the aggregate index, the

preference stability index in the simulations on a per-task basis turns out to be slightly smaller than

the indices observed in the experimental data; yet, again, the shape and location of the distributions

resulting from the simulations per task share considerable similarities with the experimental data. In

order to test whether the preference stability indices in the experiment di�er from the simulation exer-

cises, we replicate the Bootstrapping approach – as described above – per task, i.e., we conduct 10,000

simulation runs with n = 185 and compare the empirical distribution and the simulation results us-

ing Kolmogorov-Smirnov tests. For the bret, zero out of 10,000 iterations are statistically signi�cant

(p < 0.05); for the cem and mpl, 14.77% and 10.24% of the simulations are signi�cantly di�erent from

the empirical distribution, respectively; for the scl, however, the distributions signi�cantly di�er in

9,091 of 10,000 runs. These �ndings – particularly with respect to the bret and the scl – might be

indicative of a systematic e�ect of the size of parameter intervals and/or the range of the codomain on

our aggregate measure of preference stability. However, since our setting does not involve a system-

atic variation of these potential determinants, we abstain from overemphasizing these patterns. We

leave the question of whether and how mechanics of di�erent tasks translate into (di�erent measures

of) preference stability to future research. However, our main �nding on the risk elicitation puzzle,

i.e., that there is ample heterogeneity of individual risk preferences across methods that needs to be

explained, resonates in the per-task perspective.

2

The way the index is constructed implies that this analysis considers each of the six pairwise comparisons twice; e.g., the

comparison bret–cemis part of both the index associated with the bret and the index associated with the cem. This is why

the distributions of the preference stability indices of two tasks cannot be reasonably compared using statistical tests.
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Figure 5: Distributions of the per-task preference stability index based on the experimental data (orange bars;

n = 185) and based on simulation exercises assuming 10,000 virtual subjects choosing independently from the

choice distribution of each task observed in the experiment . bret, cem, mpl, and scl denote the “bomb” risk

elicitation task, the certainty equivalent method, the multiple price list, and the single choice list, respectively.
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Appendix 5. Order E�ects

To prevent that the ordering of risk preference elicitation procedures systematically a�ects subjects’

risk-taking behavior, the sequence of tasks in the experiment was randomized at the subject level. Yet,

despite the randomization, one could hypothesize that risk preferences, and/or subjects’ susceptibility

to making mistakes in evaluating the alternatives, might be a�ected by the task ordering. For instance,

it might be the case that subjects try to balance the overall risk they take in the experiment, in which

case subjects would take systematically more (less) risk if their decision in the previous task involves a

low (high) level of risk. Likewise, due to learning e�ects, subjects might be less prone to making errors

in evaluating the choices in tasks that appear towards the end of the sequence; or, on the contrary, one

could argue that fatigue increases the likelihood of making mistakes.

To rule out that spurious e�ects drive the results reported in the main text, Tab. 5 and 6 summarize

additional analyses examining potential order e�ects. In particular, Panel A in Tab. 5 reports maximum

likelihood estimates of the structural model as described in Section 4 in the main text for each of the

four positions in the random task sequence; Panel B in Tab. 5 shows the pairwise di�erences in point

estimates of ϕ and σ between the four positions in the sequence. Apparently, none of the di�erences—

neither for the crra coe�cientϕ nor for the standard deviation of the noise parameter σ—is statistically

signi�cantly di�erent from zero.

Table 5: (A) Maximum likelihood estimates of structural models with Fechner error terms

for each of the four positions in the random task sequence. Standard errors, clustered on

the subject level, are reported in parentheses. (B) Pairwise di�erences in point estimates of

risk preference parameters ϕ (lower-triangular matrix) and the standard deviation of noise

parameters σ (upper-triangular matrix) between the four positions in the task sequence. p-

values are based on pairwise Wald tests. * p < 0.05, ** p < 0.01, *** p < 0.001.

Panel A Order = 1 Order = 2 Order = 3 Order = 4

ϕ 0.601*** 0.645*** 0.541*** 0.548***

(0.057) (0.059) (0.054) (0.050)

σ 0.346*** 0.253*** 0.365*** 0.348***

(0.064) (0.046) (0.072) (0.066)

lnL –2,753 –4,222 –2,804 –3,250

No. of Obs. 5,306 7,798 5,346 6,102

Clusters 198 198 198 198

Panel B Order = 1 Order = 2 Order = 3 Order = 4

Order = 1 0.093 −0.019 −0.001

Order = 2 −0.044 −0.112 −0.094

Order = 3 0.060 0.104 0.018

Order = 4 0.053 0.097 −0.007
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To rule out that our main �ndings are impaired by some systematic e�ect of a particular task on its

succeeding one, we estimate the structural model for each of the four risk preference elicitation meth-

ods, controlling for the preceding one in the random sequence. Indeed, as depicted in Tab. 6, none of

the dichotomous controls—neither for ϕ nor σ—turns out to be statistically signi�cant, suggesting that

our results are not a�ected by potential interrelations between preceding and succeeding tasks in the

ordering.

Table 6: Maximum likelihood estimates of structural models with Fechner error terms for

each of the four risk preference elicitation methods, controlling for the preceding task. bret,

cem, mpl, and scl denote the “bomb” risk elicitation task, the certainty equivalent method,

the multiple price list, and the single choice list, respectively. * p < 0.05, ** p < 0.01, ***

p < 0.001.

bret cem mpl scl

ϕ (Constant) 0.680*** 0.967*** 0.615*** 0.321***

(0.042) (0.133) (0.070) (0.071)

Prev. Task = bret −0.283 0.013 0.077

(0.226) (0.093) (0.093)

Prev. Task = cem −0.036 −0.033 0.058

(0.056) (0.090) (0.095)

Prev. Task = mpl −0.078 −0.333 0.128

(0.061) (0.237) (0.104)

Prev. Task = scl −0.111 0.006 −0.028

(0.060) (0.273) (0.101)

σ (Constant) 0.044*** 0.184*** 0.954*** 0.707***

(0.004) (0.051) (0.126) (0.110)

Prev. Task = bret 0.151 −0.087 −0.065

(0.127) (0.160) (0.150)

Prev. Task = cem 0.005 −0.172 0.030

(0.007) (0.177) (0.153)

Prev. Task = mpl −0.002 0.218 0.095

(0.005) (0.168) (0.182)

Prev. Task = scl −0.001 0.048 0.243

(0.006) (0.125) (0.201)

lnL –5,235 –452 –592 –571

No. of Obs. 19,800 1,782 1,980 990

Clusters 198 198 198 198

The analyses above only provide insights into potential e�ects of the task ordering on the estimates

of the mean parameters in the structural model, but not on individual-level estimates of the stability

of preferences. To address the latter, we examine potential order e�ects with respect to the preference

stability index de�ned in Section 4 in the main text. Given that there are four tasks, each of which

might take any of the four positions in the sequence, there are n = 4! possible permutations.
3

To

3

For the randomization in our experiment it turns out that each of the 24 possible permutations was realized for at least two

subjects, whereas the maximum number of subjects who faced the same permutation was 19.
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evaluate whether speci�c permutations induce signi�cantly di�erent stability indices, we conduct 24

t-tests, each comparing the mean stability index of one particular permutation to the mean stability

index of the remaining 23 task sequences. It turns out that the stability indices do not statistically di�er

from other permutations for any of the 24 di�erent sequences (t-values vary between 0.033 and 1.754;

corresponding p-value range from 0.973 to 0.081, respectively). Overall, the analyses summarized above

provide strong evidence that the results presented in the main text are not spurious in the sense that

they might be the result of order or learning e�ects.
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Appendix 6. Random Parameter Model

Apesteguia and Ballester (2018) prove that random utility models may violate monotonicity in the sense

that the probability of choosing the more risky alternative in a binary choice setting is an increasing

function of the risk preference parameter. Yet, Apesteguia and Ballester (2018) show that random pa-

rameter models, as introduced by Eliashberg and Hauser (1985) and Loomes and Sugden (1995), are

always monotone in the choice probability.

In contrast to binary random utility models, where the noise term is modelled to distort the evaluation

of expected utilities of the two alternatives, the noise term in random parameter models distorts the

decision maker’s preference parameter. That is, the decision maker is assumed to choose the alternative

that maximizes the utility given a particular coe�cient of risk aversion ϕ, distorted by a common

random error ε. In the random parameter model, the probability of choosing alternative B has the

closed form of eλϕ
∗
/(eλϕ∗ + eλϕ), where ϕ∗ refers to the crra parameter which equates the expected

utilities of the two lotteries, i.e., uϕ∗(A) = uϕ∗(B), and λ denotes a precision parameter which is

inversely related to the variance of a random noise term (Apesteguia and Ballester, 2018). Note that a

decrease in ϕ (i.e., a decrease in risk aversion) implies a decrease in the denominator, guaranteeing that

the choice probability increases and monotonicity is preserved.

In addition to the estimates based on the random utility model reported in the main text, we therefore

report estimates of the random parameter model in Tab. 7. It is reassuring that our main �ndings are

corroborated by qualitatively similar results: While the point estimates of the crra parameter ϕ turn

out to be higher for all tasks (which is in line with the results reported by Apesteguia and Ballester,

2018), the ordering of parameter estimates across tasks is preserved and the patterns of statistically

signi�cant di�erences between tasks remain similar.

Despite the advantage of the random parameter model, we chose to report results in the Appendix

rather than the main text for two reasons: First, the value of ϕ∗ is practically not determinable for the

dominated choices in the bret and cem, i.e., for 2 out of 9 binary choices in the cem and for 2 out of 99

binary choices in the bret. Applying the random parameter model, thus, implies that 396 observations

need to be dropped from the analysis for both the bret and the cem. Second, the solutions for the

values of ϕ∗ turn out to be labile for several binary choices, in particular for very low (k < 5) and

very high (k > 90) numbers of selected boxes in the bret, but also for the most and least risk averse

decisions in the other three tasks. Given the properties of the power utility function, solutions to the

non-linear equations are overly sensitive to marginal deviations and, thus, computationally hard to

approximate. The extent to which the parameter estimates of a particular task are impaired by these

e�ects may well be systematic in nature since the parameter ranges covered by the di�erent elicitation

procedures—and thereby the values of the solutions for ϕ∗ and, as a result, the precision of solutions

for ϕ∗ — vary substantially. Irrespective of which model is considered superior given our data, it is

eventually reassuring that our main results are robust in both speci�cations.
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Table 7: (A) Maximum likelihood estimates of random parameter models for each of the

four risk preference elicitation methods. Standard errors, clustered on the subject level, are

reported in parentheses. (B) Pairwise di�erences in point estimates of risk preference pa-

rameters ϕ (lower-triangular matrix) and precision parameters λ (upper-triangular matrix)

between the four risk preference elicitation methods. p-values are based on pairwise Wald

tests. bret, cem, mpl, and scl denote the “bomb” risk elicitation task, the certainty equiv-

alent method, the multiple price list, and the single choice list, respectively. * p < 0.05, **

p < 0.01, *** p < 0.001.

Panel A bret cem mpl scl

ϕ 0.653*** 0.896*** 0.696*** 0.579***

(0.023) (0.004) (0.012) (0.014)

lnλ 3.733*** 2.999*** 4.056*** 4.837***

(0.174) (0.851) (0.052) (0.650)

lnL –12,153 –838 –1,207 –536

No. of Obs. 19,404 1,386 1,980 990

Clusters 198 198 198 198

Panel B bret cem mpl scl

bret 0.779*** −0.320 −0.947***

cem 0.241*** −1.099*** −1.726***

mpl 0.043 −0.199*** −0.627*

scl −0.078* −0.320*** −0.121*
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Appendix 7. Screenshots of the Experiment

In the following, we present annotated screenshots of each page of the experiment, containing all

instructions (translated to English). Each page corresponds to a single screen as displayed to subjects

in the experiment.
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Screen 1: Welcome 

 

Note: The experimental sessions took place at 
the Innsbruck EconLab and the were conducted 
in German. The following screenshots depict all 
screens of the experiment translated to English. 



Screen 2: Overview 

 

Note: All experimental 
instructions were displayed 
on screen. 



Screen 3: Instructions – Block 1 

 

Note: To allow for reference, the four 
tasks were labeled with color names. 
The order of tasks was randomized. 



Screen 4: Single Choice List (SCL) – Instructions 

 



Screen 5: Single Choice List (SCL) – Risk Preference Elicitation 

 



Screen 6: Single Choice List (SCL) – Riskiness & Confidence 

 
 

 



Screen 7: Multiple Price List (MPL) – Instructions 

 



Screen 8: Multiple Price List (MPL) – Risk Preference Elicitation 

 



Screen 9: Multiple Price List (MPL) – Riskiness & Confidence 

 
 

 



Screen 10: Certainty Equivalent Method (CEM) – Instructions 

 



Screen 11: Certainty Equivalent Method (CEM) – Risk Preference Elicitation 

 



Screen 12: Certainty Equivalent Method (CEM) – Riskiness & Confidence 

 
 

 



Screen 13: Bomb Risk Elicitation Task (BRET) – Instructions 

 



Screen 14: Bomb Risk Elicitation Task (BRET) – Risk Preference Elicitation 

 



Screen 15: Bomb Risk Elicitation Task (BRET) – Riskiness & Confidence 

 
 

 



Screen 16: Instructions – Block 2 

 

Note: To avoid confusion, the order of 
tasks remained the same throughout 
the experiment. 



Screen 17: Reminder – Single Choice List (SCL) 

 



Screen 18: Reminder – Multiple Price List (MPL) 

 



Screen 19: Reminder – Certainty Equivalent Method (CEM) 

 



Screen 20: Reminder – ‘Bomb’ Risk Elicitation Task 

 



Screen 21: Comparison of the Four Risk Elicitation Methods 

 

Note: At any time, 
instructions of the 
tasks were available 
using the “info” icon. 



Screen 22: Comprehension – Single Choice List (SCL) 

 



Screen 23: Comprehension – Multiple Price List (MPL) 

 

 



Screen 24: Comprehension – Certainty Equivalent Method (CEM) 

 

 



Screen 25: Comprehension – ‘Bomb’ Risk Elicitation Task (BRET) 

 

 



Screen 26: Preferred Task 

 



Screen 27: Instructions – Block 3 

 



Screen 28: Numeracy Inventory 

 



Screen 29: Demographics Survey 

 



Screen 30: Payment Information – Block 1 

 

Note: For subject’s 
payout, one of the 
four tasks has been 
chosen randomly. 



Screen 31: Payment Information – Block 1 

 

Note: For the chosen task, 
details on the payoff-relevant 
decision and the random 
elements determining the 
payoff were displayed. 



Screen 32: Final Payout Information 
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