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The authors use maximum likelihood conjoint measurement (MLCM) in a 3-way design to study the
effects of spacing, size and jitter on perceived regularity. The results revealed a large influence of jitter on
perceived regularity, not surprisingly, and much smaller contributions of spacing and size. Five subjects
were tested over time to complete 4 repetitions of the stimulus set and gave broadly consistent results.
The authors proceeded to test a series of nested models involving additive and interaction effects of various
orders. The results indicated significant 2-way jitter:spacing and jitter:size interactions but neither a
significant spacing:size interaction nor a 3-way interaction. Strangely, the 2-way additive vs independence
models were not evaluated but given the results for the higher order interactions, there probably isn’t
a need for these (or for that matter for the independence vs null model tests in Table 1), given the
previous results, i.e., if one follows the dictum that marginal effects are not interpretable in the presence of
higher order interactions (see sections 5.1-5.2 of https://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf).
Subsequently, they compared the results to predictions based on the output of a network of Gabor filters
distributed over orientation and spatial frequency. The results provided only weak support in favor of a
model based on spatial frequency peakedness of the response distribution and instead supported a model in
which regularity perception is based on spatial frequency information extracted across orientation channels,
as such a model could account for the highest percentage of variance in the data. The experiments and
analyses are solid. I have some issues with the terminology and clarity of description of the methods.
With these addressed the paper would represent an important contribution to understanding an aspect of
texture perception.

1. This is a novel approach in the sense that previous publications using the MLCM technique have
studied only 2 dimensions conjointly at a time rather than 3, mostly because of the combinatorial
explosion of trials required to make an exhaustive sampling of all pairwise combinations of the
attributes. The authors address this problem by using a smaller number of levels along two of
the dimensions. A previous study (Gerardin, P, Devinck, F, Dojat, M, Knoblauch, K (2014).
Contributions of contour frequency, amplitude, and luminance to the watercolor effect estimated by
conjoint measurement. J Vis, 14, 4.) looked at 3 dimensions but only using pairwise comparisons.
The authors could have employed this procedure to arrive at similar results for their two-way
interactions but would have not been able to test the 3-way interaction. Thus, this is an excellent
demonstration of the efficiency of factorial design. Contrary to what the authors claim, however,
their approach is not novel because “MLCM methodology was originally designed for two factors. . . ”
(p. 27) nor that “Traditional MLCM has provided a framework for handling only two factors. . . ”
(p. 20). The theoretical development of the technique in Section 8.2 (pp. 233-236) of the Knoblauch
& Maloney book that they reference and also in a more recent review (Maloney, LT, Knoblauch, K
(2020). Measuring and Modeling Visual Appearance. Annu Rev Vis Sci, 6:519-537.) is presented in
terms of an arbitrary number, N of dimensions, and the OpenSource software R package MLCM
(https://CRAN.R-project.org/package=MLCM) (Aguillar et al., 2019), has been set-up to
accommodate N ≥ 2 dimensions for at least 10 years (see remark 5, below).

2. Figure 3 is commonly called a Conjoint Proportions Plot, after Ho et al. whom they reference, and
it should be designated as such. They elegantly expand it to account for their 3-factor design. As
there are only 4 repetitions per stimulus condition, the color values in the plots can only take on
5 different levels. So, I wonder why they use a continuous bar scale coding the proportions that
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vary by 10% increments? I find this misleading. In addition, I do not see what is simulated in the
plot labelled “Simulated”. Normally (and as they describe it), it is calculated simply by assuming
that the “ideal” observer chooses the stimulus that is physically greater along one of the scales, here
being jitter. No simulation necessary!

3. The authors go to some lengths to spell out the numerous models and contrasts that they employ, but
it would be much clearer and more efficiently expressed if they provided an explicit description of the
decision rule and how the various nested models relate to it. I found myself having to re-read these
sections several times to follow what they were trying to explain. This would make the description
of the design matrix on the bottom of p. 26 more lucid. On p. 29, dropping the first levels of the
factors is not to minimize the number of parameters but to make the models identifiable. Without
such a constraint, there would be no unique fit for the glm. I do not see where they make explicit
the assumption about noise in the decision process. Without noise, the observers are expected to
make the same response to a repeated stimulus pair. There is some confusion, also, in the naming of
the models because of insistence on explaining everything in terms of an ANOVA framework. These
are nested models tested with likelihood ratio tests, or more simply nested likelihood ratio tests.
ANOVA is like this because it happens to be a special case of a linear predictor of a glm, not the
other way around. (See, for example, Prins, N. (2018). Applying the model-comparison approach to
test specific research hypotheses in psychophysical research using the Palamedes toolbox. Frontiers
in Psychology, 9, 1250).

4. The nested likelihood ratio tests from the models that they fit generate χ2 statistics. This should be
indicated explicitly, i.e., the differences in deviance are described, but nowhere is it indicated how
these statistics are distributed or what are the degrees of freedom for the statistics for which the
p-values are given.

5. To help me understand the models better (and kudos to the authors for supplying the data), I tried
to replicate the likelihood ratio statistics, i.e., the χ2 values, in the tables, using methods from the
MLCM package and R, but could only do so partially. I get numbers very close to those of the
authors for all subjects except I find that Obs 1 and Obs 2 deviate some. If my results were off for
all subjects, I might think that the methods that I employed were incorrect but since I can reproduce
the values for some of the subjects, I wonder if there are errors of transcription in the tables. These
should be checked, in any case. My R code and results are given below, assuming that the data files
that they supplied as Supplementary data are in the working directory.

library(MLCM)

dr <- dir(pattern = ".csv")

# S spacing, Z size, J jitter
d.lst <- lapply(dr, function(f){

d <- read.csv(f, header = FALSE)
names(d) <- c("Resp", paste0(rep(c("S", "Z", "J"), each = 2), 1:2))
as.mlcm.df(d)

})

Table 1 χ2 values

# Table 1: independence vs null model
T1 <- cbind(
Spacing = sapply(d.lst, function(d){

sm <- summary(mlcm(d, model = "ind", whichdim = 1)$obj)
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round(sm$null.deviance - sm$deviance, 2)
}),

Size = sapply(d.lst, function(d){
sm <- summary(mlcm(d, model = "ind", whichdim = 2)$obj)
round(sm$null.deviance - sm$deviance, 2)

}),

Jitter = sapply(d.lst, function(d){
sm <- summary(mlcm(d, model = "ind", whichdim = 3)$obj)
round(sm$null.deviance - sm$deviance, 2)

})
)
rownames(T1) <- paste("Obs", 1:5)
T1

## Spacing Size Jitter
## Obs 1 20.64 135.56 1745.75
## Obs 2 100.95 3.97 1462.11
## Obs 3 116.71 36.23 2232.66
## Obs 4 96.52 61.91 1296.74
## Obs 5 79.86 15.43 2643.93

Table 2 χ2 values

# Table 2: 2 way interaction vs 2 way additive
T2 <- cbind(
SpacexJitter = sapply(d.lst, function(d){

round(mlcm(d[, -c(4, 5)])$obj$deviance -
mlcm(d[, -c(4, 5)], model = "full")$obj$deviance, 2)

}),

SizexJitter = sapply(d.lst, function(d){
round(mlcm(d[, -c(2, 3)])$obj$deviance -

mlcm(d[, -c(2, 3)], model = "full")$obj$deviance, 2)
}),

SpacexSize = sapply(d.lst, function(d){
round(mlcm(d[, -c(6, 7)])$obj$deviance -

mlcm(d[, -c(6, 7)], model = "full")$obj$deviance, 2)
})
)
rownames(T2) <- paste("Obs", 1:5)
T2

## SpacexJitter SizexJitter SpacexSize
## Obs 1 174.85 128.71 12.94
## Obs 2 117.03 79.39 0.52
## Obs 3 157.79 61.34 1.01
## Obs 4 176.97 44.97 12.80
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## Obs 5 200.11 101.48 5.12

Table 3 χ2 values

# Table 3: 3-way interaction tested against 3 two-way interactions
SizexSpacexJitter <- sapply(1:5, function(ix){

m1 <- mlcm(d.lst[[ix]], model = "full")$obj$deviance
mm <- cbind(model.frame(mlcm(d.lst[[ix]][, -c(4, 5)], model = "full")$obj),

model.matrix(mlcm(d.lst[[ix]][, -c(2, 3)], model = "full")$obj),
model.matrix(mlcm(d.lst[[ix]][, -c(6, 7)], model = "full")$obj)

)
g <- glm(Resp ~ . + 0, family = binomial(probit), data = mm)$deviance
g - m1

})
names(SizexSpacexJitter) <- paste("Obs", 1:5)
cbind(SizexSpacexJitter)

## SizexSpacexJitter
## Obs 1 31.83050
## Obs 2 25.74348
## Obs 3 27.69612
## Obs 4 12.94537
## Obs 5 46.61027

6. On p. 16, Why simulate from the full model, model 12, when the 3-way and 2-way space:size
interactions were not significant?

7. In the abstract, the abbreviation SF is introduced for spatial frequency before it is defined.

8. p. 19, The so-called ANOVA approach (it is not variance but deviance which is being analyzed) is
not novel. It is standard in testing of nested models that was first outlined for MLCM in the Ho et
al. paper when defining the series of nested models: independence, additive and full. With a 3-factor
design, the possibilities are expanded, as they have done, in a fashion that is standard for glm’s,
which provide the underlying framework for performing the maximum likelihood fits here.

9. It’s generally considered misleading to make bar charts that do not start from a zero baseline (e.g.,
https://thenode.biologists.com/non-zero-baselines-the-good-the-bad-and-the-ugly/resources/). Of
course, this isn’t possible with log ordinates, as in Figure 7. I wonder if box-and-whisker plots might
not work better, with the individual data points still added as in the current figure?
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