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SUPPLEMENTARY MATERIAL AND METHODS 1 

 2 

Subjects and brain measures 3 

The brain phenotypes examined in this study are from the ENIGMA analysis of 4 

high-resolution MRI brain scans of volumetric measures (full details in 1). Our 5 

analyses were focussed to mean (of left and right hemisphere) volumetric 6 

measures of three subcortical areas: the hippocampus, thalamus and nucleus 7 

accumbens, selected for their link to disease, different levels of heritability, and 8 

developmental trajectories. MRI brain scans and genome-wide DNA 9 

methylation data were available for 3,337 subjects from 11 cohorts 10 

(Supplementary Table 1). All participants in all cohorts in this study gave written 11 

informed consent and sites involved obtained approval from local research 12 

ethics committees or Institutional Review Boards. 13 

 14 

DNA methylation microarray processing and normalization 15 

Blood DNA methylation was assessed for each study using the Illumina 16 

HumanMethylation450 (450k) microarray, which measures CpG methylation 17 

across >485,000 probes covering 99% of RefSeq gene promoters 2, following 18 

the manufacturer's protocols. 19 

Quality control procedures and quantile normalization were performed 20 

using the minfi Bioconductor package in R 3. Briefly, red and green channels 21 
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intensities were mapped to the methylated and unmethylated status, and 22 

average intensities used to check for low quality samples. Initial quality 23 

assessment of methylation data was performed using the preprocessIllumina 24 

option. Principal component analyses (PCA) were performed using the singular 25 

value decomposition method, to identify methylation outliers based on the first 26 

four components. Samples with intensities more than 3 standard deviations 27 

away from the median were considered outliers and were removed. Intensities 28 

from the sex chromosomes were used to predict sex, and samples with 29 

predicted sex different from their recorded value were removed. Samples that 30 

were initially processed in batches were merged at this stage before further 31 

preprocessing. Stratified quantile normalization was then applied across 32 

samples The data were then normalized together using the minfi 33 

preprocessQuantile function 4. PCA of normalized beta values were used to 34 

control for unknown structure in the methylation data. Most cohorts estimated 35 

the cell counts for the 6 major cell types in blood (granulocytes, B cells, CD4+ 36 

T cells, CD8+ T cells, monocytes and NK cells) for each individual by 37 

implementing the estimateCellCounts function in minfi, which gives sample-38 

specific estimates of cell proportions based on reference information on cell-39 

specific methylation signatures. Other cohorts (i.e., NTR) measured cells 40 

counts directly. 41 

 42 
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Epigenome-wide association analysis  43 

Epigenome-wide association studies with volumes of the thalamus, 44 

hippocampus and NAcc were performed for each site separately. After 45 

normalization, probes on the sex chromosomes were filtered out (which are 46 

more difficult to accurately normalize), as were probes not detected (detection 47 

p-value > 0.01) in more than 20% of samples and probes containing a SNP 48 

(minor allele frequency ≥ 0.05) at the CpG or at the single nucleotide extension 49 

site. 50 

We modelled association of DNA methylation and mean brain volumes 51 

in the hippocampus, thalamus and NAcc using linear regression analyses. 52 

Control variables included sex, age, age 2, intracranial volume, methylation 53 

composition (the first 4 principal components of the methylation data), and 54 

blood cell-type composition (first two components of estimated cell-type 55 

proportion) and depending on the sample and disease status (when applicable). 56 

For studies with data collected across several centres, dummy-coded 57 

covariates were also included in the model. Cohorts with family data (NTR, 58 

QTIM) performed association analyses using generalized estimating equation 59 

to control for familial relationship in addition to the other covariates. Our 60 

analyses focused on the full set of subjects, including patients, to maximise the 61 

power to detect effects. We also re-analysed the data excluding patients to 62 

ensure that the effects detected were not driven by disease. 63 
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The EWAS results from each site were uploaded to a central server for 64 

meta-analyses. Cross-reactive probes were further removed from the EWAS 65 

result files from each site, leaving 397,164 probes for subsequent analysis. 66 

Results from each cohort were meta-analysed by combining correlations 67 

across all 11 cohorts with fixed effect model, weighting for sample size 5. False 68 

discovery rates (FDR) were computed (correcting for the number of brain 69 

regions tested and the number of DNA methylation probes) and FDR < 0.05 70 

was considered statistically significant. The protocols used for testing 71 

association and meta-analysis and the meta-analytic results will be freely 72 

available from the ENIGMA consortium webpage upon publication 73 

(http://enigma.ini.usc.edu/protocols/ and 74 

http://enigma.ini.usc.edu/research/downloadenigma-gwas-results). 75 

 76 

Identification of differentially methylated regions (DMRs) 77 

We identified DMRs by applying the Comb-p algorithm 6 on the meta-analysis 78 

of hippocampal volume. Comb-p adjusts p-values for genomic autocorrelation 79 

(ACF), identifies enriched regions of low p-values, and performs inference on 80 

putative DMRs using Sidăk multiple testing correction 7. The ACF distance was 81 

set to 500bp and the p-value threshold required for a DMR at p < 0.05. DMRs 82 

contained a minimum of 2 CpG sites.  83 

 84 

http://enigma.ini.usc.edu/research/downloadenigma-gwas-results
http://enigma.ini.usc.edu/research/downloadenigma-gwas-results
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Effects of methylation on gene expression  85 

Effects of DNA methylation on gene expression were investigated in 631 86 

subjects of the IMAGEN sample for which gene expression data were available. 87 

Total RNA was extracted from whole blood cells collected at the age of 14 using 88 

the PAXgene Blood RNA Kit (QIAGEN Inc., Valencia, CA). Following quality 89 

control of the total RNA extracted, labeled complementary RNA (cRNA) was 90 

generated using the Illumina® TotalPrep™ RNA Amplification kit (Applied 91 

Biosystems/Ambion, Austin, TX). The size distribution of cRNA was determined 92 

through Bioanalyzer (Agilent Technologies, Santa Clara, CA) using the 93 

Eukaryotic mRNA Assay with smear analysis. Gene expression profiling was 94 

performed using Illumina HumanHT-12 v4 Expression BeadChips (Illumina Inc., 95 

San Diego, CA). Expression data were normalized using the mloess method 8. 96 

Expression data for genes mapping the top two CpG sites and DMRs 97 

associated with hippocampus volume. These included BAIAP2 (probes 98 

ILMN_1705922, ILMN_1652865, ILMN_1699727, ILMN_2247226 and 99 

ILMN_2258749), ECH1 (ILMN_1653115), CMYA5 (ILMN_1805765) and its 100 

neighbouring genes MTX3 (ILMN_1679071) and PAPD4 (ILMN_1681845) 101 

genes, HHEX (ILMN_1762712) and CPT1B (ILMN_1791754). Expression data 102 

were log-transformed before analyses. For each DMR, a single DNA 103 

methylation factor was computed, taking into account methylation at all CpG 104 

sites within the DMR. Associations between gene expression and DNA 105 



6 
 

methylation were measured using linear regressions with the first 4 principal 106 

components of the methylation data, sample batches, the first two components 107 

of estimated cell-type proportion, recruitment centres (dummy-coded) and sex 108 

as covariates. 109 

 110 

Methylation quantitative trait loci (mQTL) 111 

To determine the relationship between genetic variation and CpG methylation 112 

levels, we searched for mQTLs in several datasets. First, we interrogated the 113 

ARIES dataset 9 that includes DNA methylation collected from peripheral blood 114 

(or cord blood) at five different time points across the life course from individuals 115 

in the Avon Longitudinal Study of Parents and Children (ALSPAC) 10. This 116 

dataset applied conservative multiple testing correction (p < 1 × 10−14) to identify 117 

between 24,262 and 31,729 sentinel associations at each time point.  118 

We complemented this search using data from the combined Lothian 119 

Birth Cohorts (1921 and 1936) 11, and the Brisbane Systems Genetics Study 12. 120 

The discovery and replication thresholds set in that study were P < 1 × 10-11 and 121 

P < 1 × 10-6, respectively, with both cohorts acting as a discovery (P < 1 × 10-11) 122 

and replication (P < 1 × 10-6) data set (only the most significant SNP for each 123 

CpG was considered). 124 

 125 

Expression quantitative trait loci (eQTL) 126 
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We used the Genotype-Tissue Expression (GTEx) database 13 to identify 127 

expression quantitative trait loci (cis-eQTLs; i.e., SNPs correlating with 128 

differential expression of neighbouring genes). This dataset, generated from 48 129 

tissues from 620 donors, tests for significant SNPs-genes pairs for genes within 130 

1Mb of input SNPs. The data described in this manuscript were obtained from 131 

the GTEx Portal (https://gtexportal.org/home/), Release: V7. It used FastQTL 132 

14, to map SNPs to gene-level expression data and calculate q-values based 133 

on beta distribution-adjusted empirical p-values. A false discovery rate (FDR) 134 

threshold of <0.05 was applied to identify genes with a significant eQTL. The 135 

effect sizes (slopes of the linear regression) were computed in a normalized 136 

space (i.e., normalised effect size (NES)), where magnitude has no direct 137 

biological interpretation. They reflect the effects of the alternative alleles relative 138 

to the reference alleles, as reported in the GTEx database.  139 

 140 

Brain-blood methylation correlation 141 

We interrogated a searchable DNA methylation database 15 142 

(https://epigenetics.essex.ac.uk/bloodbrain/) generated from matched DNA 143 

samples isolated from whole blood and 4 brain regions (prefrontal cortex, 144 

entorhinal cortex, superior temporal gyrus, and cerebellum) from 122 145 

individuals to establish the degree to which blood methylation levels at selected 146 

loci correlated with their brain methylation patterns. Correlations between blood 147 

https://gtexportal.org/home/)
https://gtexportal.org/home/)
http://epigenetics.iop.kcl.ac.uk/bloodbrain/)
http://epigenetics.iop.kcl.ac.uk/bloodbrain/)
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and brain methylation levels at individual CpG loci within DMRs were evaluated 148 

to indicate the similarity of methylation level between blood and brain tissues at 149 

these loci. In addition, the degree of these blood-brain co-variations (i.e. the 150 

extent to which of DNA methylation in blood correlated with DNA methylation in 151 

brain) at selected CpG loci and across DMRs were compared to their 152 

corresponding Z-values from the hippocampal EWAS. This comparison 153 

enabled us to evaluate the possible transmission of information from blood DNA 154 

methylation through brain DNA methylation to hippocampus volume.  155 

It is important to point out that higher degree of blood-brain co-variations 156 

in methylation, which indicates a higher proportion of shared information 157 

between blood and brain, would result in increased strength in association 158 

between blood DNA methylation and hippocampus volume, solely if this 159 

association was indeed mediated by brain DNA methylation. Specifically, we 160 

used the following linear models to test if associations between hippocampus 161 

volume and blood DNA methylation (as found in our EWAS) were mediated by 162 

brain DNA methylation: 163 

ij j ij

ij i ij ij

BRM BS

BLM BRM



 

= +

=  +
 164 

where BLM, BRM and BS denote blood DNA methylation, brain DNA 165 

methylation and brain structure (i.e., hippocampus volume), respectively; εij and 166 

ηij the residual terms of the first and second equations of the ith CpG site 167 

(i=0,1,2,...,m, where m indicates the number of CpG sites) from the jth individual 168 
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parameters for the ith pair of brain and blood CpG site. We could then derive 171 

the t-statistics at each CpG site for both correlations/associations (i.e. the brain-172 

blood co-variations in methylation and the correlation between blood DNA 173 
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, respectively, where ρA denotes the standard deviation of variable A, i.e. one of 178 

BS, εi and ηi. If each of the two t-statistics shown above was observed from an 179 

independent sample, we could have: 180 
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, where 2

i
 , 

i
 , 2

i
  and 2

i
  were assumed to be independent from each 182 

other. Clearly, a null result of ( ), ,
,

i i iBLM BRM BLM BS
Cor t t  could be achieved if at least 183 

one of the two terms on the right-hand side of the last equation equals 0. While 184 

the first term can hardly reach 0 unless BS  equals 0, indicating the brain 185 

structure is identical among individuals from the second sample, and hence no 186 

transmission of information between the brain methylation and the brain 187 

structure (i.e. their correlation equals 0 at each methylation site), the second 188 

term reaches 0 only if 
i

  is independent from i  , i.e. the transmissions of 189 

information between blood and brain DNA methylations (i.e. the blood-brain co-190 

variation) in the two samples are completely different. Therefore, a significant 191 

statistical test supporting ( ), ,
, 0

i i iBLM BRM BLM BS
Cor t t   should indeed suggest a 192 

mediation role of DNA methylation in the proposed brain areas on the 193 

transmission of information between the blood DNA methylation and the brain 194 

structure of interest. Note no transmission direction (e.g. from blood DNA 195 

methylation to brain structure) could be derived from this approach. 196 
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We evaluated this transmission effect across all three DMRs, as well as 197 

within each DMR. When all three DMRs were analysed together, dummy 198 

variables were introduced to control for varied blood-brain correlation levels at 199 

each DMR. For each DMR, as the direction of transmission effect was expected 200 

to follow that of the EWAS, we applied one-tailed statistical tests (i.e. tests for 201 

the right tail in DMR1 and DMR2 and a test for the left tail in DMR3). Also of 202 

note, when investigating effects across all three DMRs, we reversed the sign of 203 

Z-values in DMR3 to harmonize the expected direction of associations. 204 

An additional search was performed using data from blood and Brodmann 205 

areas 7, 10 and 20 from post-mortem samples of 16 individuals 16. 206 

 207 

Enrichment analyses 208 

To test for enrichment for genomic regions found associated with hippocampal 209 

volume in our recent GWAS meta-analysis of hippocampal volume 1, we 210 

performed analyses based on MAGENTA 17, a computational tool designed for 211 

gene sets-based enrichment analyses with GWAS meta-analyses data as an 212 

input. To avoid “double dipping” in these analyses, we excluded the IMAGEN 213 

sample from the ENIGMA hippocampal volume meta-analysis, which we used 214 

as a dataset for known hippocampal volume SNPs (i.e., the ‘gene set’). We 215 

then tested for enrichment of this ‘gene set’ in the IMAGEN hippocampus 216 

EWAS results.  217 
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We modified the MAGENTA program to make it suitable for the analysis 218 

of DNA methylation data by first creating a ‘gene set’ of SNP regions by 219 

mapping SNPs to genomic locations, taking into account recombination 220 

hotspots. Adjacent regions with recombination rates lower than 10 were merged 221 

together. We then mapped CpG sites identified in the EWAS onto genomic 222 

regions if they fell within 100 kb of regions’ boundaries. Regions were scored 223 

based on p-values of the most significant CpG in the region. In addition, Šidák 224 

correction 7 was applied to correct for confounders such as gene size. Regions 225 

with significant enrichment were identified by permutation testing, using 5000 226 

permutations. Two parameters were set to test for significant enrichment: i) the 227 

p-value threshold for selecting significant regions from the GWAS meta-228 

analysis (GWAS thresholds of 5 x 10-6 and 5 x 10-7 were used) and ii) the cut-229 

off threshold for each permutation: 90% and 99% cut-offs were used.  230 

 231 
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Supplementary Figure Legends: 416 

Supplementary Figure 1: Relationship between blood vs. brain correlation 417 

and association with hippocampal volume. The x-axis represents the effect (z-418 

score) of individual CpGs within the listed DMR on hippocampal volume. The 419 

y-axis shows the corresponding correlation between DNA methylation in blood 420 

versus brain in 4 brain areas 56 at these CpGs. Generally, stronger effects are 421 

observed for CpG sites whose methylation levels are highly correlated in at 422 

least one tissue. 423 

 424 

Supplementary Figure 2: Comparison between DNA methylation in blood and 425 

in three brain regions (BA7, BA10 and BA20) in paired samples from 16 426 

individuals 57. Metrics shown for CpG sites composing each of the 3 DMRs, 427 

include spearman correlation values of methylation between blood and the 428 

listed brain region, methylation variability in blood and brain samples and 429 

average methylation change with cell composition adjustment. 430 

 431 

Supplementary Figure 3: Expression quantitative trait loci analyses showing 432 

effects of rs4441859 and rs131758 genotypes on CMYA5 and CPT1B 433 

expression in tissues from 620 donors from the Genotype-Tissue Expression 434 

(GTEx) database 76. Effects fulfilling the FDR threshold of ≤0.05 are highlighted 435 

in red.  436 
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