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1.  Description of the TCI scales and subscales 

Descriptors of high and low scorers on each of the subscales of the 7 TCI higher-order 

dimensions are presented in Table S1. All subscales were quantified as the average score 

per item in that subscale (so that 1 indicated an extreme low score, 3 a score near average, 

and 5 an extreme high score).  For purposes of pattern recognition of profiles, medians 

for each subscale were calculated and those above the median were rated high and those 

below were rated low. 

2.   Comparability of TCI assessment in three samples 

The Finnish longitudinal study involved 2,149 subjects (assessed in 1997, 2001, 2007, 

2012), who completed the original TCI with 240 items using a 5-point Likert scale instead 

of the original true-false answer format 2, 3.  The averages of the scales and subscales 

scores across the four assessment occasions were utilized.  The German subjects 

answered the same 240 TCI items using the original true-false format.  Strong 

concordance between alternative formats in German and other languages has been 

previously demonstrated 4.  The Korean subjects used a short form made up of the 140 

items with the strongest correlation with the full scales and using the same 5-point Likert 

format used in Finland 5, 6.    

3. Pre-selection of SNPS 

Our samples were treated as representative of the general population for initial analysis 

because when recruited they were not subdivided experimentally into unhealthy cases 

and healthy controls.   To select an initial subset of SNPs and discard non-relevant SNP 

observations, we first cleaned the SNP data in the sample as described in 7.  Then, we 

selected SNPs with a high threshold (p-value<0.01) from a logistic or continuous 

regression calculated by Plink against the empirical temperament phenotypic index 
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described below (see below item (a) and Calculation of cluster rankings).  The quality 

control (QC) of the genotypic data was performed following the steps detailed in 

references, removing consequently all the SNPs satisfying the following conditions: SNP 

call rate < 95% in either datasets, Hardy-Weinberg (HWE) p‐value < 10E‐6, Minor Allele 

Frequency (MAF) < 1%, and >1 discordant genotypes in either sample duplicates. To 

select the subject status for the regression, and because we did not have cases and 

controls, we calculated 3 indicators of variability in personality that could be estimated 

consistently in all three samples we analyzed (see below). Then, a subset of SNPs were 

pre-selected to reduce the large search space using the Plink software suite 8, taking sex 

and ancestry as covariates (see below), and using a generously inclusive threshold (p-

value < 0.01) for association with temperament.   

 (a) Derivation of the empirical temperament/character index: First, we calculated 

a purely empirical (i.e., agnostic and data-driven) indicator of temperament functioning.  

We clustered subjects corresponding to the 12 temperament subscales and assigned each 

subject the number of the cluster to which they belonged  (as described in the next 

paragraph).  The result was a single empirical index of temperament cluster membership 

that served as a comprehensive measure of variability in temperament.  We repeated 

process but clustering subjects corresponding to the 13 character subscales and deriving a 

single empirical index of character.  

 To calculate the cluster rankings we applied hierarchical agglomerative clustering 

(Statistical Toolbox, Matlab 2007b) with a complete linkage method and correlation 

similarity measurement to group SNP, phenotypic, or environmental sets by their shared 

subjects using hypergeometric statistics.  The function that controls the vertical order in 

which a row is plotted (Spotfire Decision Site 9.1.2) in a hierarchical clustering is defined 

as follows. 
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Given two sub-clusters within a cluster (there are always exactly two sub-clusters 

considered at each step), both sub-clusters are weighted and the sub-cluster with the 

highest weight is placed above the other sub-cluster.  This function is systematically 

applied until a single cluster containing all rows is obtained.  To calculate the weight w3 of 

a new cluster C3 formed from two sub-clusters C1 and C2 with a weight of w1  and w2, and 

each containing n1 and n2 rows, the following expression is used: 

                 (eqn. 1) 

The weight of a sub-cluster with a single row is calculated as the average value of its 

columns.  

(b) Derivation of Dichotomous Indices of Well-being and Ill-being: Second, we 

calculated a partly theoretically-based indicator based on extensive prior work showing 

that high values on product of each of the three TCI character scales (that is, SDxCOxST) 

was associated empirically with positive health whereas low scores on the sum of Self-

directedness (SD) and Cooperativeness (CO) was associated empirically with ill health.   

Specifically, we calculated well- and ill-being indices (see below second item) where 

subjects in the first and bottom deciles of SDxCOxST and SD+CO, respectively (see 

Tables S2A, B) were labeled as class ‘1’ whereas the remaining subjects were labeled as 

class ‘0’.  Thus, being extremely high or low was distinguished from being intermediate 

for pre-selection purposes. 

(c) Derivation of Semi-quantitative Indices of Well-being and Ill-being: Third, we 

used the partly theoretical indicators to identify intermediate variation along with 

extreme variability in a semi-quantitative manner.  As an extension of (b), we 

distinguished six equal-sized classes instead of a dichotomous classification (see Tables 
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S2A,B, e.g. 0-16% labeled as 1, 16-32% as 2, …).  Extreme values 1 and 6 from analysis (c) 

contained most of the same subjects as were detected in the dichotomous (c) classification. 

The empirical index calculated in (a) characterizes all the subjects, not only the 

extreme subjects. Moreover, this index is a single quantitative index, whereas the well 

and ill-being indices mixed individuals with either extreme high or extreme low well-

being. Finally, the index in (a) can be re-calculated for Environmental variables and used 

as a measurement inherent to the sample, whereas the well- and ill-being indices are all 

based on Character subscales because prior research had established character is the self-

regulatory component of personality, which largely accounts for differences between 

people with healthy (mature) and unhealthy (immature) adaptation. 

  (d) Application of the Indices: We used the empirical temperament index (i.e., 

procedure (a)) in the classification of SNP sets by SKAT.  Note that SKAT for single SNPs 

provides a regression similar to that of Plink for individual SNPs 7.  Then, and 

independently, we tested the correlations between results when well- and ill-being 

indices were utilized in Plink and SKAT. The minimum p-value of all indices from (b) 

and (c) had a very strong correlation with the index from (a) (p value <  E-20, RMSE 0.03). 

Thus our empirical temperament index and the well- and ill-being measurements are 

highly correlated indicators of personality variability, so that the empirical indicator was 

able to identify about 95% of the pre-selected SNPs associated with temperament.   

 (i) The analysis of the covariate effect  

We accounted for ethnicity by using first three principal components (PCs) that account 

for ancestral stratification of SNP genotypes and sex 9, 10. We took stratification into 

account both before and after the machine learning process.  First, we accounted for 

covariates when selecting the initial set of individual input SNPs by using Plink 8. Second, 

after selecting the constituents of the SNP sets, each SNP set was evaluated by SKAT 11, 12, 
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which accounts for covariates when sets of SNPs are assessed.  

 (ii) Pre-discovery analysis of covariate effect performed by Plink 

Population stratification requires a covariate study before performing the statistical 

analyses. The magnitude of the effects of the population stratification depends on sample 

size, heritability, linkage disequilibrium structure and the number of causal variants 6. 

Confounding bias occurs when a risk factor is also associated with the marker, as is  

observed when both disease and allelic frequency are correlated through ethnicity. This 

problem appears more markedly in the context of GWAS since these studies require a 

very large sample and are often carried out in different countries. Population 

stratification results in the inflation of p-values. This inflation can be detected and 

corrected for when testing for alleles that are associated with disease. The accepted way 

to correct for this effect is the use of covariates in the statistical analysis. It is important to 

limit the number of covariates because too many covariates can decrease the power of 

true detection 13. 

In this study we performed an analysis of covariates based on Quantile-Quantile 

Plots (QQ Plots) and Lambda genomic control (λ) values to ensure the quality of 

adjustment 14, 15. The QQ Plot is a graphical technique for determining if two data sets 

come from populations with a common distribution. If two sets come from a population 

with the same distribution, the points should fall approximately along a 45-degree 

reference line that is also plotted 16. The λ is used to calculate the genomic inflation factor. 

The expected λ value is 1.  If the value is greater than 1, then this may be evidence for 

some systematic bias that needs to be corrected in the study. 

We tested the stratification effect by adjusting for gender and for the first 3 PCs 

(see preceding section on PCA analysis).  Then, we calculated the lambda values and ran 

the QQ Plots (see 14, 15As expected, the experiment without covariates (λ = 1.363) differs 
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from that one that considers all the covariates (λ = 1.094). It has been shown by different 

studies that the use of the first 3 PCs is usually sufficient to correct population 

stratification in GWAS studies 10. 

 (iii) Post-discovery analysis of covariate effect performed by SKAT 

SKAT is a SNP-set level test for association between a set of rare (or common) variants 

and dichotomous or quantitative phenotypes. SKAT aggregates individual score test 

statistics of SNPs in a SNP set and efficiently computes SNP-set level p-values while 

adjusting for covariates, such as PCs to account for population stratification . For post-

discovery analysis, we used 3 PCs previously described and gender as covariates (see 14, 

15SKAT also properly accounts for multiple comparisons 1, 11, 12. 

4. Advantages of SNP-set analysis over alternative tests of single and multiple markers 

In order to understand the novel design and methods of analysis of our study, it is useful 

to place it in the context of its strong advantages over the fundamental limitations of 

earlier methods in terms of their reproducibility, interpretability, and power.  A long 

record of peer-reviewed work documents the advantages of SNP-set analysis in GWAS 

over alternative analyses of individual and multiple SNPs, particularly in adequately 

handling complex phenotypic-genotypic relationships influenced by epistasis and genetic 

variants in linkage disequilibrium (LD). 

 Analyses of associations with individual SNPs are often limited by poor 

reproducibility; that is, many of the highly ranked SNPs in the discovery phase are false 

positives and cannot be replicated or otherwise validated. This is largely due to the 

restricted power to detect SNPs with small effects that are truly associated with the 

outcome. Unfortunately, the individual SNPs that are genotyped on uncustomized 

GWAS platforms often show only modest effects with any particular phenotype. One 

explanation for this is that the true causal SNP is rarely genotyped but there are typed 
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SNPs that are in linkage disequilibrium (LD) with the causal SNP. In this case, when 

individual-SNP analysis is used, the typed SNPs in LD with the causal SNP will each 

show only weak or moderate effects because each typed SNP serves as an imperfect 

surrogate for the causal SNP.   

 Therefore, it could be advantageous to consider the joint effect of multiple SNPs in 

analysis 17 because it is probable that several of these markers are in LD with the causal 

SNP and could capture the true effect more effectively than could analysis of individual 

SNPs. Finally, individual-SNP analysis considers only the average and/or marginal effect 

of each SNP and therefore fails to accommodate epistatic effects even when in LD with 

the causal genes. Epistatic interactions between SNPs can contribute to disease 

susceptibility such that individual SNPs may show little individual effect but their joint 

interactions may have a much larger effect. Even exhaustive analysis of individual SNPs 

will not be able to detect such effects because the large number of potential interactions 

exceeds the statistical power of even extremely large samples 18.  As an alternative 

strategy for analysis, it has been proposed to group SNPs together into SNP sets along 

the genome and to perform genome-wide tests for SNP sets instead of individual SNPs.  

SNP-set-based analysis uses information from multiple correlated SNPs that are grouped 

on the basis of prior biological knowledge.  As a result analysis of SNP sets has the 

possibility to provide improved reproducibility, interpretability, and increased power, 

especially when the effects of individual SNPs are weak or moderate 19, 20. 

 There have been several earlier attempts to describe multi-marker tests (that is, 

tests of multiple SNPs and/or other biological markers) to overcome the limitations of 

tests based on individual SNPs.  The first class of multi-SNP test was based on 

individual-SNP analysis using the most significant p-value as the p-value for the set of 

loci, and then correcting for having done multiple tests 20. However, such tests still rely 
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strongly on individual-SNP analysis, and when the individual SNPs are not in high LD 

with the causal variant, they may have low power and they cannot accommodate 

complex genetic effects and interactions.  

 Likewise extension of multi-marker tests for multiple SNPs or haplotypes via 

multivariate regression 21 often offer little benefit over methods based on individual-SNP 

analysis because they have a large number of degrees of freedom 22. It has been proposed 

to compare pairwise genetic similarity with pairwise trait similarity to solve the problem 

of many degrees of freedom 23-25. However, these tests still have major limitations: they 

assume that all variants have the same direction of effect, i.e., all the minor alleles for 

each SNP increase risk or all minor alleles decrease risk25, or require  expensive 

permutation analyses that may be impractical for some GWAS settings, or do not allow 

for easy covariate adjustment 25.  

A second class of multi-marker tests consists of methods try to leverage explicit 

population-genetics models to pinpoint the causal locus. Many involve reconstructing the 

sample phylogeny to guide the analysis and infer the causal mutation 26, 27. If the 

population-genetics model assumed is realistic and correct, such problem-specific 

methods should have high power. However, it is difficult to validate the assumed models, 

and most procedures are computationally intensive, such that in real applications the 

models need to be simplified. Once again, these models usually fail to allow for covariate 

adjustment. Computational efficiency and ease of covariate adjustment give a practical 

advantage to the logistic kernel-machine regression test over population-genetic 

modeling. 

An alternative analytical strategy was proposed by Dr. Lin.  She proposed to 

group SNPs together into SNP sets on the basis of proximity to genomic features such as 

genes or haplotype blocks, and then to test the joint effect of each SNP set. Testing of each 
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SNP set uses the logistic kernel-machine-based test28, which is based on a statistical 

framework that allows for flexible modeling of epistatic and nonlinear SNP effects. This 

flexibility and the ability to naturally adjust for covariate effects are important features of 

our own test, which is an extension of Lin's approach that give it major advantages over 

individual SNP tests and existing multimarker tests. The logic behind our extension of 

Lin's analysis strategy is that we can extract information found in the joint relations of 

multiple SNPs to improve the power to detect true effects. 

Consequently, the choice of the basis for grouping multiple SNPs can influence the 

power of the approach. Lin and her colleagues focused on grouping SNPs on the basis of 

their proximity to a known gene and noted that this allowed them to reduce multiple 

comparisons and to harness local LD structure in order to improve the power for 

capturing untyped SNPs. Using genes as the genomic features of interest allowed them 11, 

12 to map approximately 310K SNPs to 18K SNP sets.   

 However, it may be that the causal SNP lies far from a known gene, in which case 

groupings based on genes (and, by extension, pathways) will fail to capture the effect of 

interest. To augment coverage of gene-desert regions of the SNP sets identified by Lin 

and others 11, 12, SNPs can be grouped on the basis of additional genomic features, such as 

evolutionarily conserved regions. Such groupings again may allow us to harness local 

correlation. A moving window approach will be useful for capturing all genotyped SNPs, 

but direct interpretation of SNP-set analysis results are more difficult. Groupings via 

haplotype blocks are attractive because they make explicit use of the LD information. Use 

of haplotype blocks will allow for comprehensive coverage of the entire genome and will 

remove the need to explicitly predefine genomic features of interest. Beyond harnessing 

local LD structure to boost power, another important feature of Dr Lin’s approach is the 

ability to model the joint effect of multiple, independent, causal signals as well as 
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possible epistatic effects.   

 Practically, however, finding a SNP-set formation strategy that optimize this 

approach can be difficult. It was suggested in 25 that using a gene or moving-window 

strategy can certainly capture multi-SNP and epistatic effects among SNPs that are 

located close to one another on the genome, but identification of such signals among 

SNPs that are distantly placed will not be possible. Indeed they suggested that a potential 

strategy would be to use prior biological knowledge. In particular, WU et al pointed out 

that if multiple SNPs are expected to affect the disease risk, it is reasonable to expect 

them to lie within genes in the same pathway or in genes with similar function; hence, 

forming SNP sets on the basis of pathways can potentially capture such effects. 

Unfortunately, WU et al concluded that a systematic approach for identifying such 

grouping structures at the genome-wide level is not obvious and that to avoid bias in our 

testing procedure, any grouping strategy must be made without consideration of the 

case-control status of the subjects in the data set. Wu et al said that groupings must be 

made with the use of information from external sources, prior studies, or unsupervised 

statistical methods 11, 12, and that SNP-set formation strategies will improve with advances 

in our knowledge of the genome and genomic structures. 

5. The PGMRA method: Summary  

Our approach implemented the suggestions that emerged from Dr Lin’s work in order to 

uncover sets of multiple SNPs that may be correlated even at long distances on the same 

chromosome or on different chromosomes.  We extended the approach in 11, 12 by using an 

“unsupervised statistical method” termed Phenotype-Genotype Many-to-many Relations 

Analysis (PGMRA, Figure S1).  However, we used a purely data-driven method without 

biasing the search by using external sources, prior studies, or knowledge of the genome 

and genomic structures, such as genes, pathways, or additional genomic features, such as 
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evolutionarily conserved regions. Indeed, our SNP sets can share SNPs but not subjects, 

as expected because they involve the same SNPs but with different allele values (both 

alleles of a SNP can act as risk alleles in different genetic contexts) in different subjects  7. 

Each SNP set was composed of a particular group of subjects described by a particular set 

of homozygotic and/or heterozygotic alleles; subjects and/or SNPs may be present in 

more than one set 1, 29, 30. These SNP sets and their relations with one another characterize 

the genetic architecture of disease-associated SNPs in all subjects, including cases and 

controls.  

Given a genotype database from a GWAS represented as a matrix of [SNPs x 

subjects] and a corresponding phenotype represented as a matrix of [features x subjects], 

the method for dissecting the architecture of a disease is composed of 6 steps. These steps 

are described for example elsewhere 7, where a SNP set is a sub-matrix or bicluster 1 

harboring subjects described by a set of SNPs sharing similar allele values 1, 11, and the 

features are the TCI subscales. More generally, PGMRA uses a Generalized Factorization 

Method (GFM) to dissect a GWAS into SNP sets 1, 11 based on the Fuzzy Nonnegative 

Matrix Factorization method (FNMF) 1 algorithm (Figure S1B-C).  FNMF is based on the 

bioNMF method 31, and uses it as a default basic factorization method (Figure S1D). 

FNMF allows detection of outliers and overlap among sub-matrices 1.  The GFM applies 

FNMF recurrently to generate multiple matrix partitions in each domain of knowledge 

(genotype and phenotype) using various initializations with different maximum numbers 

of sub-matrices k (where 2≤𝑘≤n  and n is the number of subjects), and thus avoids any 

assumptions about the ideal number of sub-matrices.   

 Notably, the PGMRA method identifies local partitions of datasets, which 

provides substantial advantages over classical clustering approaches.  Averaging and 

comparing groups would be expected to miss real differences if such differences are 
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localized in different locations, that is, in different subgroups of people with distinctive 

features (Figure S1F).  In contrast to classical clustering techniques, such as hierarchical 

clustering 32 and k-means clustering 33, we used biclustering techniques that do not 

require subjects in the same bicluster to perform similarly over all features exhibiting 

changes.  Classical clustering methods derive a global model whereas biclustering 

algorithms produce a local model in which signals emerge only in particularly relevant 

dimensions. 

 To guarantee that sub-matrices converge to the same solution and, given the non-

deterministic nature of NMF and its dependence on the initialization of the W and H 

vectors, PGMRA runs the analysis 40 times for any k maximum number of allowed 

submatrices with different random initializations of the vectors to select those that that 

best approximate the input matrix 34.  To estimate the precision of sample statistics of the 

SNP sets (variance of the W and H vectors) we use a leave-one-out technique 

(jackknifing) 1000 times on the SNP domain, which produces more than 90% support for 

all identified sets with an average variance of approximately ±5% of their corresponding 

W and H vectors 31.  Finally, we modified the sampling technique to ensure the 

occurrence of the remaining sets after a leave-one-set-out procedure 35.  This sampling 

and estimation method was applied in the current study sample reported here with more 

than 90% of support.  

 By incorporating a posteriori the status of the subjects (see Table S2B) to SNP and 

phenotypic sets, the method is able to calculate the well-being and ill-being probabilities 

of such sets and their associations (see eqn. 5, Map a disease risk in 7).  For example, as 

noted previously, the well-being status was defined by the top decile of SDxCOxST and 

the ill-being status was defined by the bottom decile of SD+CO based on independent 

prior empirical work. Q is the weights given by epidemiologic risk of a disease in each 
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SNP or phenotypic set (e.g., 0.01, 0.1 and 1 for cases, relatives and controls, respectively) 1, 

which here is ignored since subjects were from the general population and so generally 

considered more-or-less healthy.  Once this procedure occurs, the method becomes semi-

supervised, and posterior statistical significance of the SNP sets, and phenotype sets can 

be calculated using kernel-based and multivariate statistical analysis 1, 11. We used 

conservative risk estimation for the associations between a SNP set and a clinical, which 

was calculated as the maximum value of both sets.  

PGMRA co-clusters SNP sets with phenotype sets into associations calculating the 

probability of intersected subjects using coincident tests based on hypergeometric 

statistics (PIhyp, 30, 36, equivalent to Fisher's exact test). The significance of the genotypic-

phenotypic associations was tested by generating a permutation test, as described below 

and in 1, 37, 38. All optimal relations had empirical p-value ≤ value < 5E-03. The probability 

of well- or ill-health for an association is calculated by the maximum probability of each 

related set (i.e., most conservative risk evaluation). These associations are organized into 

multilocus networks connected by sharing subjects and/or features (e.g., SNPs, 

symptoms), where shared SNPs between two SNP sets may differ in the allele values and 

have distinct genomic consequences 38-40.  This framework constitutes a knowledge base 

and characterizes the architecture of the phenotype.  Further methodological descriptions 

of PGMRA are available in 1, 29, 35, 38, 41-43, and its web server application is online at 

http://phop.ugr.es/fenogeno 1.  Fast parallel software implementations were run at the 

Center for High Performance Computing (CHPC) facility at WUSM. 

6. The PGMRA algorithm 

PGMRA uncovers a deep architecture (Figure S1A) containing multiple sub-networks 

each uncovered by the NMF method used as a deep autoencoder44 (Figure S1D) in a 

particular domain of knowledge (genetics, clinical symptoms, TCI, voxels in 
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neuroimages). Our implementation of the NMF, termed Fuzzy Nonnegative Matrix 

Factorization method (FNMF), learns and is optimized as described below and 

elsewhere1, 38.   The nodes of one sub-network learned in a particular domain of 

knowledge (e.g., genetics) by a deep FNMF autoencoder (consensus clustering, see 

above) are connected by shared subjects and/or features (SNPs in genetics, subscales in 

TCI).  Two sub-networks, learned from different domains of knowledge (e.g., genetics 

and TCI), are assembled by calculating the probability of intersection of their nodes and 

selecting those optimal connections based on multiobjective and multimodal 

optimization techniques (see above).  These sub-networks constitute the pooling set of 

deeper layers of the network45, 46. Overall, the full network integrates different domains of 

knowledge into interpretable associative networks. The method utilized in this 

manuscript and described in (Figure S1B-C) is unsupervised because we want to extract 

new knowledge. However, it can be easily extended to a semi-supervised approach by 

adding a labeling and a classification layer 47 (Figure S1D). It should be noted that each 

layer has its own learning process (see below) and, instead of the weights in a neural 

network model, their outputs are interpretable relationships (Figure S1A,E).  

 Given a genotype database from a GWAS represented as a matrix [SNPs x 

subjects], the full method for dissecting the architecture of a disease is composed of 8 

steps (Figure S1), where a SNP set is a sub-matrix 1, here also termed biclusters 34, 48, 

comprised of a subgroup of subjects described by a particular subgroup of SNPs sharing 

distinct allele values 1, 11.  In the current study, the phenotype database is composed of 

TCI subscales of temperament [TCI temperament scores x subjects]  and TCI subscales of 

character [TCI character scores x subjects], and its analysis is approached in the same way 

as described for the genotype. Temperament, character and genotypic sets are 

independently learned from each other, but a posteriori associated into relationships. 
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 As a convenient guide for readers, we will describe each of the steps in the 

PGMRA analysis as implemented in the PGMRA webserver and illustrated in Figure S1 

in the following 7 sections (i to vii). 

(i) Identify optimal genotypic and/or phenotypic sets   

Mathematical description of the NMF (Figure S1D,E): We consider a dataset consisting of a 

collection of n subject samples, which we use to characterize a domain of genotypic 

(SNPs) or phenotypic (TCI) states of interest. Here, we illustrate the NMF by the 

genotypic type of data, but can be extended to any other type of data.  The data are 

represented as an m x n matrix X, whose rows contain either the allele values of the m 

SNPs in the n subject samples.  Using the NMF, we find a manageable number of factors 

k, positive local and linear combinations of the n subjects and the m SNPs, which can be 

used to distinguish the genetic profiles of the subtypes contained in the dataset.  

Mathematically, this corresponds to finding an approximate factoring, Xmxn ~ Wmxk x Hkxn, 

where both matrices have only positive entries and hence are biomedicalli meaningful 1, 34, 

49, 50.  W is an m x k matrix that defines decomposition model whose columns specify how 

much each of the subjects contributes to each of the k factors. H is a k x n matrix whose 

entries represent the SNP allele values of the k factors for each of the n subject samples.  

In our implementation either a subject or SNP can belong to more than one factor 1, 29, 30. 

Transforming NMF k factors into sub-matrices or biclusters which are interpreted as  SNP or 

phenotypic sets: The original bioNMF method 34, 48  uses the non-smooth variant of the 

NMF algorithm (nsNMF).  This variant achieves an easier interpretation of the factors (k) 

due to the intuitive sparse, non-overlapped part-based representation of the data. Once 

the W and H matrices are calculated, the method selects the most representative features 

and observations (subjects) for each factor in order to build the biclusters. The bioNMF 

algorithm defines the factor-specific rows or columns as those rows or columns in the H 
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and W matrices, respectively, that show high coefficients for a given factor, as well as low 

coefficients for the other factors. Given a certain factor k, i.e., the lth column of W, all 

features in the dataset can be properly sorted by their association to the local pattern 

captured by this factor (Figure S1D(ii-iii)). At the same time, observations/subjects can 

also be sorted by their coefficients in the corresponding factor, that is, the lth row of H. 

This operation is carried out in one-to-one correspondence among columns of W and 

rows of H, generating k natural ordinations of the matrix in which features and subjects 

highly related in a sub-portion of the data. The set of selected rows and columns for each 

factor define a bicluster. 

 We developed a fuzzy variation of the bioNMF biclustering method named Fuzzy 

NMF or FNMF 1, where every column or row can belong to many biclusters or, 

eventually, to all of them 29, 30, 35.  In addition, our FNMF includes a strategy to identify 

and discard outliers from the biclusters, as in a possibilistic clustering method 35, 51, 52.  

Unlike the bioNMF biclustering method, our FNMF analyses each factor by selecting the 

rows or columns with the highest values based on a threshold established as an input 

parameter.  This threshold indicates the level of fuzziness, and in turn, which values will 

belong to a bicluster.  The threshold is defined in the unit interval [0-1].  For example, the 

threshold for factor i in the matrix H is calculated as:  

Threshold = max ( Hi ) * (1 – fuzziness)       (eqn. 2) 

where all values above the threshold will be kept in the bicluster.  The selection process 

for one factor takes into account only the values within that factor (that is, they are 

independent of the values of the rest of the matrix, Figure S1D(iii)). The fuzziness 

allowed in the current study was 30%. From now on, we will use the terms sub-matrix, 

bicluster, or set (SNP or phenotypic) as synonyms that serve to emphasize specific 

features of the same thing in different analytical or clinical contexts.  
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Decomposing the data into a multilevel family of sub-matrices (Figure S1E): The Generalized 

Factorization Method (GFM) applies a basic factorization method recurrently to generate 

multiple matrix partitions using various initializations with different maximum numbers 

of sub-matrices k (e.g., 2≤𝑘≤n where n is the number of subjects), and thus, avoids any 

assumption about the ideal number of sub-matrices (see 1 REF for a rationale about the 

use of unconstrained number of sub-matrices or clusters).  Specifically, we use FNMF as 

described in the prior section.  For each run of the basic factorization method (2≤𝑘≤n), all 

sub-matrices are selected to compose a family of genotypic SNP sets G_k ={G_k_i}, where 

1≤𝑖≤𝑘.  Each G_k family, as well as all families together G ={G_k} for all k, may include 

submatrices (i.e., sets) that are overlapping, partially redundant, and different in size.  

Learning the W and H matrices of FNMF:  Due to the non-deterministic nature of FNMF, it 

may not converge to the same solution on each run because of the random initial 

conditions used. Therefore, we execute the algorithm 40 times, as was originally 

suggested for the bioNMF algorithm 1, with different random initializations for selecting 

the W and H matrices that best approximate the input matrix. FNMF makes use of the 

convergence method described in 53, 54 to establish the stopping threshold that controls the 

algorithm convergence on each run. Each 10 iterations, a connectivity matrix M of size C 

× C is computed, where C is the number of columns of matrix H.  Each entry Mij in this 

matrix is set to 1 if column i and j in H have their maximum value for the same factor (i.e. 

on the same row in H), and 0 otherwise. If the connectivity matrix stops changing after a 

certain number of iterations (which equals the stopping threshold multiplied by 10), the 

matrices are considered as having converged and the algorithm stops the current run. 

The learning process of the W and H matrices is performed with projected gradient 

descent methods 53, 55.  
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Optimally assembling the families of sub-matrices. Because sub-matrices can be defined at 

different levels of granularity, we apply a competitive learning approach (i.e., consensus 

clustering 56 , 57) to select and assembly optimal, non redundant, and cohesive sub-

matrices using multiobjective and multimodal optimization techniques. Optimal sub-

matrices were obtained as a tradeoff between two opposing objectives: sensitivity and 

generality 29, 30, 38, 58-60.  Sensitive sub-matrices tend to be composed of few observations (i.e., 

subjects) described by multiple features, whereas specific sub-matrices are composed of 

many observations described by few features. A Pareto-optimization strategy searches 

for solutions that are non-dominated in the sense that there are no other solutions 

superior in all objectives being selected (i.e., close to the Minimum Description-Length 

(MDL) 61).  The dominance relationship as a minimization problem is defined as:  

𝑎≺𝑏 iff  ∀𝑖 𝑂𝑖𝑎≤𝑂𝑖𝑏 ∃𝑗 𝑂𝑗𝑎≤𝑂𝑗𝑏            (eqn. 3) 

where the Oi and Oj are either specificity or generality objectives. Optimization of small 

sets of sub-matrices was exhaustively implemented, whereas evaluation of large sets is 

approached by Genetic Algorithms, as described in 35, 43, 62.  Another indirect objective 

considered for the evaluation of sub-matrices is the generation of diverse patterns that 

completely describe objects (subjects).  Therefore, our approach evaluates the sensitivity 

and generality objectives described above in a local niche 30, 58-60.  Both sensitivity and 

specificity measurements are based on counting objects within a sub-matrix without 

distinguishing among them (e.g., # subjects).  However, diversity differentiates which 

objects are within a sub-matrix, and thus, sub-matrices harboring distinct objects are 

allocated in different niches.  These niches are calculated using Jaccard’s metric between 

sub-matrices 43, 62 (i.e., inclusion of subjects):  

𝑁𝑖𝑐ℎ𝑖𝑛𝑔(𝐵𝑖,𝐵𝑗)= 𝑆(𝐵𝑖) ∩𝑆(𝐵𝑗)𝑆(𝐵𝑖) ∪𝑆(𝐵𝑗) >𝛾            (eqn. 4) 
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where Bi and Bj were two different sub-matrices, the S functional retrieves the subjects in 

the sub-matrices in a particular niche, and 𝛾 is the size of the niche determined by the 

degree of overlap (i.e., intersection) between sub-matrices.  Here the assumption is that 

the niches are equivalence classes dictated by the degree of overlap/inclusion between 

subjects in the sub-matrices. In sum, sub-matrices compete with each other if and only if 

they are in the same niche. For example, given two sub-matrices where one of them has 

the same or even worst sensitivity and generality than the other but correspond to 

different sets of subjects, both sub-matrices will be preserved because they are in 

different niches.   

(ii) Perform a statistical analysis of SNP sets (accessed via the PGMRA web server 1).   

Use the R-project package SKAT 11, 12 to evaluate the significance of each SNP set.  We 

used identity-by-state (IBS) as a kernel because the analyzed variants are not rare but 

common, and therefore using the “weighted IBS” kernel would not be adequate 11, 12. 

Since the SNP sets can overlap, we run each one separately.  The gender and ancestry (3 

PCs) of the subjects were used as covariates (see above), and the default remaining 

parameters were utilized. To run the SKAT test, we transformed the unsupervised SNP 

sets into a supervised form by labeling their subjects a posteriori.  The global labeling of 

each subject assigns his or her case/control status, which in this case is the well-being or 

ill-being status. Then, the SKAT method evaluates the ability of each SNP set to classify 

the status of all subjects based on the SNPs included in such set. Another approach is 

termed local labeling, which for each SNP set tags the subject within and outside that set 

with two different labels. Then, the SKAT method evaluates the probability of each SNP 

set to differentiate from the other sets. This is done because we hypothesize that all 

optimal SNPs are required to explain the distributed heritability 7.  

The analysis of the SKAT that evaluates the ability of a SNP set to differentiate the 
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well-being and the ill-being status of all subjects is presented in the main text (Tables S4 

and S5).  In addition, for each SNP set we tested the probability of finding its component 

subjects and SNPs together. In other words, we evaluated how well the SNPs contained 

in a SNP set distinguished their subjects from the other subjects outside the SNP set or 

how different is a particular SNP set from the others. 95% of the SNP sets associated with 

the Temperament phenotype exhibited a 5E-08 > p-value > 5E-73  (13% < 5E-05). 95% of 

the SNP sets associated with the Character phenotype exhibited a  5E-11 > p-value > 5E-

77  (5% < 5E-07). These results strongly support the importance of each individual SNP 

set as a contributor to explain the total distributed heritability.  

(iii) Calculate the frequency of the subject status within a SNP or a phenotypic set   

Once the health status of the subjects is incorporated a posteriori, the frequency of that 

status is calculated as a weighted average function of its observed epidemiological 

occurrence among all subjects in a particular set. Here, the probability of well- or ill-being 

status is defined as: 

𝑃X_𝑘_𝑖 = 𝑖∈𝑆𝑇𝑆𝑡𝑎𝑡𝑢𝑠𝑖𝑄𝑖𝑖∈𝑆𝑇𝑆��𝑎𝑡𝑢𝑠 𝑖   (eqn. 5) 

where X_k_i is a SNP or phenotypic set, Status is the status of the instances, and Q is the 

weights given by the observed epidemiological risk of that status in each SNP set (e.g., 0 

and 1 for controls and cases; 0.01, 0.1 and 1 for cases, relatives and controls, respectively) 

1.  The frequency of the status for all SNP sets is interpolated as a surface using the tgp 

and latticeExtra packages in R-project, respectively.  

(iv) Discover and encode relations among SNP sets into topologically organized 

multilocus networks 

 Co-cluster all SNP sets by calculating the pairwise probability of intersection 

among them using the Hypergeometric statistics 30, 36 (PIhyp) on intersected SNPs: PIhyp 

(G_e_q, G_r_w) (see below, eqn. 6), where q and w are SNP sets generated in runs with a 
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maximum of e and r number of sub-matrices with the FNMF method. Two types of 

intersections are evaluated: SNPs and/or subjects. Connected and disjoint associations 

are organized into multilocus networks connected by sharing observations (subjects) 

and/or features (SNPs, symptoms), where SNPs shared by two SNP sets may differ in 

the allele values and have distinct genomic consequences 7. (See multilocus networks in 63, 

64.) 

 (v) Identify optimal and significant phenotypic sets (Implemented in the PGMRA 

web server 1).   

Next, we created a phenotype database by collecting the TCI temperament and character 

measurements at the sub-scale level encoded in the Likert scale. For efficiency and 

interpretability, in our case, each sub-scale variable was decomposed into two variables: 

the original variable x and the complementary Lx (Low x), which is 5-x in the Likert scale. 

The phenotype data was codified in a [phenotype features x subjects] matrix, where the 

columns and rows correspond to subjects and phenotypic features, respectively. To 

identify phenotype sets (as implemented in the PGMRA web server 1) we apply the 

FNMF method with the phenotype database–instead of genotype database— as 

described above in Step 1, where a phenotypic set is a sub-matrix 1  harboring subjects 

described by a set of phenotypic features sharing similar values (i.e., P_h_j, where j is a 

phenotypic set generated in a run with a maximum of h number of sub-matrices).  To 

select the optimal phenotypic sets, we applied the competitive learning process to the 

phenotypic sub-matrices as described above in Step 2.   

The statistical evaluation of the phenotypic sets was performed in a fashion similar 

to that performed on the genotype. However, the SKAT test was replaced by a Chi-

square test that evaluates a logistic regression with respect to the null model to get a p-

value that reflects the ability of a phenotypic set to discriminate subjects by their status 
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(see lrm function of the R-package rms).  In other words, the temperament phenotypic 

sets distinguish health of subjects (in terms of well-being versus) using a global logistic 

test: ~60% of the Temperament sets were significant discriminators of health status (1E-03 

> p-value > 2E-20, and  the remaining ~40% < 1E-02). Indeed, ~60% of the Character sets 

were significant discriminators of health status (1E-03 > p-value > 7E-120, and the 

remaining ~40% < 1E-02). 

To encode the phenotypic sets into a manageable set of profiles or superclusters, we 

applied the FNMF method recurrently as a typical deep learning strategy (Figure S1E). 

Superclusters or profiles associate subsets of phenotypic sets, here termed temperament 

and character sets, at a lower level of granularity (i.e., detail) and represent semantic 

profiles that facilitate the communication of results without reducing the diversity of 

phenotypic sets encoded in such subsets. These superclusters are calculated by 

recurrently applying FNMF to the matrix encoding [phenotypic sets x TCI subscales].  

The optimal number of sub-matrices was selected by the Cophenetic index 48 (see below 

deep NMF section, Figure S1E). 

 (vi) Identify optimal genotype-phenotype and/or phenotype-phenotype latent 

architectures  

To identify genotypic-phenotypic relations, we co-clustered SNP sets with phenotypic 

sets into relations using the Hypergeometric statistics (PIhyp, see below, eqn 6) on 

intersected subjects, where Ri,j  = PIhyp (G_k_i, P_h_j), G_k_i and P_h_j are SNP and 

phenotypic sets, respectively, and p is the intersection of subjects.  Relations Ri,j   < T 

constitute the genotypic-phenotypic architecture of a disease.  The significance of the 

relations (T) was established by the p-value provided by the Hypergeometric-based test 30, 

36. We proceeded in the same fashion to account for phenotype-phenotype relations 

between temperament and character sets.  
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The degree of overlap between two sets (SNP and/or phenotypic) was assessed by 

calculating the pairwise probability of intersection among them based on the 

Hypergeometric distribution 30, 36 (PIhyp): 

 (eqn. 6) 

where p observations belong to a set  of size h, and also belong to a set  of size n; and 

g is the total number of observations.  Therefore, the lower the PIhyp, the higher the 

overlap.   The (p-value of) Hypergeometric “test” is used here as a measure of association 

strength.  The real test (p-value) of genotypic-phenotypic relationship was provided 

through the permutation procedure. 

 The permutation test designed to evaluate the either genotypic-phenotypic or 

phenotypic-phenotypic relations was implemented as follows. Statistical significance 

values were obtained by 1000 independent permutations due to the comparisons 

between all possible generated sets (i.e., 1034, from 2 to n), and possibly overlapping sets 

were identified here as follows 1, 37: a) assign random subjects to a genotypic cluster (set) 

of random size; b) assign random subjects to a phenotypic cluster of random size; c) 

calculate the PIhyp  between the two clusters and accumulate the value 36. These values 

form an empirical null distribution of PIhyp used to calculate the empirical p-value of an 

identified relation. All optimal relations had empirical p-value ≤ 5.00E-03. The 

phenotypic-phenotypic relationships between temperament and character sets were 

calculated in a similar fashion. (Note: the permutation test accounts for multiple 

comparisons 65.)  

Here, the phenotypic-phenotypic associations were organized as networks (similar 

to genotypic-phenotypic associations). These associations are organized as networks by 

Pi Gj



	 25	

applying the FNMF method recurrently as a typical deep learning strategy (Figure S1E). 

Network associate subsets of phenotypic sets, here termed temperament and character 

sets, at a lower level of granularity (i.e., detail) and represent semantic networks that 

facilitate the communication of results without reducing the diversity of phenotypic sets 

encoded in such subsets. The optimal number of networks was selected by the 

Cophenetic index 48 (see deep NMF section, Figure S1E). 

 

(vii) Bioinformatics analysis of the SNP set-related genes, their molecular 

consequences, and pathways   

 For each SNP set, we analyzed all genes in the cluster, including the location of the 

SNP with respect to the gene, the type and number of genes comprising each SNP (e.g., 

distinguishing protein-coding genes, ncRNA genes, pseudogenes, and regulatory genes), 

the possible transcripts affected and the position where they are affected (e.g. coding 

region, distance to stop codon, splicing site, intron, UTR, etc.), and finally annotations 

about promoter and intergenic regions were inspected.  All possible molecular 

consequences of each SNP in the function of the gene were considered in the analysis. A 

detailed analysis of SNPs and mapped genes can reveal at least three complex scenarios 

affecting multiple genes in different fashions (e.g. activation, repression, antisense 

modulation) and producing different molecular consequences, which were considered in 

queries of the Ensemble version 88 and NCBI databases (Entrezgene, Protein, Unigene).  

We evaluated whether a single SNP within a SNP set could produce different 

consequences in affected transcripts, whether multiple SNPs within a SNP set can jointly 

affect one or more genes in different ways, and finally whether multiple SNPs within 

different SNP sets can distinctively affect the same gene.  
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 We investigated the regulatory and protein domain binding regions de novo using 

information available in known transcription factor databases and the sequences of the 

identified genes as inputs for our predictive bioinformatics algorithms 29, 30, 35, 43, 66-72, which 

perform novel predictions on genetic networks, RNA genes, and protein-protein 

interactions. Long non-coding RNA genes (lncRNA) were considered in particular 

because they were overrepresented among genes associated jointly with temperament 

and character. Omic data, including annotations about individual genes and families of 

genes were obtained from the Haploreg database 73, the Ensembl version 88, 

GeneALaCart, TRANSFAC ® release 2017.1, Pfam v30, and the NCBI web services. The 

RNomic analysis included the Linc2GO 74 and the  LncVar 75 databases, and databases 

related to CircRNAs such as starBase v2.0, and circBase 0.1 76, 77 in order to decode 

possible interactions among RNA genes. Once we obtained the information described 

above, we generated a list of relevant genes that were used to query the databases 

Nextbio, GeneALaCart v.4.5, DAVID v6.8, KEGG v82.0, Reactome v58, BioCyc v.21.0, 

WikiPathways, and Pathway Interaction Database  78-81 in order to identify pathways 

related to the genes. Overall, we found that the products of genes uncovered by the SNP 

sets are included in several well-known, relevant and interconnected signaling pathways. 

Annotation information obtained from Haploreg v4.1 73, Ensembl version 88, NCBI, and 

GeneALaCart v.4.5, and TRANSFAC web services was manually curated.  

7.  Handling of missing data 

The	phenotypic	values	corresponding	to	the	TCI	scales	have	been	calculated	as	the	average	

of	multiple	longitudinal	measurements	and	had	no	missing	values.	Missing	values	in	the	

genotype	were	pre-processed	using	the	Plink software suite 8.	The	environmental	variables	

were	measured	at	various	times	during	the	study,	as	described	in	Supplementary	Table	S11.	

Then	we	grouped	these	variables	into	environmental	sets	composed	of	subjects	sharing	
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environmental	features	(Table	1).	Each	set	is	not	constrained	to	have	all	variables	but	only	

those	that	are	shared	by	a	group	of	subjects,	and	thus,	do	not	need	to	be	filled	up	by	

techniques	to	impute	these	values.	

	 We	carried	out	analyses	to	evaluate	whether	missing	values	in	the	raw	data	were	

missing	at	random.		First,	we	carried	out	Little's	Missing	Completely	At	Random	test	in	SPSS	

for	all	the	TCI	and	environmental	variables.	This	suggested	that	the	missing	values	were	

missing	at	random,	but	we	did	not	consider	this	decisive	because	of	the	restrictive	

assumptions	of	Little's	test.		Therefore,	we	created	dummy	variables	for	whether	a	variable	

is	missing	or	not		(by	coding	1	=	missing;	0	=	observed).	Then,	we	computed	the	Pearson	

correlations	among	the	dummy	variables.		We	found	that	the	correlations	among	the	dummy	

variables	for	missing	values	were	low.		Specifically,	the	average	correlations	of	TCI	dummy	

variables	with	the	environmental	dummy	variables	were	between	-0.1	and	+	0.1,	and	vice	

versa	with	values	less	than	0.12.			Given	the	observation	of	low	correlations	among	the	

dummy	variables	for	missing	values,	we	conclude	that	the	values	missing	in	these	variables	

are	missing	at	random.		Therefore	the	correction	of	these	values	by	using	corresponding	

measurements	at	other	times	is	a	reasonable	imputation	based	on	existing	knowledge.	

 

8. Replicability of results 

(i) Statistical replicability of sets of markers  phenotypes 

PGMRA has been applied to each one of the three samples here considered: Finnish, 

Korean and German datasets.  Replicability has been evaluated at three levels: 1) 

temperament sets; 2) character sets; and 3) temperament phenotypic-character 

phenotypic associations.  SNP and temperament sets identified by PGMRA in the Finnish 

sample and replicated in the other samples were evaluated using Hypergeometric 
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statistics and the corresponding empirical distribution (see above, eqn 6) with a PIhyp 

threshold <1E-05 and <1E-02, respectively. Replication of a temperament set and 

character association across samples considers the replication of 1), 2), and the strength of 

the association (PIhyp) of the homologous phenotypes sets in the target sample.  Because 

all 3 measurements contributed to replicability, we selected the optimal replication 

associations by using multi-objective optimization techniques 7.  This approach is based 

on selecting those associations that are non-dominated. One association is non-

dominated by others if there is no association that is better in all objectives (1,2, and the 

strength of 3) than the non-dominated association (see above, eqn. 3). 

(ii) Justification of the statistical replicability of sets of markers 

In probability theory and statistics, the hypergeometric distribution is a discrete 

probability distribution that describes the probability of successes (random draws for 

which the object drawn has a specified feature) in draws, without replacement, from a 

finite population of size that contains objects with that exact feature, wherein each draw 

is either a success or a failure. In contrast, the binomial distribution describes the 

probability of successes in draws with replacement. In statistics, the Hypergeometric test 

uses the Hypergeometric distribution to calculate the statistical significance of having 

drawn a specific successes (out of total draws) from the aforementioned population. The 

test is often used to identify which sub-populations are over- or under-represented in a 

sample. This test has a wide range of applications in set theory and population studies 1, 29, 

36.  

The interpretation of the replication probability reflects the underlying stability of 

a group of observations or outcomes. In group theory and clustering in topology analysis 

1, 29, 36, 82, this probability has been widely used to calculate stable clusters replicated by 

different methods, which helps to practically estimate the number of clusters in a data 
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partition, which is a theoretically unsolved problem 51, 52, 60.  Particularly in genetics, the 

probability of replication is used as an estimate of the probability that a gene set will be 

significantly expressed in a repeated study 82  or validated by sets of similar molecular 

information (co-clustering with enrichments 36, such as pathways and ontologies 1, 29, 36). 

Both the hypergeometric (Fisher’s exact test) and Wilcoxon tests are utilized to estimate 

the replication probability. The hypergeometric test takes the size of the overlap between 

a gene set and the list of differentially expressed genes as the test statistic, and reassigns 

labels without replacement (i.e. it keeps the marginal totals in the table constant). This  is 

often used to  calculate the significance  for overrepresentation of the gene set among 

different sets of  differentially expressed genes as a test for independence 65.  Specific 

examples of enrichment in human genetics include higher replication rates and 

consistently stronger enrichment of eQTLs 83.  

The Hypergeometric analysis has served to logically focus replication efforts of 

SNPs that were found to be significantly associated in different samples or 

endophenotypes 84.  In such applications the method assumes that a given phenotype is 

influenced at each quantitative-trait locus (QTL) by one or more causal variant(s), whose 

effect(s) can be approximated (or tagged) by a linear combination of multiple semi-

independent observed variants at the locus. This linear combination of SNPs is termed a 

multi-SNP.  For example, the problems of allelic heterogeneity and imperfect tagging of 

multi-SNP associations and the identification of significant multi-SNP associations has 

been successfully addressed with the Hypergeometric test  (40, better tan Yang et al. 

method). These examples and others 1, 38, 85 suggest that the Hypergeometric test is a 

measurement that is useful for replicability analysis of sets of variables.  Such analyses of 

sets of markers do not invalidate the use of meta-analysis of individual markers.  A 

complementary alternative to the Hypergeometric is the permutation test (see preceding 
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section on Permutation test).  

 

9. Comparison between the PGMRA and the Polygenic Risk Score models 86 

Following publication of our two articles 87, 88, a critique of the methodology of 

Phenotype-Genotype Many-to-Many Relations Analysis (PGMRA) 38, 87, 89 questioned the 

validity of our results from the perspective of polygenic risk scores (PRS) 90. We 

appreciate the importance of these questions, and here provide a concise discussion of 

the assumptions and mathematical constraints of both approaches. We thank this 

commentator and others who have discussed our articles with us for their thoughtful 

questions and critiques. 

Complex phenotypes present several challenges for genome-wide association 

studies (GWAS) including the presence of epistasis, pleiotropy, and heterogeneity. We 

approached these problems in a data-driven fashion to test the hypothesis that the 

heritability expected from twin studies but unexplained by genetic studies is distributed 

in heterogeneous partitions of a complex trait, each with distinct genotypic-phenotypic 

associations. We designed a machine learning algorithm termed PGMRA 38, 87, 89 to 

identify naturally occurring partitions in the data in an unsupervised fashion. PGMRA 

first dissects genome-wide data and uncovers a genotypic architecture composed of sets 

of SNPs shared by subsets of individuals (i.e., SNP sets 89, 91). Next, phenotypic data are 

independently organized into natural sets of features such as clinical manifestations 7, 

voxels of neuroimages 85, or personality traits 87, 88 in a phenomic-like approach 92. Cross-

matching of the two types of sets reveals multiple associations restricted to subgroups of 

individuals, thereby uncovering the genotypic-phenotypic architecture of a trait and 

accounting for its distributed genetic risk or propensity. 

Both approaches, PRS and PGMRA, rely on genome-wide markers (Figure S10). 
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However, PRS treat these markers as independent variables with additive effects, 

whereas PGMRA searches for sets of structurally connected markers, which may have 

interactive effects (epistasis). PRS assumes a global linear association model and relies on 

increasing sample size to improve performance 93, 94. In contrast, PGMRA uncovers a 

family of models (i.e., SNP sets), each of which computes in a local partition of the data. 

Each model can be represented as either a linear combination of data (as in regression 

trees) or as a non-linear combination (as in some neural networks) 95. Therefore, PGMRA 

uses a more complex model than PRS, focusing on incorporating more phenotypic 

variables rather than more individuals, but allows the use of smaller samples by reducing 

multiple comparisons.    

PRS algorithms must reduce phenotypes to a single dependent variable because 

they use a linear supervised model 96. In contrast, PGMRA uses an unbiased and 

unsupervised model to consider all possible phenotypic patterns common to a subset of 

individuals, regardless of their trait status (i.e., does not assign cases and controls a priori). 

Distinct patterns of phenotypic features can thus be associated with different SNP sets, 

thereby uncovering heterogeneous subtypes of the trait 38, 87, 88. Finally, PGMRA 

incorporates trait status a posteriori to calculate the risk of such associations, and then 

independently tests the significance of the associations by a SNP-set Kernel Association 

Test 12, 91.  

The validity of the replication procedure used by PGMRA was also questioned 90. 

The “gold standard” approach used by PRS evaluates the reproducibility of an association 

by building a linear classifier trained in a discovery sample and testing it in a new sample 

assuming sample homogeneity 93, 94. Homogeneity is a strong assumption that should be 

supported. By contrast, PGMRA uncovers genotypic-phenotypic associations for sample 

partitions and computes their corresponding risk or propensity post hoc; this process is 
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blindly repeated independently for each new sample without assuming homogeneity 

within or across samples (Figure S9). Then, similar genotypic-phenotypic associations 

across samples with comparable risk/propensity are uncovered using parsimonious 

models that balance accuracy with model complexity, thereby avoiding overfitting 95, 97, 98.  

Inconsistent results obtained from applying PRS to heterogeneous samples 99, 100 has 

led to the suggestion of averaging scores from multiple samples 101 ignoring, at least in 

part, the phenotypic heterogeneity of the samples. When there is complexity derived 

from genetic, cultural, ethnic and environmental heterogeneity, the same global linear 

model is unlikely to predict across samples, especially when markers have relatively 

small effect 96, 99, 100. Independently learned models from diverse samples, which allow 

analysis of replication across these samples, provide a more stringent test of 

reproducibility 102, 103. 

PRS calculates heritability as an adjusted R2 from a global linear regression, which 

additively estimates variance explained by the markers. In the absence of a validated 

estimator of variance for “sets” of markers 12, 91, PGMRA used a similar approach 

(Supplementary Figure S10). For example, the estimated heritability of character, without 

controlling for outliers and jackknife resampling, in the Finns sample 87 was 45.67%. A 

criticism 90 questioned the lack of application of another sampling technique such as 

cross-validation. As suggested, we applied cross-validation within and across samples 

(e.g., R2 of 10 k-fold is 45.05% with SD 0.049) and confirmed the observed results by 

bootstrapping (1,000 iterations, SE <1.6%). We also found that the estimates of heritability 

for character in our paper 87 are conservative: the aggregation of the local variances 

explained by all SNP sets delivers a higher estimation of heritability  (R2 > 15%) than the 

45.67% described above (Figure S9, unpublished results). 
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Some suggest that our sample size (2,126 + 972 + 902 individuals from 3 cohorts, 

respectively 87, 88) has insufficient power, even though others have calculated 80% power 

at nominal significance to detect heritability with the same sample size 96. PGMRA 

computes genotypic-phenotypic associations based on “sets” of genotypes and “sets” of 

phenotypes, so the number of multiple comparisons are significantly reduced, making 

PGMRA less greedy of observations than PRS.  

The nature of human beings embraces complex functions where every expressed 

gene may affect the function of any cell and their derived traits of our body in many 

different ways (many-to-many relationships). Complex traits are expected and known to 

be influenced by multiple genes acting in concert, not independently 104. Most of the 

heritability in gene expression is determined by many genes far apart on the same or 

different chromosomes 104-106, whose effects are difficult to detect due to their small 

magnitude (e.g., trans eQTLs effects), as well as co-expressed genes that are vulnerable to 

decoherence in response to environmental perturbations 107. PGMRA opens the door to 

develop new methods to explain complex genotypic-phenotypic relationships, including 

epistasis, pleiotropy and heterogeneous phenotypes, which present problems for PRS 

due to its restrictive linear model and doubtful assumption of homogeneity. Use of 

PGMRA would allow more thorough study of moderate-sized samples by efficient data-

driven methods, which can help to bring methods of precision medicine into practice 85, 87-

89, 103, 108. 

10. Estimation of relative contributions of genotypic and environmental influences using 
linear regression 
 
 Reviewers of earlier drafts of our manuscript suggested that readers would find it 

helpful to have a rough benchmark of the relative contributions of genotypic and 

environmental variables on the 3 networks we identified from the perspective of a linear 

regression model despite the limitations of such methods for complex phenotypes.  
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Therefore we have evaluated extent to which genotypic variables alone, environmental 

variables alone, and both genotypic and environmental variables jointly account for the 

variance in ill-being, well-being, and overall health status of subjects in a linear 

regression. 

 Every subject within a network has a specific set of characteristics, including their 

phenotypic sets (i.e, temperament set and character set), their genotypic sets, and their 

environmental sets.  Therefore, to evaluate the influence of genotype and/or 

environment on phenotypic networks, we developed three linear multivariate 

regressions with the phenotype specified as the 3 networks ordered by the values 1, 2, 

and 3 in correspondence to their mean level of well-being (see results in main article 

where means and standard deviations for each network are given). The genotypic and 

environmental variables were represented as groups of variables (i.e., genotypic sets 

and/or environmental sets).  To standardize the unit of measurement for the different 

types of sets (genotypic, environmental, phenotypic), we used the average health status 

(well-being, ill-being, or composite health index) of their constituent sets. This provided a 

general and continuous characteristic of personality that could be compared for all 

subjects in each network.   We estimated the effects of genotypic sets alone, 

environmental sets alone, and their joint effects using the following equations: 

 

𝑁1(𝑥)=𝑐1 𝐺𝐶𝑥+𝑐2𝐺𝑇𝑥+𝑐3𝐺𝐶𝑇𝑥 
 
𝑁2(𝑥)=𝑐4𝐸𝐶𝑥+𝑐5 𝐸𝑇𝑥+𝑐6𝐸𝐶𝐺𝑥+𝑐7𝐸𝑇𝐺𝑥+𝑐8 𝐸𝐶𝑇𝐺𝑥 
 
𝑁3(𝑥)=𝑐1 𝐺𝐶𝑥+𝑐2𝐺𝑇𝑥+𝑐3𝐺𝐶𝑇𝑥+𝑐4𝐸𝐶𝑥+𝑐5 𝐸𝑇𝑥+𝑐6𝐸𝐶𝐺𝑥+𝑐7𝐸𝑇𝐺𝑥+𝑐8 𝐸𝐶𝑇𝐺𝑥 
 
where the functions XY() retrieve the average group value of the ill- or well- being status, 

and C=character set, T=temperament set, G=genotypic SNP set, E=environmental set.  
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 We evaluated the results of the equations by calculating the R2 as the average of 

10-fold cross-validation application of the regression model (Note: that the estimates of 

these regressions are not additive). From the values for R2 in ill-being explained by G, E, 

and both in Table S13, we conclude that both genotypic and environmental variables 

influence ill-being (that is, 68% for joint genotypic and environmental effects > 58% for 

genotypic effects alone).  However, for well-being and overall health status, the 

combination of genotypic and environmental effects is not substantially greater than 

genotypic effects alone (82% is close to 81%, 90% is close to 88%).  We show detailed 

estimates of coefficients in the full model with both genotypic and environmental 

variables in Table S14 using the stepwise procedure in Matlab R2017b). 
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11. Prototypical vignettes for each network 

 (1)  Emotional-unreliable Network Prototype  

"Surullinen" (Finnish for SAD): Sensitive-Apathetic profile (TCI profiles C_3_2 and 

T_3_3) with Disorganized attachment [difficult child reared by highly educated parents 

without much acceptance or tolerance (E_13_10/E_152) in rural environment (E_6_2)] 

and associated with G-Protein-Coupled Receptor dysregulation (SNP set G_7_2)  

Surullinen (Finnish for sad) is a 45- year old unmarried woman who is disabled by 

multiple medical and psychiatric disorders associated with marked stress reactivity and 

apathy. These include Borderline Personality Disorder, Persistent Depressive Disorder, 

Substance Use Disorder, Fibromyalgia, Obesity, type-2 Diabetes Mellitus, Hypertension, 

and Rheumatoid Arthritis.   

Rearing Environment: Her parents are highly educated professionals with responsible 

jobs and good income working in a rural area.  Surullinen had prominent negative 

emotionality as a child (i.e., she was easily upset).  Her parents and teachers felt she had a 

difficult temperament because she was so easily distressed, irritable, distractible, 

hyperactive and hard to motivate.  She felt inadequate and was afraid of her father's 

harsh discipline but was enabled to be irresponsible by her mother.  Her parents divorced 

when she was 11 years old.  She and her two older siblings stayed with her mother, but 

she always felt excluded by her siblings.    

Psychosocial development: When she started school she made few friends and was often 

teased for being overweight.  Her school performance was erratic and low average 

overall, which was inferior to that of her parents and siblings.   

As a teenager and adult she continued to be emotionally unstable, impulsive, and to 

fear abandonment.  At 17 she was hospitalized following a suicide attempt after breaking 

up with an abusive boyfriend.   She entered college but quit after one year when she 
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became pregnant.  The child's father took custody of their child due to her neglect.   She 

moved to a large city where she began gambling, smoking, drinking alcohol heavily, and 

using illicit drugs occasionally. 

Throughout her adulthood her Temperament and Character Inventory showed she 

had a sensitive temperament: she was very high in Harm Avoidance (pessimistic, fearful, 

shy, and fatigable), high in Reward Dependence (sentimental, open, and forming intense 

but unstable attachments), high average in Novelty Seeking (extravagant and impulsive), 

and low in persistence (easily discouraged, lazy, underachieving).  She also consistently 

reported an apathetic character profile: low Self-directedness (irresponsible, aimless, 

helpless, hopeless, and unable to regulate her bad habits with overeating, gambling, 

abusive relationships), low Cooperativeness (intolerant, self-serving, hostile, revengeful, 

and opportunistic), and low Self-transcendence (demanding, self-preoccupied, and 

skeptical).  Her mother managed her financial support because she gambled and spent 

whatever money came into her possession. 

Physical Health Functioning:  Throughout adulthood she has been obese (BMI 31 to 36) 

along with documented type-2 diabetes mellitus, hypertension, and rheumatoid arthritis.  

She complained of multiple bodily pains, gastrointestinal problems, psychogenic seizures, 

and painful menses, leading to extensive treatment, including a hysterectomy and 

cholecystectomy.  She had frequent infections and slow healing following injuries. 

Treatment:  When last evaluated she was disabled by her many psychiatric and medical 

complaints, including objective problems with Diabetes mellitus, hypertension, 

rheumatoid arthritis, and impaired immune function.  She has been seen often but 

irregularly for treatment of Borderline Personality Disorder and persistent depression 

with medications and supportive psychotherapy without benefit except short-term crisis-

relief.   She regards herself as a victim and does not accept responsibility for change. 
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Genetic Predisposition:  She carries a large SNP set associated with G-protein-coupled 

receptor dysregulation (G_7_2).  This SNP set was associated with 23% risk of ill-being in 

211 people who carried it. The SNP set was associated with both the sensitive 

temperament and the apathetic character.  The 88 protein-coding and 64 other genes 

mapped to this SNP set were distinguished by multiple processes associated with stress 

reactivity and apathy.  Specifically, 13 genes involved GPCR dysregulation associated 

with stress reactivity and susceptibility to hypertension, atherosclerosis, heart failure, and 

diabetes.  Another gene is a growth factor (PDGFB) that influences neuronal 

development and migration via activation of Ras-ERK, PI3K/AKT, and PKC signaling; 

its effects on Ras-ERK regulates neuroplasticity in the striatum, which in turn modulates 

interactions between frontocortical and mesolimbic signaling, including effects on 

dopaminergic and vagal neuronal activity known to induce anxiety and apathy.   

Another gene for a component of an ATPase (ATP6V1A) is involved in mTOR signaling, 

maintenance of homeostasis and environmental reactivity in the HPA axis, insulin 

receptor recycling, immune reactivity, and susceptibility to rheumatoid arthritis.  

Another 7 genes influence stress response via cAMP activation of PKA and reduce 

energy availability via RNA-mediated gene silencing of fatty acid oxidation for entry into 

the Krebs cycle.  

(2) Organized-Reliable Network Prototype   

 "Ohjautuva" (Controlled in Finnish)-- Organized-conventional profile (TCI profiles 

C_8_7 and T_6_1) associated with SNP set for Inositol/Chemokine pathways (G_8_8) and 

environmental sets for high parental income (E_14_3) and high parental education 

(E_15_2). 

Ohjautuva is a 45- year old divorced man who is an acquisitions manager for a large 

manufacturing company and a reserve officer in the Finnish military force.  He is a 
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university graduate and an avid sportsman like his father.   His health is slightly better 

than average with no major chronic illnesses.  He intermittently feels stressed by work 

and by child-rearing issues since his divorce, but has not sought counseling.  He takes a 

beta-blocker for mild hypertension exacerbated by stress and frustration, and a statin 

medication to reduce his high levels of cholesterol and triglycerides.     

Rearing Environment:  Ohjautuva was reared in a small city by two well-educated 

parents who were both white-collar workers.  He has a sister who was six years older 

than him.  He described his childhood as happy and particularly enjoyed activities with a 

group of several boys in his neighborhood.  They liked playing outdoor sports together.  

His parents both worked long hours, but as a schoolboy he enjoyed skiing and fishing 

with his father on weekends.   

Psychosocial Development:  Ohjautuva's early development was normal.  He was an 

obedient well-behaved child.  He kept his room neat and orderly.  In school he was a 

good but not exceptional student.  He was avid about popular outdoor sports, including 

trekking, cross-country skiing, and canoeing.  From the age of 7 he and his father would 

ski and fish together, which they continue to do.     

After completing high school at age 18, he entered into the Finnish military service 

where he excelled.  He stayed in service for 9 months for officer training, and later joined 

an officer club that had regular celebrations and a close-knit social network.   Then he 

completed university with a major in business administration.  He obtained employment 

in a large manufacturing company, and has done well there.  He is resourceful in 

acquisition and distribution of supplies for the manufacturing company, rising to a mid-

level management position because of his dependability.   

Ohjautuva got his girlfriend pregnant when he was 35 years of age. She was 

religious and insisted on having the child.  He married the mother, but she was never 
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happy about his zeal about hunting and military operations.   She divorced him after 5 

years.  His son is now 10 years old and his wife disapproves of Ohjautuva wanting to 

take the boy skiing and fishing.    This is stressful to Ohjautuva who wants to introduce 

his son to activities that he and his own father enjoy.    

Throughout his adulthood, his TCI showed Ohjautuva had an organized character 

profile.  He was very high in Self-directedness (i.e., responsible, purposeful, resourceful, 

and self-controlled), very high in Cooperativeness (tolerant, helpful, and principled), and 

low in Self-transcendence (defensive, individualistic, and skeptical about religious and 

spiritual beliefs).   

 Ohjautuva's temperament profile was broadly described as reliable.  More 

specifically his temperament involved his desire to adhere to the conventions and 

traditions of his community.  He was consistently very high in Reward Dependence 

(warm attachments, pleasing others), very low in Novelty Seeking (frugal, orderly, 

disliking breaking rules and conventions), and very low in Harm Avoidance (optimistic, 

outgoing).  He was slightly above average in Persistence.   

Genetic Predisposition:  SNP set G_8_8 is comprised of genes involving 

Inositol/Chemokine Pathways and is associated with both his Character and 

Temperament sets (C_8-7 and T_6_1).  It involves 661 snps in 224 subjects.  These SNPs 

map to 291 genes, 67% of which are protein-coding.  The constituent genes are 

distinguished by 41 genes that regulate long-term learning and memory related to 

intentional goal-directed behavior and social reconciliation.   For example, they regulate 

long term learning about responses to environmental signals regarding opportunities for 

obtaining energy from food, including 11 genes for inositol/Calcium second-messenger 

signaling (e.g., ITPR2, PIK3R1, PLCB4), 5 for glucose/energy metabolism (e.g., ABCC4), 

11 for hormonal signaling (e.g., CREB5, GNAO1), and 10 for calcium-mediated release of 
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inositol-triphosphate-derived second-messengers at cholinergic synapses (e.g., PLCB4, 

CHRM3).   Five genes regulate energy output and promote self-confidence following 

stress (e.g., PLCB4, ITPR2, BMP7, SHH) via gonadotrophin-releasing hormone and 

hedgehog signaling pathways.  SNP set G_8_8 includes another 35 genes that regulate 

aging, stress reactivity, pain and inflammation (e.g., COL2A1, ITGAV) via interactions of 

calcium signaling with chemokines and extracellular matrix proteins.   

(3) Creative-Reliable Network Prototype  

"Luova" (Creative in Finnish):  Creative-reliable personality profile (TCI profiles of C_8_8 

and T_5_1) associated with SNP sets for episodic learning (G_12_1) and enhanced 

memory (G_20_2) but no environmental sets.   

Luova is a 45-year old married woman who works professionally as an artist 

(painting and sculpture).  She is a university graduate with her Masters degree in art. She 

is in excellent health physically, emotionally, and socially.   

Rearing Environment:  Luova she was reared in a stable home in rural Finland by fairly 

well-educated parents.  Her father was a skilled worker in the forestry industry and her 

mother was a homemaker caring for Luova and her 4 younger brothers.   Luova stood 

out for her positive emotionality from an early age.   By age 4, her parents recognized 

that she loved singing and music, so they helped her cultivate her natural talents.  By age 

7 she began studying piano and singing.  She loved for her mother to read children's 

stories to her and her brothers. At age 8 she began to read stories to her brothers.  Luova 

was active, inquisitive, and had many friends. She often helped and protected her friends 

and siblings.  

Psychosocial Development:  In school she did well but needed extra challenges to keep 

from being bored and talking too much.  She excelled in art and music.  Her vivid 

imagination stood out.  For example, in her early teens she taught her friends a story-
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telling game that she devised: they would observe someone carefully, describe them in 

detail, and then invent an imaginary life story to explain the observations. The friends 

had fun trying to tell the most interesting story that explained the facts.  

She was not afraid to take risks, so in her late teens and early adulthood she 

experimented with parachuting and other thrilling activities.  She gave up risky activities 

when she recognized the danger.  She never experimented with illicit drugs. 

Throughout her adulthood, her TCI showed Luova was highly self-directed (resourceful, 

purposeful, responsible, and self-actualizing, but not unusually self-accepting).  She was 

highly cooperative (tolerant, helpful, empathic, and compassionate).  She was not 

unusually principled according to cultural conventions, but instead depended on her 

own intuitions about what was fair.  She reported being easily absorbed when reading, 

painting, or singing (ST1). She reported recurring joyful experiences in which she felt she 

had an inseparable connection with nature and other people (ST2), which often inspired 

her art.  Although she was not religious, she liked nature walks in which she would find 

inspiration and often experienced a spiritual connection that felt sacred to her (ST3).   

Luova's temperament throughout her adulthood was broadly described as reliable 

because she reported being very low Harm Avoidance (i.e., optimistic, unafraid of 

uncertainty, outgoing, highly energetic and resilient), high in Reward Dependence (i.e., 

sentimental with warm attachments, but not approval seeking), and high in Persistence 

(i.e., eager, determined).  In addition, she was high in some aspects of Novelty Seeking 

(i.e., exploratory, inquisitive, extravagant, but not impulsive or disorderly).   

Consequently, her temperament can be described as both reliable and exploratory. 

Luova has been stably and happily married for 16 years and has two teenage 

children.  She and her husband settled in an urban area where they had attended 

university.  She is a successful artist noted for the way her paintings communicate a story.   
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She has a rich spiritual life with a regular meditation practice.  She is very engaged in her 

community and regularly mentors students in art.   

Genetic Predisposition:  Luova carried both the SNP sets G_12_1 for episodic learning 

(G_12_1) and enhanced memory (G_20_2), which are associated with both her 

temperament and character profiles.   SNP set G_12_1 involves 189 SNPs in 146 subjects, 

and maps to 64 genes, 61% of which are protein-coding.  The genes are distinguished by 

their regulating gene expression in the brain regions making up the circuit for episodic 

learning and memory.  Specifically, 5 genes regulate gene transcription and energy 

production in the brain circuit for autobiographical learning (CAMTA1, CCDC39, IDS, 

NRXN1, and SLC14A2).   Two of these genes and 6 others regulate neurogenesis in the 

hippocampal formation (i.e., PGLRP4, RUNX1, CDKL1, DCC, MAGI2, PGLRP4).  

 The second SNP set for enhanced memory (G_20_2) has 80 SNPs in 25 subjects.  Its SNPs 

mapped to 19 genes, 79% of which are protein coding.   It is distinguished by all of its 15 

protein-coding genes being involved in enhancement and protection of learning and 

memory, including 10 genes overexpressed in brain.  These genes include 6 that regulate 

synaptic plasticity and enhance learning and memory:  cAMP responsive binding protein 

(CREB) is the primary hub of gene transcription for neurotransmitter-activity-driven 

programs controlling synaptic plasticity, neurogenesis and survival.  In neurons, CREB 

regulates synaptic plasticity to enhance excitatory synaptic transmission (with FRMPDR, 

KCNG3, MS4A3, OXER1) and short-term synaptic plasticity (with SHISA6).  In astrocytes, 

CREB is neuroprotective, influencing mitochondrial function and gene expression.  

Memory is also enhanced by coordination of histone and nucleosome remodeling 

(KDM4D, SETBP1, MTA3).  Further neuroprotection is provided by energy production in 

brain regions for autobiographical memory (COX7A2L) promoted by mitochondrial 

biogenesis from AKT signaling (BMPR1B) and protected from DNA damage by SMG1.  
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This SNP set also has genes influencing axon guidance (UNC5C), neurite outgrowth 

(BMPR1B), microtubule assembly dynamics influencing learning and memory (EML4), 

and post-translational modification reported to facilitate social identification (PARP8).  
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C. Supplemental Tables  

 

Table S1. Descriptors for high and low scorers on TCI subscales. 

 

Table S2.  Distinguishing	features	of	three	subtypes	or	clusters	of	temperament	(adapted	

from	Thomas	and	Chess,	1977	109	and	Cloninger	et	al,	The	Complex	Genetics	and	Biology	of	

Human	Temperament,	A	review	of	traditional	concepts	in	relation	to	modern	molecular	

findings.	Molecular	Psychiatry	2019)	   
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Table S3.  (A) Comparison of physical, emotional, social, cognitive indicators of health of 

people in 3 personality networks in Young Finns Study (n = 2126). (B) Calculation of the 

each subject's level on previously validated indicators of ill-being and well-being.  Ill-

being is indicated by low scores on Self-directness and Cooperativeness (SD +  CO).  

Well-being is the product SD x CO x ST (Self-transcendence).  The Boolean risk of ill-

being is the bottom decile of its indicator for 1 and 0 otherwise. The Boolean classification 

of well-being is the top decile of its indicator for 1 and 0 otherwise.  Semi-continuous 

ratings from 1 to 6 are also given by separating subjects into 6 equal classes based on their 

normalized (percentile) rank from 0 to 1. Longitudinal physical, emotional, and social 

indices are described. Higher scores means better health. 

 

Table S4. Character and Temperament Sets comprised of TCI measurements at the 

subscale level were identified by PGMRA and associated as Relationships (see Tables S4 

and S5).  Supersets consist of low granularity groups of Character and Temperament Sets 

with a linguistic profile. The health risk of these associations is shown (well or ill 

extremes in the unit scale, see Supplementary Table S2B). 

 

Table S5. Comparison of the size of the 3 networks in terms of number of subjects and 

other components.    

 

Table S6. SNP sets mapped into the three phenotypic networks. SNP sets are described 

by their labels and associated Temperament and Character profiles. 

 

Table S7. Genotypic-phenotypic Relationships among Temperament, Character, and 

SNP Sets identified by PGMRA. SNP Sets (p-value <1E-05) associated with Temperament 
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and Character phenotypes, their significance compared to that of the averaged, best, and 

worst values of the individual SNPs, their size (#Subjects, #SNPs), and corresponding 

health risk  (well or ill extremes in the unit scale, see Supplementary Table S2B) are 

shown.  (Many-to-many optimal relationships were identified using Multi-objective 

optimization techniques, see Methods.) 

 

Table S8. Percentage of overlapping among SNP sets related to Temperament and 

Character sets, respectively, across networks. 

 

Table S9. 972 genes belonging to different networks.   *indicates genes mapped by a large 

SNP set G_3_1, and #indicates genes that are recognized by just one SNP set.  

 

Table S10. Description of the different types and sub-types of genes based on their 

possible molecular consequences. 

 

Table S11.  Definition of environmental variables.  

 

Table S12. Summary of the associations among Environmental sets and the phenotypic 

Temperament and Character relationships.  Environmental sets related directly to the 

phenotypic associations between Temperament and Character sets are summarized and 

compared among all relationships, as well as within each network. Environmental sets 

indirectly associated with Temperament and Character relationships through SNP sets 

are also described. "Not related" indicates that there is no Environmental set related to 

any component of the relationship: Temp set - Char set or the SNP sets associated with a 
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Temp set and a Char set. "Related" indicates that both Char and Temp sets, or their 

related SNP sets in the indirect fashion, are associated with an Environmental set. 

 

Table S13: Estimation of variance explained (R2) by genotype alone (regression N1), 

environment alone (regression N2), and both jointly (regression N3) for 3 measures of 

health status (ill-being, well-being, and overall health) 

 

Table S14: Estimated coefficients for the model corresponding to regression N3 (full 

model), with number of observations: 1804; error degrees of freedom: 1787; Root Mean 

Squared Error: 0.253; R2-squared: 0.90; Adjusted R2  0.896; F-statistic vs. constant model: 

972; p-value < 1E-130 (red highlighted values indicate variables discarded by the 

Stepwise procedure, Matlab R2017b) 

 

Table S15.  Relationships between Temperament and Character Sets identified in the 

Finnish sample and replicated in the Korean (80%) sample. The replication score was 

calculated using Hypergeometric statistics and Multi-objective optimization techniques 

(see Pareto values in Table S17).   

 

Table S16.  Relationships between Temperament and Character Sets identified in the 

Finnish sample and replicated in the German (64%) sample. The replication score was 

calculated using Hypergeometric statistics and Multi-objective optimization techniques 

(see Pareto values in Table S18). 

 

D. Supplemental Figures 
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Figure S1. Schematic of the PGMRA method applied to multiple domains of knowledge 

(see Supplementary Method).  (A) Deep learning network developed by PGMRA fusing 

different domain of knowledge in a semi-supervised fashion including: unsupervised 

autoencoding, multiobjective optimization and pooling, interpretable association of types 

of knowledge, labeling the associations, and developing a classifier. Each layer has its 

own learning process and constitutes the input of the next layer. (B) Schematic of the 

genotypic-phenotypic associations identified by PGMRA in an unsupervised fashion. (C) 

Flow chart of the PGMRA process. (D) PGMRA performs a deep unsupervised NMF 

learning process: (i) NMF is implemented based on decomposing an input dataset, 

encoded as a matrix (or a tensor) composed of features and observations/subjects, into 

smaller factors. The learning process is a mirror process because it consists of comparing 

the original matrix with that reconstructed from the factors, and adjust those factors by 

the error. Factors are derived by combining matrix W and H. (iii) NMF can be 

transformed into a supervised method by moving matrix W to the other side of the 

equation applying the pseudoinverse of a product.  (iii) Illustration of the process carried 

out by the NMF method to learn one factor: ordering the columns of W, as well as the 

rows of H, and multiply them. (E)  Deep NMF process systematically applied 

(convolutive) using different number of maximum clusters or granularity levels 

(Consensus clustering). Optimal submatrices (factors) are selected from all levels by a 

multiobjective optimization process. This image can also illustrate the recurrent 

application of NMF to identify high level profiles.  (F) Schematic that exemplifies how 

PGMRA sees the biomedical datasets (GWAS, DTI images, etc.). 6 patients have a deficit 

(value = 20) in different regions. Typically, the average of each cell is calculated, and, as a 

consequence, there is no region with a particular deficit (all values = 87) in all patients. 



	 57	

Because averaging the cells conceals the differences among patients, PGMRA is focused 

on segmentation of patients and features.  

 

Figure S2. Composition of the phenotypic networks. (A) The Creative-Reliable is 

primarily composed of reliable (violet) and creative SNP sets, but also by sensitive (black) 

and organized SNP sets. (B) The Organized-Reliable is primarily composed of reliable 

(violet) and organized SNP sets, but also displays a small proportion of associations that 

include sensitive (black) and antisocial (orange) SNP sets. (C) The Emotional-Unreliable 

network is primarily composed of dependent and apathetic SNP sets associated with 

sensitive (black) and antisocial (orange) SNP sets. (D) The three dimensional view of the 

Temperament and Character profiles that compose the phenotypic and genotypic 

networks. 

 

Figure S3. Evaluation of probability of health in Temperament and Character Sets and 

their relationships with SNP Sets using ANOVA statistics. (A) Health risk evaluated for 

Genotypic-phenotypic Relationships between Temperament and Character Sets and 

Supersets associated with SNP Sets (compare with Figure 3B). (B) Ill risk evaluated for 

Genotypic-phenotypic Relationships between Temperament and Character Sets and 

Supersets associated with SNP Sets (compare with Figure 3E). Adding genotypic 

information allows a better discrimination among Phenotypic Supersets (see (A) and (B)).  

 

Figure S4.  (A) Histogram representing the chromosomal location of genes corresponding 

to SNP Sets associated with Temperament and Character Relationships. The bars 

revealed differences between genes related only to Temperament Sets (red color), 

Character Sets (blue color), and Temperament and Character Relationships (green color). 
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(B) Sub-types of genetic variants mapped by SNP sets associated with character: Specific 

molecular consequences [Genes related only to character sets (red) were less often protein 

coding and more often RNA genes than those also associated with temperament sets 

(blue color), or genes related to both character and temperament exhibit higher 

proportion of protein coding genes] 

 

Figure S5. Relationships among key genes associated with Temperament and Character 

Sets that constitute AND/OR relationships that discriminate the three networks shown in 

Figure 1: self-awareness (violet), self-control (blue) and emotional-reactivity (orange). 

 

Figure S6.  Relationships among environmental sets associated with Temperament and 

Character Sets subnetworks  (Figure 1). Environmental sets can belong to one or more 

networks.  

 

Figure S7.  Surfaces representing the health function of the uncovered Genotypic-

phenotypic Relationships between SNP Sets and Temperament and Character 

associations. The probability of health (z-axis; red high; green: low) was calculated based 

on the distribution of the status of subjects within each relationship, and the surface was 

plotted interpolating the relation domains.  The order adopted for plotting SNP Sets is 

calculated based on clustering shared subjects in SNP Sets (x-axis) and in Temperament 

and Character Relationships (y-axis) using Hypergeometric statistics (see Method).  

(Close-located SNP or Temperament and Character associations in an edge share more 

subjects than those located far away.) (A) Well-being surface. (B) Ill-being surface. 
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Figure S8. The German sample was screened to exclude psychopathology, including 

personality disorders, so it had a reduced number of individuals with unhealthy 

personalities, as it is seen by the distribution/histogram of well-being in the Finnish and 

German Samples. First, we estimated the 3rd quartile in the Finnish normal distribution 

that suggests a value of 0.71 (SD+CO/Max in the unit interval). Second, we calculated the 

proportion of the Finnish that are equal or higher than this value: 24%. Third, we 

calculated the number of Germans that are above that reference value:  89%. Fourth, we 

calculated the Wilcoxon rank test from these two populations >0.71 and the p-value is 

1.13E-81. 

 

Figure S9.  The expression of genes associated with temperament and character in 

multiple organ systems.  Expression in particular organs was systematically identified 

using ArrayExpress 110. 

 

Figure S10. Flow chart describing the common, as well as the different roads followed by 

methods developed to build polygenic scores and the PGMRA method. 

 

 

 

 

 

 

 

 

 


