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Supplementary Note 1 | Theoretical results 

Here, we describe some theoretical analysis on the genotype reconstruction problem and 

various aspects of Evoracle’s design.  

Lemmas 1 and 2 together motivate Evoracle’s skew regularizer. Lemma 1 states that natural 

selection sorts genotypes by fitness in logarithmic time, while lemma 2 states that when genotypes 

are nearly sorted by fitness, the skew statistic monotonically increases over time under natural 

selection recurrence relationship. Together, lemmas 1 and 2 build a perspective where genotypes 

become unsorted by fitness when new mutants with high fitness are discovered by random mutation, 

but genotypes are quickly re-sorted (in logarithmic time) and re-enter time spans where the frequency 

skew increases monotonically. Natural selection thus often yields populations with highly skewed 

genotype frequencies. We leverage this natural sparsity structure with our regularizer. 

 Lemmas 3, 4, and 5 explore which parameters are identifiable under our lossy measurement 

process. In general, full-length genotype frequencies are not identifiable from our lossy linear 

measurement process. However, our work suggests that adding domain knowledge in the form of 

enforcing inferred frequencies to be consistent with natural selection produces a method capable of 

accurately inferring full-length genotypes in practice. This suggests a possible conjecture that 

identifiability may be restored with knowledge of underlying dynamics. We view lemmas 3, 4, and 5 as 

initial steps exploring this possibility. Lemma 3 states that the single highest fitness full-length 

genotype is identifiable under a surprisingly lenient condition. This result shows that a specific object 

can always be recovered despite lossy measurement. The fact that this object is the highest fitness 

genotype is of practical relevance. Lemma 4 states that the true fitness vector is identifiable from the 

full-length genotype frequency matrix, which is a result that does not involve the lossy measurement 

process. Lemma 4 thus provides a formal proof that unidentifiability is a direct result of the lossy 

measurement process, and not the natural selection recurrence relation. Finally, lemma 5 investigates 

a toy example of three full-length genotypes, and shows that the true genotype frequencies are 

identifiable using natural selection dynamics knowledge despite lossy measurements using one 

timepoint of full-length genotype frequencies and two or more timepoints of lossy measurements. It 

would be interesting to extend lemma 5’s result to the case of no true genotype frequency knowledge, 

and larger number of genotypes, in future work. 

Lemma 6 shows that our gradient-matching loss term that encourages fidelity of inferred states 

to the state transition process implicitly regularizes the L1-norm of 𝒔, the frequencies of genotypes 

when first introduced to the population. This aligns with the typically low mutation rates of 1x10-5 used 

in directed evolution. 

Lemma 7 shows that our gradient-matching loss term that encourages fidelity of inferred states 

to the state transition process implicitly ensures that genotypes cannot rise to appreciable frequencies 



in the population more than once, which is a constraint imposed by our state transition process on 

latent states, and enable us to bypass the challenging problem of inferring 𝒔, 𝒛 and instead directly 

infer latent states. Lemma 7 also addresses potential concerns on model misspecification, by showing 

that a state transition process with at most one entrance is qualitatively similar to state transition 

processes where genotypes can enter multiple times. 

 

Definitions and setup 

Here, we set up notation describing our assumed data generative process, and state general 

properties of certain mathematical objects that are useful in later proofs. Evoracle operates in a non-

linear dynamical system describing natural selection and mutation that introduces new genotypes to the 

population. In general, we use bold symbols to refer to vectors and matrices, and use bracketing 

indexing notation such that v[i] to denote the 𝑖-th element of a vector 𝒗. 

𝒙𝒕 is a vector of genotype frequencies at time 𝑡 that represents a state updated by the non-linear 

dynamical system. We assume that there are 𝐺  finite genotypes. We use 𝑿 to refer to the matrix 

concatenating 𝒙𝟏, 𝒙𝟐, . . . , 𝒙𝑻 over 𝑇 total timepoints. 

The non-linear dynamical system includes an asexual natural selection recurrence relation 

commonly used in the literature: 

 

 𝒙𝒕+𝟏 =
𝒘

𝒘𝑇𝒙𝒕
⊙ 𝒙𝒕 (1) 

 

where ⊙ is element-wise multiplication of two vectors, and 𝒘 is fitness vector with non-negative 

values. Without loss of generality, we assume that 𝒘 is ordered such that 𝑤[1] > 𝑤[2] >. . . > 𝑤[𝐺]. 

The corresponding differential equation is: 

 

 𝒙𝒕+𝟏 − 𝒙𝒕 =
𝒘−𝒘𝑇𝒙𝒕

𝒘𝑇𝒙𝒕
⊙ 𝒙𝒕 (2) 

 

We observe data 𝒚𝒕 through a lossy observation process 𝒚𝒕 = 𝑩𝒙𝒕 at time 𝑡 where 𝐵 is a rank-

deficient matrix since the dimension of 𝒚𝒕 is less than the dimension of 𝒙𝒕. We use 𝒀 to refer to the 

matrix concatenating 𝒚𝟏, 𝒚𝟐, . . . , 𝒚𝑻 over 𝑇 timepoints. 

Let there be 𝑀 distinct measurements, so that 𝑩 has shape (𝑀, 𝐺). We use the notation 𝑩𝑚 ⊂

{1, . . . , 𝐺} for an event 𝑚 to denote the subset of genotypes that contain event 𝑚. For example, 𝑚 could 

be the event that position 1 has a mutation to ’A’, or that positions 1-4 are equal to ’ACGT’. 

 

  



 

Theoretical properties 

 

Lemma 1 (Natural selection exponentially enriches for the maximum fitness genotype)  

If 𝑤[𝑖] < 𝑤[𝑗] and 𝑥[𝑖] ≥ 𝑥[𝑗], then we will have 𝑥[𝑖] < 𝑥[𝑗] after  

 𝜏 > log𝑤[𝑗]

𝑤[𝑖]

(
𝑥[𝑖]

𝑥[𝑗]
) (3) 

 time steps.  

 

Proof. We achieve 𝑥[𝑖] < 𝑥[𝑗] at 𝜏 time steps when:  

 

𝑥[𝑖] ∏𝜏
𝑡=1

𝑤[𝑖]

𝒘𝑇𝒙𝒕
< 𝑥[𝑗] ∏𝜏

𝑡=1
𝑤[𝑗]

𝒘𝑇𝒙𝒕

𝑥[𝑖](
𝑤[𝑖]

𝑤[𝑗]
)𝜏 < 𝑥[𝑗]

𝜏 > log𝑤[𝑗]

𝑤[𝑖]

(
𝑥[𝑖]

𝑥[𝑗]
)

 (4) 

 

The sign flips because log(
𝑤[𝑖]

𝑤[𝑗]
) < 0. 

 

Remarks. This result shows that, if the fitness difference between 𝑤[1] and 𝑤[2] is 10-fold, then 

𝑥[1] can overcome 𝑥[2] that is 100-fold higher in two time steps. 

__________  

Lemma 2 (Natural selection induces genotype frequency distributions with increasing 

skew)  For any 𝒘𝑇𝒙𝒕, let there be an index 𝑑 where 𝑤[𝑑] > 𝒘𝑇𝒙𝒕 and 𝑤[𝑑 + 1] ≤ 𝒘𝑇𝒙𝒕. If 𝑥𝑡[𝑖] > 𝑥𝑡[𝑗] 

for all 𝑖 in {1, . . . , 𝑑} and all 𝑗 in {𝑑 + 1, . . . , 𝐺}, and 𝑚𝑖𝑛({𝑥𝑡[𝑖]|𝑖 ∈ {1, . . . , 𝑑}}) > 2/𝐺, then  

 𝑠𝑘𝑒𝑤(𝒙𝒕+𝟏) > 𝑠𝑘𝑒𝑤(𝒙𝒕) (5) 

 

where we define the skew of a genotype frequency vector as 𝑠𝑘𝑒𝑤(𝒙𝒕) =∥ 𝒙𝒕 − 1/𝐺 ∥3
3. This term 

corresponds to the unnormalized statistical skew around the mean frequency 1/G. 

 

 

Remarks. The initial condition is a relaxation of requiring 𝑝 to be exactly sorted in the same order 

as 𝒘: we only require that the pivot point defined by 𝒘𝑇𝒙𝒕 in fitness space also defines a pivot point in 

genotype frequency space that splits genotypes into two groups: one group with relatively higher initial 

frequency that will element-wise increase, and the other group with relatively lower initial frequency that 

will element-wise decrease. By theorem 1, sorting occurs in logarithmic time for all mismatched pairs. 

Moreover, sorting across all pairs occurs simultaneously. In practice, high selection stringency and rapid 



generation time in directed evolution experiments suggest that these conditions are mild and achievable 

in practice. 

Also, note that once the initial conditions are satisfied at some 𝑡, they will continue to be satisfied 

for any 𝑡′ > 𝑡  under the natural selection recurrence relation. The conditions will be broken if, for 

example, a new rare genotype with fitness greater than the whole population is introduced by 

spontaneous mutation. 

Proof. We begin by considering the skew function for a single term, 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑]) = (𝑥𝑡[𝑑] −
1

𝐺
)3 

and note that it is a convex function when 𝑥𝑡[𝑑] ≥ 1/𝐺 and concave when 𝑥𝑡[𝑑] ≤ 1/𝐺. We will use the 

following convexity bounds. 

Observation. (Convexity bounds). Let 𝑓(𝑥) be a convex function and 𝑦 < 𝑥. Then,  

 (𝑥 − 𝑦)𝑓′(𝑥) ≥ 𝑓(𝑥) − 𝑓(𝑦) (6) 

 and  

 (𝑥 − 𝑦)𝑓′(𝑦) ≤ 𝑓(𝑥) − 𝑓(𝑦) (7) 

 

Proof. 

By the definition of convexity, we have for 0 < 𝜆 < 1: 

 

 

𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) ≤ (1 − 𝜆)𝑓(𝑥) + 𝜆𝑓(𝑦)
𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) − 𝑓(𝑦) ≤ (1 − 𝜆)𝑓(𝑥) + 𝜆𝑓(𝑦) − 𝑓(𝑦)

≤ (1 − 𝜆)(𝑓(𝑥) − 𝑓(𝑦))
 (8) 

 

We divide by (1 − 𝜆)(𝑥 − 𝑦) since it is not equal to zero. 

 

 
𝑓((1−𝜆)𝑥+𝜆𝑦)−𝑓(𝑦)

(1−𝜆)(𝑥−𝑦)
≤

(1−𝜆)(𝑓(𝑥)−𝑓(𝑦))

(1−𝜆)(𝑥−𝑦)
 (9) 

 

As 𝜆 → 1, the left side approaches 𝑓′(𝑦), and we obtain: 

 

 𝑓′(𝑦) ≤
𝑓(𝑥)−𝑓(𝑦)

(𝑥−𝑦)
. (10) 

 

This shows equation 7. An analogous approach can be used to obtain equation 6.  

__________ 

We now continue to proving theorem 2. Comparing between time 𝑡 and 𝑡 + 1, some terms 

𝑠𝑘𝑒𝑤(𝑥[𝑑]) may increase and other terms may decrease, subject to ∑𝑑 𝑥𝑡[𝑑] = 1 for all 𝑡. Let 𝐴 =

{1, . . . , 𝑑} and 𝐵 = {𝑑 + 1, . . . , 𝐷}. Then: 

 



 𝛿 = ∑𝑑∈𝐴 𝑥𝑡+1[𝑑] − 𝑥𝑡[𝑑] (11) 

 

where each term 𝑥𝑡+1[𝑑] − 𝑥𝑡[𝑑] > 0 for all 𝑑 ∈ 𝐴. The overall increase 𝛿 is balanced by: 

 

 −𝛿 = ∑𝑑∈𝐵 𝑥𝑡+1[𝑑] − 𝑥𝑡[𝑑] (12) 

 

where each term 𝑥𝑡+1[𝑑] − 𝑥𝑡[𝑑] < 0 for all 𝑑 ∈ 𝐵. 

The plan of the proof is to show that the increase in skew from increasing 𝑥𝑡[𝑑] for all 𝑑 ∈ 𝐴 by 

a total of 𝛿 is greater than the decrease in skew from any possible combination of changes in 𝑥𝑡[𝑑] for 

all 𝑑 ∈ 𝐵 that sum to −𝛿. 

Note that for each term, in general, the change in skew will be: 

 

 𝑠𝑘𝑒𝑤(𝑥𝑡+1[𝑑]) − 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑]) = (𝑥𝑡[𝑑] + 𝛿𝑧𝑑 − 1/𝐺)3 − (𝑥𝑡[𝑑] − 1/𝐺)3 (13) 

 

where 𝑧𝑑 < 0 for all 𝑑 ∈ 𝐵 and ∑𝑑∈𝐵 𝑧𝑑 = −1. Analogously, we have 𝑧𝑑 > 0 for all 𝑑 ∈ 𝐴 and 

∑𝑑∈𝐴 𝑧𝑑 = 1. 

Let 𝑎 be the index min𝑑{𝑥𝑡[𝑑]|𝑑 ∈ 𝐴} and let 𝑏 be the index max[𝑑]{𝑥𝑡[𝑑]|𝑑 ∈ 𝐵}. Note that we 

have 𝑥𝑡[𝑎] > 𝑥𝑡[𝑏]. 

We proceed by case analysis with one case for when 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑]) is convex and another case 

for when it is concave. For reasons that will become clear in a moment, however, we will tweak these 

cases to consider when 𝑥𝑡[𝑏] ≤ 2/𝐺 and 𝑥𝑡[𝑏] > 2/𝐺. Recall that by our initial conditions, 𝑥𝑡[𝑎] > 2/𝐺. 

Case 1: 𝒙𝒕[𝒃] ≤ 𝟐/𝑮 

Consider when 𝑥𝑡[𝑏] ≤ 1/𝐺 such that 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑏]) is concave. For any 𝑑 ∈ 𝐵, we can bound the 

magnitude of its decrease in skew using convexity bounds from lemma ??: 

 

 

|𝑠𝑘𝑒𝑤(𝑥𝑡+1[𝑑]) − 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑])| = |(𝑥𝑡[𝑑] + 𝛿𝑧𝑑 − 1/𝐺)3 − (𝑥𝑡[𝑑] − 1/𝐺)3|

≤ |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(𝑥𝑡[𝑑] + 𝛿𝑧𝑑 − 1/𝐺)|

≤ |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(−1/𝐺)|

 (14) 

 

Then, 

 

 
| ∑𝑑∈𝐵 𝑠𝑘𝑒𝑤(𝑥𝑡+1[𝑑]) − 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑])| ≤ | ∑𝑑∈𝐵 𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(−1/𝐺)|

≤ 𝛿𝑠𝑘𝑒𝑤′(−1/𝐺)
 (15) 

 

Now, consider an element 1/𝐺 < 𝑥𝑡[𝑑] ≤ 2/𝐺 that is decreasing; that is, 𝑑 ∈ 𝐵. In this regime, 

skew is a convex function. To bound its decrease in skew, we have: 

 



 

|𝑠𝑘𝑒𝑤(𝑥𝑡+1[𝑑]) − 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑])| = |(𝑥𝑡[𝑑] + 𝛿𝑧𝑑 − 1/𝐺)3 − (𝑥𝑡[𝑑] − 1/𝐺)3|

≤ |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(𝑥𝑡[𝑑] − 1/𝐺)|

≤ |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(2/𝐷 − 1/𝐺)|

≤ |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(1/𝐺)|

 (16) 

 

Since we have |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(1/𝐺)| = |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(−1/𝐺)|, we have the bound: 

 

 | ∑𝑑∈𝐵 𝑠𝑘𝑒𝑤(𝑥𝑡+1[𝑑]) − 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑])| ≤ 𝛿𝑠𝑘𝑒𝑤′(1/𝐺) (17) 

 

for all 𝑑 ∈ 𝐵 when 𝑥𝑡[𝑏] ≤ 2/𝐺. 

Now, we show that a lower bound on the increase in skew from 𝑋 is greater than 𝛿𝑠𝑘𝑒𝑤′(1/𝐺). 

For any 𝑑 ∈ 𝐴 such that 𝑥𝑡[𝑑] > 2/𝐺, we have: 

 

 

|𝑠𝑘𝑒𝑤(𝑥𝑡+1[𝑑]) − 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑])| = |(𝑥𝑡[𝑑] + 𝛿𝑧𝑑 − 1/𝐺)3 − (𝑥𝑡[𝑑] − 1/𝐺)3|

> |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(𝑥𝑡[𝑑] − 1/𝐺)|

> |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(2/𝐷 − 1/𝐺)|

> |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(1/𝐺)|

 (18) 

 

Thus: 

 

 | ∑𝑑∈𝐵 𝑠𝑘𝑒𝑤(𝑥𝑡+1[𝑑]) − 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑])| < | ∑𝑑∈𝐴 𝑠𝑘𝑒𝑤(𝑥𝑡+1[𝑑]) − 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑])| (19) 

 

Case 2: 𝒙𝒕[𝒃] > 𝟐/𝑮 

By the same argument as above, we can bound the decrease in skew for any 𝑑 ∈ 𝐵 where 

𝑥𝑡[𝑑] < 𝑥𝑡[𝑏] as: 

 

 

|𝑠𝑘𝑒𝑤(𝑥𝑡+1[𝑑]) − 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑])| = |(𝑥𝑡[𝑑] + 𝛿𝑧𝑑 − 1/𝐺)3 − (𝑥𝑡[𝑑] − 1/𝐺)3|

≤ |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(𝑥𝑡[𝑑] − 1/𝐺)|

≤ |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(𝑥𝑡[𝑏] − 1/𝐺)|
 (20) 

 

which is greater than |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(−1/𝐺)|, so the bound works for all 𝑥𝑡[𝑑] between 0 and 𝑥𝑡[𝑏]. 

Similarly, we lower bound the increase in skew for any 𝑑 ∈ 𝐴 where 𝑥𝑡[𝑑] > 𝑥𝑡[𝑎] as: 

 

 |𝑠𝑘𝑒𝑤(𝑥𝑡+1[𝑑]) − 𝑠𝑘𝑒𝑤(𝑥𝑡[𝑑])| ≥ |𝛿𝑧𝑑𝑠𝑘𝑒𝑤′(𝑥𝑡[𝑎] − 1/𝐺)| (21) 

 

Applying the bound across all of 𝐴 and 𝐵 eliminates 𝑧𝑑, so we conclude: 

 



 |𝛿𝑠𝑘𝑒𝑤′(𝑥𝑡[𝑏] − 1/𝐺)| ≤ |𝛿𝑠𝑘𝑒𝑤′(𝑥𝑡[𝑎] − 1/𝐺)| (22) 

 

which is true by our initial conditions where 𝑥𝑡[𝑎] > 𝑥𝑡[𝑏] and 𝑥𝑡[𝑎] > 2/𝐺. 

Thus, the magnitude of the increase in skew is greater than the magnitude of the decrease in 

skew from one step of natural selection, so 

 

 𝑠𝑘𝑒𝑤(𝒙𝒕+𝟏) > 𝑠𝑘𝑒𝑤(𝒙𝒕) (23) 

 

 

__________  

Lemma 3 (The highest fitness full-length genotype is identifiable from lossy 

measurements)  When 𝑤[2] < 𝒘𝑇𝒙𝒕 or equivalently 𝑥𝑡[1] >
𝑤[2]

𝑤[1]
, then 𝑔1 (the full-length genotype 

with the highest fitness) is identifiable from two timepoints from 𝑦 alone.  

 

Remarks. The condition 𝑤[2] < 𝒘𝑇𝒙𝒕  expresses that 𝑥𝑡+1[𝑖] − 𝑥𝑡[𝑖] > 0  for 𝑖 = 1  only. This 

condition is satisfied when 𝑥𝑡[1] >
𝑤[2]

𝑤[1]
 by expressing 𝑥𝑡[1] =

𝑤[2]

𝑤[1]
+ 𝑘 for 𝑘 > 0 and noting: 

 

 

𝑤[2] ≤ 𝒘𝑇𝒙𝒕

𝑤[2] ≤ 𝑤[1]𝑥𝑡[1] + 𝑐

𝑤[2] ≤ 𝑤[1](
𝑤[2]

𝑤[1]
+ 𝑘) + 𝑐

𝑤[2] ≤ 𝑤[2] + 𝑤[1]𝑘 + 𝑐

 (24) 

 

is true. Note that 𝑐 > 0 because 𝑤[𝑑] > 0 and 𝑥[𝑑] ≥ 0 for all 𝑑. 

Proof. 

We show that when 𝑤[2] < 𝒘𝑇𝒙𝒕, we have that 𝑦𝑡+1[𝑚] − 𝑦𝑡[𝑚] is positive if and only if the 

genotype element 1 is in 𝑩𝑚. First, consider: 

 

 𝑦𝑡+1[𝑚] − 𝑦𝑡[𝑚] = ∑𝑑∈𝐵𝑚
𝑥𝑡+1[𝑑] − 𝑥𝑡[𝑑] = ∑𝑑∈𝐵𝑚

𝑤[𝑑]−𝒘𝑇𝒙𝒕

𝑤[𝑑]
 (25) 

 

Since 𝒘𝑇𝒙𝒕 > 𝑤[2] > 𝑤[3] >. . . > 𝑤[𝑑] > 0, we have 𝑥𝑡+1[𝑑] − 𝑥𝑡[𝑑] ≤ 0 for 𝑑 ∈ {2, . . . , 𝐷} and 

𝑥𝑡+1[1] − 𝑥𝑡[1] > 0 for only the highest fitness genotype 𝑔1. 

We will use 𝛿 to refer to 𝑥𝑡+1[1] − 𝑥𝑡[1] and note that 𝛿 > 0. Since ∑𝑑 𝑥𝑡[𝑑] = 1 for all 𝑡, 

 

 ∑𝑑≠1 𝑥𝑡+1[𝑑] − 𝑥𝑡[𝑑] = ∑𝑑≠1
𝑤[𝑑]−𝒘𝑇𝒙𝒕

𝑤[𝑑]
= −𝛿 (26) 



 

where each term 
𝑤[𝑑]−𝒘𝑇𝒙𝒕

𝑤[𝑑]
< 0. 

Since 𝑩𝑚 ⊂ {1,2, . . . , 𝐷} is a strict subset; that is, |𝑩𝑚| < 𝐺 by construction, we have for each 𝑚: 

 

 0 > ∑ 𝑑≠1,
𝑑∈𝑩𝑚

𝑥𝑡+1[𝑑] − 𝑥𝑡[𝑑] = ∑ 𝑑≠1,
𝑑∈𝑩𝑚

𝑤[𝑑]−𝒘𝑇𝒙𝒕

𝑤[𝑑]
> −𝛿 (27) 

 

For 𝑚 where 1 ∈ 𝑩𝑚, we then have: 

 

 𝑦𝑡+1[𝑚] − 𝑦𝑡[𝑚] = 𝛿 + ∑ 𝑑≠1,
𝑑∈𝐵𝑚

𝑥𝑡+1[𝑑] − 𝑥𝑡[𝑑] > 0 (28) 

 

And for 𝑚 where 1 ∉ 𝑩𝑚, we have: 

 

 𝑦𝑡+1[𝑚] − 𝑦𝑡[𝑚] = 0 + ∑ 𝑑≠1,
𝑑∈𝐵𝑚

𝑥𝑡+1[𝑑] − 𝑥𝑡[𝑑] < 0 (29) 

 

Thus, 𝑦𝑡+1[𝑚] − 𝑦𝑡[𝑚] > 0 if and only if 1 ∈ 𝑩𝑚 for all events 𝑚. 

 

__________  

Lemma 4.  Given 𝑿 with at least two timepoints, we can infer a fitness vector 𝒘 that is equal to 

the true fitness vector up to a scaling factor.  

 

Remarks. In our inference problem, we generally assume that 𝑿 is hidden and that we aim to 

learn it from 𝒀. This theorem establishes that the function 𝒘, 𝒙𝟎 → 𝑿 is injective, and thus the key source 

of non-identifiability in the general inference problem is from the lossy measurements through 𝑩. The 

general task of recovering 𝑿 from 𝒀 has 𝑂(𝐺𝑇)  degrees of freedom. Under the hard constraint of 

requiring 𝑿 to be consistent with trajectories from natural selection, however, the degrees of freedom is 

reduced to 𝑂(𝐺). Thus, while the problem remains non-identifiable in the general case, the selection 

regularizer adds structure to the problem and eliminates spurious solutions. 

Our method also uses the shortest distance between sampling times as the generation time for 

the natural selection recurrence relation. These "generation" times may be as long as 24 h, which may 

appear at first glance to be a modeling error when generation times in directed evolution are known to 

be much faster. This theorem shows that "misspecifying" generation time does not actually cause any 

issues when modeling a population under natural selection. In particular, we show that 𝒘 learned from 

any generation time yields exactly identical trajectories as 𝒘 calculated from the true generation time 

up to a rescaling of the time axis. 



Proof. Without loss of generality, let the true generation time be 1, such that 𝑝(1) occurs one 

generation after the initial 𝒙𝟎, and let the sampling time be an integer 𝜏 > 1. Let 𝝍 be the fitness vector 

that we will calculate from 𝒙𝝉 and 𝒙𝟎 and compare to the true fitness vector 𝒘. 

 

 

𝑥𝑇[𝑑]

𝑥0[𝑑]
=

∏𝜏−1
𝑡=0 (

𝑤[𝑑]

𝒘𝑇𝒙𝒕
)𝑥0[𝑑]

𝑥0[𝑑]
=

𝜓[𝑑]

𝝍𝑇𝒙𝟎

∏𝜏−1
𝑡=0 (

𝑤[𝑑]

𝒘𝑇𝒙𝒕
) =

𝜓[𝑑]

𝝍𝑇𝒙𝟎

 (30) 

 

Consider 𝒘𝑇𝒙𝒕 and recall that 𝑥𝑡+1[𝑑] =
𝑤[𝑑]

𝒘𝑇𝒙𝒕
𝑥𝑡[𝑑]. Thus: 

 

 

𝒘𝑇𝒙𝒕 = ∑𝑑 𝑤[𝑑]𝑥𝑡[𝑑]

= ∑𝑑 𝑤[𝑑]
𝑤[𝑑]𝑥𝑡−1[𝑑]

𝒘𝑇𝒙𝒕−𝟏

=
1

𝒘𝑇𝒙𝒕−𝟏
∑𝑑 𝑤[𝑑]2𝑥𝑡−1[𝑑]

 (31) 

 

By recursing 𝑡 from 𝜏 − 1 to 0, we get: 

 

 𝒘𝑇𝒙𝒕 = ∏𝜏−2
𝑡=0

1

𝒘𝑇𝒙𝒕
∑𝑑 𝑤[𝑑]𝑇𝑥0[𝑑] (32) 

 

Using this in equation 30: 

 

 

∏𝑇−1
𝑡=0 (

𝑤[𝑑]

𝒘𝑇𝒙𝒕
) =

𝜓[𝑑]

𝝍𝑇𝒙𝟎

𝑤[𝑑]𝑇

(∏𝑇−2
𝑡=0 𝒘𝑇𝒙𝒕)(∏𝑇−2

𝑡=0
1

𝒘𝑇𝒙𝒕
) ∑𝑑 𝑤[𝑑]𝑇𝑥0[𝑑]

=
𝜓[𝑑]

𝝍𝑇𝒙𝟎

𝑤[𝑑]𝑇

∑𝑑 𝑤[𝑑]𝑇𝑥0[𝑑]
=

𝜓[𝑑]

𝝍𝑇𝒙𝟎

 (33) 

 

We have this equation for each 𝑑. The solution to the system of equations is thus 𝜓[𝑑] = 𝑤[𝑑]𝜏. 

If we know 𝜏, we can recover 𝒘 up to a constant scaling factor. Even if we don’t know 𝜏, however, the 

natural selection trajectories using 𝜓 will be the same as using 𝒘 on an appropriately scaled time axis, 

and we can obtain trajectories to arbitrary time resolution by increasing 𝜏. 

 

__________  

Lemma 5 (Identifiability from observations in a simple example given 𝒙𝟎)  Consider two 

independent mutation events (𝑀 = 2) and a population of two single mutants (10 and 01) and a 



double mutant (11), where we can only observe single mutation frequencies. If genotype frequencies 

are known at time 𝑡 − 1 as 𝒙𝒕−𝟏, then fitness 𝒘 is identifiable from lossy measurements 𝒚𝒕 and 𝒕𝒕+𝟏. 

 

 

Remarks. This theorem establishes that full-length genotype trajectories (equivalent to, and 

computable from, 𝒘) can be recovered exactly from lossy measurements of only position-wise mutation 

frequencies representing mixtures of genotypes, when 𝒙𝟎 is known. In practice, 𝒙𝟎 cannot easily be 

measured. This theorem, however, establishes that lossy measurements do not completely prohibit 

identifiability. 

Proof. Denote 𝒙𝒕
∗ as the full-length genotype frequency vector at time 𝑡 following 𝒘∗, and 𝒙𝒕 as 

following 𝒘. The same notation shall be used for 𝑦𝑡
∗[𝑚] and 𝑦𝑡[𝑚]. 

Since 𝒙𝒕−𝟏
∗ = 𝒙𝒕−𝟏 , we also have 𝑦𝑡−1

∗ [𝑚] = 𝑦𝑡−1[𝑚]  for all 𝑚 . It is possible for observed 

marginals to be identical at another timepoint; without loss of generality, denote this time interval as 1 

so we have 𝑦𝑡
∗[𝑚] = 𝑦𝑡[𝑚] for all 𝑚. Recall that by 4, we know that if 𝒘∗ ≠ 𝒘, then 𝒙𝒕

∗ = 𝒙𝒕 is true for at 

most 1 value of 𝑡. Thus, if 𝑦𝑡
∗[𝑚] = 𝑦𝑡[𝑚], we can express: 

 

 𝑥𝑡[𝑑] = 𝑥𝑡
∗[𝑑] + 𝛿𝑑 (34) 

 

where ∑𝑑∈𝑩𝑚
𝛿𝑑 = 0 for each 𝑚 and 𝑥𝑡[𝑑] ≠ 𝑥𝑡

∗[𝑑]; that is, 𝛿 is not the zero vector (𝛿 ≠ 0). 

We will derive 𝒙𝒕+𝟏
∗  and 𝒙𝒕+𝟏 from fitnesses calculated from 𝑥𝑡[𝑑] ≠ 𝑥𝑡

∗[𝑑] relative to 𝑥𝑡−1
∗ [𝑑] =

𝑥𝑡−1[𝑑]. From there, we will obtain a system of equations 𝑦𝑡+1
∗ [𝑚] = 𝑦𝑡+1[𝑚] for each 𝑚 as a function 

of free variables 𝛿𝑑  and show by a computer-assisted proof that the only solution to the system of 

equations is 𝛿 = 0. Thus will allow us to conclude that: 

 

 {

𝒙𝒕−𝟏
∗ = 𝒙𝒕−𝟏,

∀𝑚, 𝑦𝑡
∗[𝑚] = 𝑦𝑡[𝑚]

∀𝑚, 𝑦𝑡+1
∗ [𝑚] = 𝑦𝑡+1[𝑚]

 (35) 

 

holds only when 𝒘∗ = 𝒘; thus, 𝒘 is identifiable from these observations. 

By definition, we have: 

 

 
𝑥𝑡+1

∗ [𝑑] =
𝑤∗[𝑑]

𝒘∗𝑇𝒙𝒕
𝑥𝑡

∗[𝑑]

𝑤∗[𝑑]

𝒘∗𝑇𝒙𝒕
=

𝑥𝑡+1
∗ [𝑑]

𝑥𝑡
∗[𝑑]

 (36) 

 



Since fitness is identical up to scale, without loss of generality, let 𝒘∗𝑇𝒙𝒕−𝟏
∗ = 1. We use this and 

the previous equation: 

 

 

𝑥𝑡+1
∗ [𝑑] = (

𝑤∗[𝑑]

𝑤∗[𝑑]⋅𝒙𝒕
∗)(

𝑤∗[𝑑]

𝑤∗[𝑑]⋅𝒙𝒕−𝟏
∗ )𝑥𝑡−1

∗ [𝑑]

𝑥𝑡+1
∗ [𝑑] = (

𝑥𝑡
∗[𝑑]

𝑥𝑡−1
∗ [𝑑]

∑𝑖 (
𝑝𝑖

∗(𝑡)

𝑝𝑖
∗(𝑡−1)

)𝑝𝑖
∗(𝑡)

)(
𝑥𝑡

∗[𝑑]

𝑥𝑡−1
∗ [𝑑]

)𝑥𝑡−1
∗ [𝑑]

𝑥𝑡+1
∗ [𝑑] = (

𝑥𝑡
∗[𝑑]

𝑥𝑡−1
∗ [𝑑]

∑𝑖 (
𝑝𝑖

∗(𝑡)

𝑝𝑖
∗(𝑡−1)

)𝑝𝑖
∗(𝑡)

)𝑥𝑡
∗[𝑑]

𝑥𝑡+1
∗ [𝑑] = (

𝑥𝑡
∗[𝑑]2

𝑥𝑡−1
∗ [𝑑]

∑𝑖 (
𝑝𝑖

∗(𝑡)2

𝑝𝑖
∗(𝑡−1)

)
)

 (37) 

 

We express 𝑥𝑡+1[𝑑] analogously, using 𝑥𝑡[𝑑] = 𝑥𝑡
∗[𝑑] + 𝛿𝑑: 

 

 𝑥𝑡+1[𝑑] = (

(𝑥𝑡
∗[𝑑]+𝛿𝑑)2

𝑥𝑡−1
∗ [𝑑]

∑𝑖 (
(𝑝𝑖

∗(𝑡)+𝛿𝑖)2

𝑝𝑖
∗(𝑡−1)

)
) (38) 

 

For a particular marginal 𝑚, we have: 

 

 

0 = 𝑦𝑡+1
∗ [𝑚] − 𝑦𝑡+1[𝑚]

0 = (∑𝑖
𝑝𝑖

∗(𝑡)2

𝑝𝑖
∗(𝑡−1)

)(∑𝑑∈𝔹𝑚

(𝑥𝑡
∗[𝑑]+𝛿𝑑)2

𝑥𝑡−1
∗ [𝑑]

) − (∑𝑖
(𝑝𝑖

∗(𝑡)+𝛿𝑖)2

𝑝𝑖
∗(𝑡−1)

)(∑𝑑∈𝑩𝑚

𝑥𝑡
∗[𝑑]2

𝑥𝑡−1
∗ [𝑑]

)
 (39) 

 

We write out this system of equations 𝐺 = 3 for two single mutants (10 and 01) and one double 

mutant (11) at two marginal positions (𝑀 = 2) and solve using a symbolic math Python library: 

 

import sympy 

from sympy import * 

 

# x, y, z are deltas; x and y are single mutants and z is the double mutant 

x, y, z = symbols('x y z') 

 

# pTD; T in [0, 1], D in [0, 1, 2] 

p00, p01, p02, p10, p11, p12 = symbols('p00 p01 p02 p10 p11 p12') 

 

# Define marginal observations: mixtures of x+z, and y+z 

sum_star_all = p10**2/p00 + p11**2/p01 + p12**2/p02 



sum_star_02 = p10**2/p00 + p12**2/p02 

sum_star_12 = p11**2/p01 + p12**2/p02 

 

sum_params_all = (p10+x)**2/p00 + (p11+y)**2/p01 + (p12+z)**2/p02 

sum_params_02 = (p10+x)**2/p00 + (p12+z)**2/p02 

sum_params_12 = (p11+y)**2/p01 + (p12+z)**2/p02 

 

eq02 = Eq(sum_star_all * sum_params_02 - sum_params_all * sum_star_02, 0) 

eq12 = Eq(sum_star_all * sum_params_12 - sum_params_all * sum_star_12, 0) 

eq_xz = Eq(x+z, 0) 

eq_yz = Eq(y+z, 0) 

 

solve([eq02, eq12, eq_xz, eq_yz], [x, y, z]) 

 

# Runtime: <1 second 

>>> [0, 0, 0]  

 

The solution is 𝛿 = 0. Thus, 𝒘 is identifiable under the conditions of the proof. 

 

Lemma 6 (Gradient-matching implicitly encourages smaller ||𝒔||
𝟏
)  Let 𝒑 and 𝒒 be 

distributions over 𝑁 discrete elements, and 𝒔𝟏, 𝒔𝟐 be vectors over 𝑀 discrete elements with non-

negative values whose sum is at most 1. Then, we have ∥ 𝒔𝟏 ∥1<∥ 𝒔𝟐 ∥1 if and only if 𝐷𝐾𝐿(𝒑 ∥ (1−∥

𝒔𝟏 ∥1)𝒒 + 𝒔𝟏) < 𝐷𝐾𝐿(𝒑 ∥ (1−∥ 𝒔𝟐 ∥1)𝒒 + 𝒔𝟐) over 𝑁 + 𝑀 elements.  

 

Proof. Note that 𝐷𝐾𝐿(𝒑 ∥ 𝒒) = 𝐻(𝒑) − ∑𝑥 𝑝(𝑥)log𝑞(𝑥), where 𝐻(𝒑) is the non-negative entropy 

of 𝒑 and independent of 𝒒. Using the monotonicity of log(𝑥), we have that scalars 𝑦 < 𝑧 if and only if 

log(𝑦) < log(𝑧) if and only if 𝐻(𝒑) − ∑𝑥 𝑝(𝑥)log(𝑦) > 𝐻(𝒑) − ∑𝑥 𝑝(𝑥)log(𝑧). 

(=>) Suppose that ∥ 𝒔𝟏 ∥1<∥ 𝒔𝟐 ∥1. Then, (1−∥ 𝒔𝟏 ∥1)𝑞(𝑥) > (1−∥ 𝒔𝟐 ∥1)𝑞(𝑥) for all 𝑥. Then, by 

our observations above, 𝐷𝐾𝐿(𝒑 ∥ (1−∥ 𝒔𝟏 ∥1)𝒒 + 𝒔𝟏) < 𝐷𝐾𝐿(𝒑 ∥ (1−∥ 𝒔𝟐 ∥1)𝒒 + 𝒔𝟐). 

(<=) Now, suppose that 𝐷𝐾𝐿(𝒑 ∥ (1−∥ 𝒔𝟏 ∥1)𝒒 + 𝒔𝟏) < 𝐷𝐾𝐿(𝒑 ∥ (1−∥ 𝒔𝟐 ∥1)𝒒 + 𝒔𝟐). As 𝑝(𝑥) = 0 

for all 𝑥 in the support of 𝒔𝟏, 𝒔𝟐, this reduces to 𝐷𝐾𝐿(𝒑 ∥ (1−∥ 𝒔𝟏 ∥1)𝒒) < 𝐷𝐾𝐿(𝒑 ∥ (1−∥ 𝒔𝟐 ∥1)𝒒). By our 

previous observations, this implies that ∥ 𝒔𝟏 ∥1<∥ 𝒔𝟐 ∥1. 

 

Remarks. This lemma maps to our problem by considering the 𝑁  discrete elements to be 

present genotypes and the 𝑀 discrete elements to be absent genotypes at some time 𝑡. The result 

states that the higher the total frequency of genotypes introduced to the population at some time 𝑡, the 

larger the 𝐷𝐾𝐿 loss term is, no matter what 𝒑 or 𝒒 are. 



 

Lemma 7 (Even if genotypes can enter the population multiple times, genotype 

frequencies under natural selection can rise to appreciable frequency at most once)  Let 𝒙𝒕 be 

states evolving under a state transition process 𝒙𝒕+𝟏 = (1−∥ 𝒑𝒕 ∥1)(
𝒘

𝒘𝑇𝒙𝒕
) ⊙ 𝒙𝒕 + 𝒑𝒕 where 𝒑𝒕 is a 

vector whose 𝑖-th element is non-negative 𝑠𝑡[𝑖] if 𝑧𝑡[𝑖] = 𝑡 otherwise 0, with parameters 𝒘, 𝒔𝒕, 𝒛𝒕, such 

that 𝑧𝑡[𝑖] ≠ 𝑡 for all 𝑖 where 𝑥𝑡[𝑖] > 0 (genotypes can only be introduced when they were at 0 

frequency). Let there be a threshold 𝜖 < 𝜆 such that if 𝑥𝑡[𝑖] ≤ 𝜖, then 𝑥𝑡+1[𝑖] = 0. Let 0 < 𝜆 << 1 be an 

upper bound such that for any genotype 𝑖, if 𝑥𝑡[𝑖] = 0, then 𝑥𝑡+1[𝑖] < 𝜆 for any 𝑡. If 𝒘𝑇𝒙𝒕 increases 

monotonically over time and there exists a time 𝜏 such that for some genotype 𝑖, for all 𝑡 < 𝜏, the rate 

of change according to fitness-based natural selection 
𝑤[𝑖]−𝒘𝑇𝒙𝒕

𝒘𝑇𝒙𝒕
> 0, and for all 𝑡′ > 𝜏, 

𝑤[𝑖]−𝒘𝑇𝒙𝒕

𝒘𝑇𝒙𝒕
< 0, 

then genotype 𝑖 cannot have a local maxima above 𝜆 at any time 𝑡′ > 𝜏.  

 

Remarks. The state transition process used here is closely related to Evoracle’s, with the key 

difference that 𝒔 and 𝒛 now depend on time, allowing genotypes to enter the population multiple times. 

The condition that 𝒘𝑇𝒙𝒕 increases monotonically over time is satisfied by a well-known theoretical result 

in the literature when genotypes do not enter or leave the population under our deterministic asexual 

natural selection model. Here, however, genotypes entering the population with high frequency and low 

fitness could lower the mean fitness over time. The condition can be still be satisfied if 𝜆 is low enough 

such that new genotypes enter at very low frequencies, which can be achieved during inference by 

setting 𝜖 low. 

This state transition process captures the situation during inference, where by directly inferring 

states, we risk the possibility of inferring multiple entries into the population which is incompatible with 

Evoracle’s assumed model. The lemma’s result states that this inference risk is not a concern when 

present genotype trajectories fit the natural selection model, because a genotype cannot rise above 𝜆 

frequency more than once. By taking 𝜆 to be low, genotypes cannot rise to appreciable frequency in the 

population more than once. 

This lemma also states that even if we changed Evoracle’s assumed model to allow for multiple 

entries, it would not lead to qualitatively different trajectories than a single-entry model. 

 

Proof. Suppose that for some genotype 𝑖 at some time 𝛾 > 𝜏, 𝑥𝛾−1[𝑖] > 0. Then, if 0 < 𝑥𝛾−1[𝑖] ≤

𝜖 , 𝑥𝛾[𝑖] = 0 by construction. If 𝑥𝛾−1[𝑖] > 𝜖 , then 𝑥𝛾[𝑖] = (1−∥ 𝒑𝜸−𝟏 ∥1)(
𝒘

𝒘𝑇𝒙𝜸−𝟏
) ⊙ 𝒙𝜸−𝟏 . As 𝛾 > 𝜏, the 

rate of change is negative, so (
𝒘

𝒘𝑇𝒙𝜸−𝟏
) < 1. Also, (1−∥ 𝒑𝜸−𝟏 ∥1) ≤ 1 by construction as its elements are 

non-negative. Thus, 𝑥𝛾[𝑖] < 𝑥𝛾−1[𝑖] in all cases. 



The only way for 𝑥𝛾[𝑖] to increase is if it is re-introduced to the population, so that 𝑥𝛾−1[𝑖] = 0 

and 𝑥𝛾[𝑖] > 0. By the definition of 𝜆, this non-zero introduction frequency is 𝑥𝛾[𝑖] < 𝜆. However, by the 

above argument, it must then shrink every following timestep back down to 0. Therefore, any genotype 

𝑖 cannot have a local maxima above 𝜆 at any time 𝑡′ > 𝜏. 

 

 

 

  



Supplementary Note 2 | Utility of unnormalized skew regularization. 

 We evaluated model performance on Cry1Ac and TadA data while varying hyperparameters 

(Extended Data Fig. 1) and observed that varying the weight of the skew regularizer, or even 

removing it completely (with weight set to zero) had no effect on performance. While these results 

may suggest that the categorical skew regularizer contributes nothing in general, we conservatively 

conclude that the regularizer has no effect on these two directed evolution datasets, and further 

discuss here why we consider it an integral part of the model and recommend using it in practice. 

 

Demonstration of utility on synthetic data 

 In Extended Data Fig. 1, we present results of an experiment with synthetic data where a wild-

type genotype and a double mutant undergo natural selection, such that the double mutant slowly 

sweeps the population. We provided point mutation frequencies for the two mutations to Evoracle and 

evaluated its ability to reconstruct the held-out ground-truth genotype trajectories. This is non-trivial for 

the model because it can disentangle the point mutation frequencies which rise in near synchrony into 

the contributions of two separate variants each with a point mutation, or a single double mutant. In this 

case, we observe that not using the skew regularizer yields inaccurate reconstructions where the 

point mutants peak at 4 h at ~15% population frequency. In contrast, using the skew regularizer with a 

stronger weight yields a reconstruction where the model suppresses the point mutants to essentially 

0% frequency throughout the entire time range. 

 

Theoretical motivation 

 We theoretically prove that natural selection yields high-skew genotype frequencies (see 

Lemma 2) and observe in our work that directed evolution often empirically generates skewed 

genotype frequencies in practice. Sparsity is, in general, a powerful property for many modeling 

applications, and the regularizer more explicitly encourages sparsity. 

 

Encoding prior knowledge of sparsity 

In practice, it is common for experimentalists to assess the activity in a directed evolution 

campaign through not just short-read sequencing data but also using low-throughput Sanger 

sequencing of individually isolated clones and other low-cost techniques. Such information can be 

useful for improving the accuracy of reconstruction, but there is no direct way to incorporate such 

information into Evoracle. There are indirect ways to do so, however—if the pool is known to be 

particularly sparse or skewed, this prior knowledge can be communicated to Evoracle by tuning the 

beta weight on the skew regularizer. 

  



Supplementary Note 3 | Practical usage guidelines 

 Our model is available as a light-weight python package at https://github.com/maxwshen/evo-

tft. For details on installing and running the model in python, refer to the write-up in the GitHub 

repository. Here, we mention some general and practical usage guidelines. 

 

DNA sequencing strategies 

 To use Evoracle with short-read sequencing data to reconstruct long genotypes, DNA 

sequencing should be designed to maximize coverage across the full length of the gene. Badran et al. 

performed Illumina sequencing on randomly sheared segments1. This approach could risk uneven 

coverage from non-uniform PCR amplification of segments due to, for instance, uneven GC content, 

or length. In principle, DNA sequencing could also be performed from sets of designed primers which 

could improve coverage uniformity. In this case, it is important to ensure that all nucleotides are 

observed by some pair of primers, so consecutive primer pairs should be designed to overlap each 

other. 

 As an example, consider a 3,100-nt gene that will be covered by 300-nt Illumina sequencing 

reads. This gene could be covered by 3100/300 rounded up = 11 tiled primer pairs. In general, we 

recommend at least 10,000 reads per nucleotide. This recommendation yields a total sequencing 

depth of 10,000 reads per nucleotide * 11 tiled primer pairs = 110,000 reads per timepoint. 

 

Frequency of timepoints 

 In practice for PACE, PANCE, and OrthoRep, we strongly encourage 6-h or 12-h timepoints, 

and no longer than 24 h between timepoints for directed evolution campaigns with high selection 

stringency. We note that in general, the best timepoint frequency is impossible to know before the 

campaign.  

As an illustrative example, consider the case where within 24 h, a single genotype rises to 

dominate the pool, and then depletes as it is taken over by a new genotype. If timepoints are taken 24 

h apart before this genotype has risen and after it is depleted, we would see no change. Since 

Evoracle only uses timepoint sequencing data as input, events like these are invisible to Evoracle. 

Fast rises and falls are more likely to occur as selection stringency is increased, so finer timepoint 

resolution is particularly important towards the end of a campaign. 

 Evoracle’s performance benefits from finer timepoint resolution, because by providing more 

timepoint samples, Evoracle has more data to work with for detecting subtle covariations between 

mutation frequencies which are the primary signal that Evoracle uses to reconstruct full-length 

genotypes and their fitnesses.  

 We anticipate that a common application of Evoracle is proposing high-fitness variants from a 

directed evolution campaign. This use case will benefit substantially from finer timepoint resolution 

https://github.com/maxwshen/evo-tft
https://github.com/maxwshen/evo-tft


near the final timepoint, not only to compensate for higher selection stringencies from common 

directed evolution campaign design, but also because the variants with the best fitness are present 

primarily at the final timepoint. The more data Evoracle has near the final timepoint, the better 

Evoracle can decipher the data and propose high-fitness variants with higher confidence. 

 We recommend using a timepoint schedule that has a large common denominator, such as 6 

h, 12 h, and 24 h. When the number of total timepoints that can be taken is limited, we recommend 

using coarser timepoint resolution near the beginning of the campaign and finer timepoint resolution 

near the end of the campaign. 

 

Manual inspection of proposed genotypes  

 Our model uses a heuristic (see Online Methods) to propose full-length genotypes that could 

exist in the population given an input table of mutation frequencies in read segments across 

timepoints (Online Methods). Evoracle attempts to explain observed data given this proposed list of 

full-length genotypes, so any full-length genotypes not in the proposed list are assumed to not exist in 

the population. We strongly recommend manually checking the list of proposed full-length genotypes 

to ensure they are consistent with expectations. It is straightforward to modify the proposed list to 

incorporate prior domain knowledge, for example by adding full-length genotypes that are expected to 

exist in the population.  

 Our work evaluates model performance while varying the proposal strategy (Extended Data 

Fig. 2). We find that our baseline heuristic of proposing full-length genotypes based on mutations that 

rise and fall together is strong. Evoracle is robust to proposing too many full-length genotypes. In 

Extended Data Fig. 2, we explored adding full-length genotypes with combinations of mutations that 

could exist in the population but lack strong evidence for existing beyond low frequencies. We 

observed that Evoracle performance does not decrease substantially in the presence of extra full-

length genotypes.  

 

Evaluation of model fit 

 To what extent can Evoracle’s inferences be trusted? A crucial step in calibrating trust is 

evaluating how well the model was able to fit the provided mutation frequency table, also referred to 

as the marginal observations. This table serves as the primary input the model and is the only 

component of the optimized loss function that relates to observed data. Do not trust model inferences 

if the marginal observations fit poorly, which can be evaluated by plotting them against each together 

or calculating summary statistics such as Pearson correlation across timepoints. If the fit is poor, we 

recommend tuning hyperparameters. For example, it can be helpful to increase the alpha weight in 

the loss function. Poor model fit can also occur if the proposed full-length genotypes is incomplete or 

otherwise incapable of explaining the observed table of mutation frequencies from short read data. 



 

Uncertainty estimates for fitness inferences 

 It is possible to empirically evaluate the uncertainty for a fitness estimate given observed or 

predicted full-length genotype frequencies. Each consecutive pair of timepoints in which the full-length 

genotype is present can be used to obtain a single-point estimate of the genotype’s fitness and can be 

summarized by their variance as a metric of empirical uncertainty. 

 

Expected performance of Evoracle in selective sweep, clonal interference, and neutral drift conditions. 

 The directed evolution campaigns considered in our work all have high selection stringency, 

short generation time, and high mutation rates. These properties are characteristic of continuous 

directed evolution platforms such as PACE1,2 and OrthoRep3. These conditions tend to produce highly 

skewed populations where just a few variants comprise most of the pool at any given timepoint, as 

observed empirically, as well as in theory (see Supplementary Note 1). We speculate that this 

skewness property provides a strong statistical signal, enables robust inference, and helps explain 

why Evoracle generally performs well across these datasets. 

 Clonal interference describes an evolving population comprised of a diverse mixture of lower 

frequency genotypes4. Clonal interference can occur when mutation rates are high and selection is 

less stringent, such that it is difficult for any single variant to take over the population before new 

variants with higher fitness arise by mutation. We speculate that Evoracle would perform worse in 

conditions like these, since the marginal covariation between allele frequencies across all evolving 

genotypes would sum over a larger number of single genotypes. In these conditions, we think that 

increasing the density of timepoints can improve performance. 

 Neutral drift is often used to diversify a population before directed evolution and can be 

induced by applying high mutation rates and little to no selection. Evoracle’s core mathematical model 

assumes that genotype frequencies change according to their fitness, but fitness is ill-defined or non-

existent when there is no competition. We do not expect Evoracle to be useful on populations that 

only undergo neutral drift. For directed evolution campaigns that include a neutral drift warmup phase 

followed by high selection stringency, we recommend running Evoracle only on timepoints from the 

high selection stringency regime.  

  



Supplementary Note 4 | Comparisons to related approaches 

Comparison of Evoracle’s time complexity to a standard expectation maximization approach 

 One common approach to solve inference problems in latent variable models is expectation 

maximization (EM). Here, we describe an EM approach to our inference problem, and show that 

Evoracle achieves improved asymptotic time complexity, while requiring fewer explicit assumptions 

from the user, than the EM approach. 

 The inference task is: Given 𝒚𝟏, 𝒚𝟐, … , 𝒚𝑻, infer the parameters (𝒘, 𝒔, 𝒛) and the unobserved 

genotype frequency states 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑻. Let 𝒀 = [𝒚𝟏, 𝒚𝟐, … , 𝒚𝑻] be a matrix and define 𝑿 analogously. 

EM infers the MLE estimates of 𝑿, (𝒘, 𝒔, 𝒛) given 𝒀 under specified conditional probabilities 𝑝(𝒀|𝑿), 

which can be understood as an observational noise model, and 𝑝(𝑿|𝒔, 𝒛, 𝒘), which would compare a 

genotype frequency to the expected frequency given its spawning time, initial frequency, and fitness. 

 The EM algorithm would proceed in two steps: 

 

1. Update 𝑿 to maximize 𝑝(𝒀, 𝑿|𝒔, 𝒛, 𝒘)  =  𝑝(𝒀|𝑿)𝑝(𝑿|𝒔, 𝒛, 𝒘) given fixed 𝒀, (𝒔, 𝒛, 𝒘) 

 

Evoracle essentially only performs this step, but without relying on known fixed (𝒔, 𝒛), which are 

instead encoded in 𝑿. 

 

2. Update (𝒔, 𝒛, 𝒘) to maximize 𝑝(𝒀, 𝑿|𝒔, 𝒛, 𝒘)  =  𝑝(𝒀|𝑿)𝑝(𝑿|𝒔, 𝒛, 𝒘) given fixed 𝑿, 𝒀 

 

Here, we proceed by updating each individual parameter while holding the other parameters fixed. 

- 𝒘 is updated based on empirical fitness based on when genotypes are present according to a 

fixed 𝒛. 

- 𝒔 is updated towards the initial genotype frequencies in 𝑿 based on a fixed 𝒛 

- 𝒛 is updated using fixed 𝒘, 𝒔, 𝑿. It is discrete, so we check all possible values. We check 𝑂(𝐺𝑇) 

values for the whole dataset, and each likelihood evaluation takes 𝑂(𝑇) time, for an overall 

complexity of 𝑂(𝐺𝑇2) 

 

By avoiding an explicit representation of discrete 𝒛, Evoracle avoids an 𝑂(𝐺𝑇2) term every 

optimization step. This gives Evoracle an improved time complexity of 𝑂(𝐺𝑇), which is the minimum 

time required to update 𝑿. While EM alternates between updating 𝑿 and 𝒘, Evoracle optimizes them 

simultaneously, which we find to work well in practice.  

Comparisons to other DNA sequencing strategies. 

Sanger sequencing with Surveyor deconvolution costs $10/timepoint. To evaluate the price 

per timepoint that can be achieved with high-throughput DNA sequencing by pooling timepoints into 

the same run, consider as an example a 2x150-bp Illumina MiSeq run may cost ~$1,000 and yield 40 

million reads for a 1,000-nt gene that can be sequenced in full with four sets of primers that each yield 

up to 300-nt read segments. We thus have an effective 10 million reads to split among however many 

timepoints we would like to pool. In an extreme case, it can be sufficient to obtain 5,000 reads per 

timepoint, which would enable 2,000 timepoints to be sequenced in one run for $0.50 per timepoint. 

Of course, it is unusual to sequence thousands of timepoints. While it is possible for the cost per 

timepoint of high-throughput sequencing to be competitive with Sanger sequencing, Sanger 

sequencing remains a cheaper and more accessible option for many labs in practice.  



An interesting aspect for comparison is time. Cost-effective high-throughput sequencing with a 

single run requires all samples to be collected before sequencing or requires coordination with a 

sequencing facility to sequence collected samples as a small component of other planned runs. In 

contrast, Sanger sequencing can be performed directly on a single sample once it has been collected 

for $10, and results are typically returned within a day. This workflow raises the possibility of near 

real-time monitoring of genetic dynamics during directed evolution campaigns. As Surveyor 

deconvolution and Evoracle reconstruction are computer programs that run within minutes, it is 

plausible to imagine a directed evolution experiment using these tools where the experimenter can 

make decisions regarding selection stringency, selection circuit, flow rate, or other parameters with 

near real-time reconstructions of full-length genotype trajectories and fitness in the population. 

 

Methods comparison to BHap and SGML 

We briefly discuss our choice of methods to compare against. While many methods have been 

developed for haplotype reconstruction5–10, the vast majority require extensive overlaps between 

reads8, or additional input such as long-read10 or gene expression data9. Methods using only short-

read data with incomplete linkage are rare, and can be categorized into model-free and model-based 

methods. Among model-free methods, BHap7 and EVORhA11 are dominant and conceptually similar, 

but BHap has been shown to outperform EVORhA, so we chose to compare Evoracle to BHap. As 

Evoracle is a model-based method, however, we reserve most of our focus on comparing to other 

model-based methods. In the literature, model-based methods for this problem have been presented 

by Illingworth, Sobel-Leonard, and co-workers6,12, which are conceptually similar to Evoracle, but with 

some key differences in the genotype proposal strategy and the mutation model. 

 

Bacterial haplotype reconstruction (BHap) 

 We describe BHap7 using Evoracle’s notation, though since BHap ignores time information, we 

drop all time-related notation. BHap’s methodology is motivated by the idea that if a genotype 𝑖 is 

present with frequency 𝑥[𝑖], and is observed through the same lossy measurement process 𝐸[𝒚] =

𝑩𝒙 used by Evoracle, then genotype 𝑖 may induce observed mutations 𝑦[𝑗] with frequency similar to 

𝑥[𝑖] for all 𝑗 where 𝐵[𝑖][𝑗]  =  1. However, critically, this may only be true if 𝑥[𝑖] is the lowest frequency 

genotype in the population, otherwise, the observed frequency of some of its mutations may include 

other genotypes. 

BHap uses a Poisson noise model for the observational process, so 𝑦[𝑗] are read counts. 

BHap’s algorithm begins with expectation maximization to cluster mutation frequencies (or read 

counts) 𝑦[𝑗] for all mutations 𝑗 using a mixture of 𝐺 Poisson distributions with parameters 𝜆1, … , 𝜆𝐺. At 

each optimization step, the affinity 𝛼[𝑖][𝑗] between each mutation 𝑦[𝑗] and each Poisson cluster 𝜆𝑖 is 



calculated, then each Poisson cluster parameter 𝜆𝑖 is updated to be closer to the “center” of the 

mutation data 𝑦[𝑗] as weighted by their affinities 𝛼[𝑖][𝑗]. 

After EM converges, BHap attempts to propose a genotype using 𝜆𝑚𝑖𝑛 by finding the minimum 

cost path through a graph where nodes are mutations at specific positions, and edges connect all 

mutations in consecutive positions. A path represents a genotype that includes an allele at every 

position, and its cost is the sum over node costs. The node cost for a mutation 𝑗 is 1 −

𝑚𝑎𝑥𝑗𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑦[𝑗] − 𝜆𝑚𝑖𝑛; 𝜆𝑗). A node has low cost if its observed read count 𝑦[𝑗] is explained well by 

a simple mixture of two clusters, 𝜆𝑗 and 𝜆𝑚𝑖𝑛. After this step, BHap subtracts 𝜆𝑚𝑖𝑛 from all observed 

read counts 𝑦[𝑗], then iterates starting from the EM step. BHap terminates when the graph becomes 

disconnected or when a path cost exceeds a certain threshold. 

We chose to compare Evoracle to BHap because it is conceptually representative while 

comparing favorably to other model-free methods7,11.  

We note that BHap7, EVORhA11, and related model-free methods have poor theoretical 

guarantees, largely because reconstruction from lossy information cannot have any performance 

guarantees in general without additional data or structure provided by a model. Specifically, BHap and 

EVORhA theoretically and empirically cannot reconstruct simple mixtures of genotypes present in 

equal proportion. 

BHap was evaluated on small synthetic mixtures of less than 10 genotypes. In contrast, 

evolutionary datasets often feature hundreds of relevant genotypes, where a large mixture of 

genotypes have low but comparable frequency. A critical aspect of BHap’s algorithm is the 

assumption that a genotype can be reconstructed from all mutations around the lowest observed 

frequency. When a large mixture of genotypes have low but comparable frequency, BHap is likely to 

perform poorly. 

 The BHap code package from Li et al., 20197 takes as input a dataset of paired-end reads and 

a reference genome. First, BHap aligns reads to the reference genome and identifies distinct linkage 

groups. To perform a fair and focused comparison, we ignored this alignment part of BHap and 

instead isolated the most relevant logic of BHap’s algorithm. We converted the Python 2.7 code 

related to the EM algorithm and genotype proposal algorithm to Python 3.7 and configured it to run on 

the same input data used by Evoracle (frequencies of mutations in distinct linkage groups). We 

encountered errors in the EM step from the default initialization strategy in BHap, as some mutation 

frequencies were too far from any cluster at initialization. To solve this, we modified the initialization 

strategy such that all observed mutation read counts were within three standard deviations of some 

initial Poisson distribution, which improved the stability of BHap and enabled successful execution of 

the algorithm. 

 

Single-gene multi-locus model (SGML) 



 At a high-level, SGML has many similarities to Evoracle alongside some crucial differences. 

We use the most recently published description of SGML in Sobel-Leonard et al., 201712 which builds 

on Illingworth, et al. 20156. Where descriptions of various aspects of SGML differed, we use the most 

up-to-date description of that aspect. SGML’s high-level algorithm is similar to Evoracle: first, 

genotypes that could exist in the population are proposed using short-read data. Then, fitness and 

genotype frequencies are inferred from short-read data under a model of natural selection and 

mutation by maximum likelihood estimation using gradient descent. The key differences are 1) 

SGML’s maximal genotype proposal strategy, which does not scalable to real datasets with many 

linkage groups unlike Evoracle’s more minimalistic genotype proposal strategy, and 2) unlike Evoracle 

which assumes a flexible mutation model where any genotype can enter the population at any time, 

SGML only introduces new genotypes that are a single mutation away from some present genotype. 

When we compared SGML to Evoracle on real datasets, factor 1 caused SGML to encounter out-of-

memory errors. When we ran SGML using genotypes proposed by Evoracle, we found that Evoracle 

substantially outperforms SGML on our directed evolution datasets due to factor 2 (Fig. 6A, 

Extended Data Fig. 7).  

 The papers describing SGML only provide an archival record of code that was used for 

experiments in their papers, and do not provide a public-facing code package that is convenient to 

use by other researchers6,12. For this reason, we implemented our own version of SGML based on 

reported mathematical descriptions of the method6,12–14, which we describe here. 

 The most recent version of SGML uses a maximal genotype proposal strategy12: instead of 

minimizing the number of genotypes required to explain the data, SGML constructs the full set of 

possible genotypes that could exist in the population, with no concern for the frequencies at which 

those genotypes may or may nor exist in the population. While this is guaranteed to be sufficient to 

explain the data, in the case of pooled Sanger sequencing with complete loss of linkage between 

alleles, the number of proposed genotypes is exponential in the number of alleles considered. At 

runtime, the maximal genotype proposal strategy resulted in excessive time and memory 

requirements. For the Cry1ac dataset, SGML proposed 219 ≈ 500,000 genotypes which caused the 

optimization algorithm to fail on our server with 16 GB RAM. We note that SGML requires a mutation 

matrix describing the 1-mutation neighbors of every genotype; implemented naively, this matrix for 

500,00 genotypes requires 250 GB of RAM. We used a sparse matrix implementation, but this still 

surpassed our server’s RAM. SGML proposed 227 ≈ 100 million genotypes for the TadA dataset. 

While the maximal genotype proposal strategy does not scale well, SGML has other features that we 

sought to compare to Evoracle. To enable a more fair comparison, we ran SGML using the same set 

of genotypes proposed by Evoracle, combined with a random subset of all possible genotypes 

containing 100x the number of genotypes proposed by Evoracle (around 5,000 to 20,000 genotypes) 

in order to be consistent with SGML’s maximal design philosophy. This workaround helps focus our 



comparison on differences in modeling approaches. We note that we ran Evoracle using a similar 

maximal set of genotypes comprising 100x the standard number of genotypes and found robust 

performance (Extended Data Fig. 2) that outperforms SGML.  

 SGML uses the following state transition process of mutation and selection6. Using the same 

notation as Evoracle: at each time 𝑡, genotype frequencies 𝒙𝒕 first undergo the same standard 

asexual natural selection model used by Evoracle: 
𝒘

𝒘𝑻𝒙𝒕
⊙ 𝒙𝒕. Then, genotypes undergo mutation as 

𝑥𝑡+1[𝑎] = 𝑥𝑡[𝑎] + 𝜇 ∑ (𝑥𝑡[𝑏] − 𝑥𝑡[𝑎])𝑏 , where the mutation rate 𝜇 = 10-5, and the sum is conducted over 

genotypes 𝑏 that differ from some genotype 𝑎 by a single nucleotide or residue. While this mutation 

model enables inferring the introduction of new genotypes to the population by mutation, it is 

restrictive as new genotypes are constrained to enter the population at low frequencies that depend 

on their single-mutant neighbors. In contrast, Evoracle uses a flexible mutation model that places no 

constraints on when any genotype may enter the population, which is advantageous when data fitting 

and genotype reconstruction are considered more important than recovering evolutionary lineages 

under a specific mutation model. For directed evolution applications, fitness inference and genotype 

reconstruction can lead to the design of higher-fitness genotypes, which is typically of primary interest, 

while evolutionary lineages are typically of lesser interest. When evolutionary data features large 

jumps in sequence space, SGML’s restrictive mutation model can yield poor data fit, in contrast to 

Evoracle’s flexible mutation model.  

 SGML infers fitness and initial frequency parameters for each proposed genotype using 

maximum likelihood estimation. Observed allele frequencies are modeled as generated by a Dirichlet-

multinomial likelihood function from genotype frequencies, which is motivated as an overdispersed 

version of a multinomial likelihood. SGML uses a conservative estimate of noise. We implemented the 

Dirichlet-multinomial likelihood using the univariate beta-binomial likelihood to compare individual 

predicted marginal frequencies to observations. Overdispersion increases variance relative to an 

observed sample size. We take this process to the limit of the smallest possible sample size of 1 for 

maximum variance, resulting in a Bernoulli likelihood, noting that this does not change the MLE 

solution. We implemented SGML in PyTorch15 and used gradient descent for maximum likelihood 

estimation. 

 We conclude this section by reviewing the differences between our implementation of SGML 

and its original description. Since we primarily sought to compare SGML and Evoracle on genotype 

reconstruction, we did not implement the meta-modeling approach for inferring alleles under selection 

and epistatic interactions, which used BIC to select from a hierarchical set of models a model of 

fitness which contained varying single-loci and multi-loci fitness terms that summed to determine the 

fitness of a genotype. We note that by allowing unconstrained inference of any fitness value for each 

genotype, our implementation of SGML should fit the data better than the original description, and 



enables a more fair comparison to Evoracle which also infers fitness without constraints on which 

alleles are under selection or in epistatic interactions. 

 

Comparison to clonal Sanger sequencing 

 Full-length genotype frequency trajectories can be measured with multiple clonal Sanger 

sequencing samples from timepoints, and rising stars can also be proposed using such data. We 

compared this approach to Evoracle by simulating clonal Sanger sequencing data at various depths in 

the Cry1Ac and TadA datasets by random subsampling of full-gene data at each timepoint.  

 The consistency between sampled and observed full-length genotype frequencies across 

timepoints increased with sequencing depth, as expected (Extended Data Fig. 7). In the Cry1Ac 

dataset, Evoracle’s performance on a single pooled Sanger sequencing sample (no linkage, 3% 

noise) with R2 = 0.90 was matched by 5-8x clonal sequencing depth. In the TadA dataset, Evoracle’s 

performance with R2 = 0.80 was matched with 15-20x clonal sequencing depth. Collectively, these 

results suggest that clonal Sanger sequencing requires roughly an order of magnitude more depth 

than Evoracle to achieve similar performance in reconstructing full-length genotype frequency 

trajectories. We note that this represents an approximate cost of $50-200 per timepoint. For many 

directed evolution experiments with more than a handful of timepoints, this cost quickly compares 

unfavorably to Illumina or long-read NGS. 

 We also compared the clonal Sanger sequencing approach to Evoracle at identifying rising 

stars. This task is more challenging than reconstructing full-length genotype frequencies, because 

accurate identification of rising stars requires identifying low-frequency genotypes across multiple 

timepoints and correctly identifying their trend of increasing in frequency. For Cry1Ac, the clonal 

Sanger approach matched Evoracle’s performance with 15x depth when evaluating accuracy and 

number of true rising stars found. For TadA, the clonal Sanger approach was unable to match 

Evoracle’s performance with coverage up to 30x. We reason that this is because many true rising 

stars in the TadA dataset never rise above 10% frequency, and have very gently positive slopes.  

 Taken together, these results suggest that clonal Sanger sequencing is not competitive with 

Evoracle in terms of cost at two important tasks. Evoracle reduces resource requirements by an order 

of magnitude or more compared to clonal Sanger sequencing. 

 

 

  



Supplementary References 

1. Badran, A. H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect 

resistance. Nature 533, 58 (2016). 

2. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of 

biomolecules. Nature 472, 499–503 (2011). 

3. Ravikumar, A., Arzumanyan, G. A., Obadi, M. K. A., Javanpour, A. A. & Liu, C. C. Scalable, 

Continuous Evolution of Genes at Mutation Rates above Genomic Error Thresholds. Cell 175, 

1946-1957.e13 (2018). 

4. Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast 

populations. Nature 500, 571–574 (2013). 

5. Cleary, B. et al. Detection of low-abundance bacterial strains in metagenomic datasets by 

eigengenome partitioning. Nat. Biotechnol. 33, 1053–1060 (2015). 

6. Illingworth, C. J. R. Fitness Inference from Short-Read Data: Within-Host Evolution of a 

Reassortant H5N1 Influenza Virus. Mol. Biol. Evol. 32, 3012–3026 (2015). 

7. Li, X., Saadat, S., Hu, H. & Li, X. BHap: a novel approach for bacterial haplotype reconstruction. 

Bioinformatics 35, 4624–4631 (2019). 

8. Aguiar, D. & Istrail, S. HapCompass: a fast cycle basis algorithm for accurate haplotype assembly 

of sequence data. J. Comput. Biol. J. Comput. Mol. Cell Biol. 19, 577–590 (2012). 

9. Berger, E. et al. Improved haplotype inference by exploiting long-range linking and allelic 

imbalance in RNA-seq datasets. Nat. Commun. 11, 4662 (2020). 

10. Kuleshov, V. et al. Whole-genome haplotyping using long reads and statistical methods. Nat. 

Biotechnol. 32, 261–266 (2014). 

11. Pulido-Tamayo, S. et al. Frequency-based haplotype reconstruction from deep sequencing 

data of bacterial populations. Nucleic Acids Res. 43, e105–e105 (2015). 

12. Sobel Leonard, A. et al. The effective rate of influenza reassortment is limited during human 

infection. PLOS Pathog. 13, e1006203 (2017). 

13. Illingworth, C. J. R., Fischer, A. & Mustonen, V. Identifying Selection in the Within-Host 

Evolution of Influenza Using Viral Sequence Data. PLOS Comput. Biol. 10, e1003755 (2014). 



14. Illingworth, C. J. R. SAMFIRE: multi-locus variant calling for time-resolved sequence data. 

Bioinformatics 32, 2208–2209 (2016). 

15. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. 

Neural Inf. Process Syst. 32 8024–8035 (2019). 

 


