

Figure S1. PRO and INV coexist in zebrafish melanoma, with INV cells metastasizing more frequently due to increased extravasation (Related to Figure 1)

a. Number of ZMEL1 cells migrating in Boyden Chamber assay ($p<0.001$ by linear regression, N=3 independent experiments for each of 2 fluorophores). **b.** Log-log plot of mean squared displacement (MSD) vs. lag time (tau) over the range of 5≤tau<100 minutes with model fits overlaid (N=4 independent experiments, see Methods for details). The slope (α) provides quantification of the persistence of motility, where a cell moving randomly will have $\alpha=1$, and a cell moving along a straight line will have $\alpha=2$ (Gorelik and Gautreau, 2014). Black line with $\alpha=1$ is shown for comparison. **c.** Heatmap of genes in the Hoek INV signature that are differentially expressed in ZMEL1-INV vs. -PRO (log₂ fold change cutoff \pm 1.5, p_{adj} < 0.05). As in Figure 1e, but with zebrafish gene names. **d.** Quantification of overall distant metastases seeded by ZMEL1 populations at 3 dpt (OR [95% CI]: 4.49 [1.94, 10.43]; p<0.001 by logistic regression; $N=3$ independent experiments with PRO/INV 10/10, 31/33, and 13/13 fish per group, respectively; n=110 fish total; plot shows mean ± SD). **e.** Representative images of ZMEL1-PRO and -INV tumors and distant metastases (e.g. to caudal region [box]) at 3 days post-transplant (3dpt). **f-g.** Quantification of (f) overall metastasis and (g) caudal metastasis seeded by ZMEL1 populations at 3dpt stratified by primary tumor size (small vs. large). $p=0.71$ for overall metastasis and $p=0.69$ for caudal metastasis for comparison of small vs. large primary tumors by logistic regression; plot shows mean \pm SD.

dpt

dpt

Figure S2. Cluster formation by INV state drives spatial patterning of melanoma clusters (Related to Figure 2)

a. Dual waterfall plot of all gene sets from GO analysis. Adhesion GO gene sets are indicated with an asterisk and colored according to false discovery rate (FDR). **b-c.** Heatmap of genes in adhesion GO gene sets (FDR \leq 0.05, n=3) that are differentially expressed between ZMEL1-PRO and -INV (log₂ fold change cutoff \pm 1.5, p_{adj} < 0.05). As in Figure 2b, but with (b) absolute expression data, and (c) zebrafish gene names. **d.** Representative images of early stages of ZMEL1-INV cluster formation in Figure 2d. Times are calculated from initial plating of assay. **e.** Quantification of coefficient of variation ($CV = \sigma/\mu$, where σ is the population standard deviation and μ the population mean) of cluster area of individual PRO and INV clusters at 2 days ($p=0.026$ by twotailed t-test, N=3 independent experiments). **f-g.** Human melanoma samples from (f) The Cancer Cell Line Encyclopedia (CCLE, n=56) and (g) The Cancer Genome Atlas (TCGA) melanoma (SKCM, n=472) cohort are plotted as INV (Hoek et al., 2006) versus Cell-Cell Adhesion scores calculated from RNA-seq. Pearson correlation coefficient between scores is shown. **h.** (left) Composite 3D opacity rendering and (right) central slice of confocal imaging through co-cluster of ZMEL1-PRO and ZMEL1-INV. **i.** Quantification of (top) mixing and (bottom) sorting of heterotypic ZMEL1 clusters as in Figure 2f. Red (tdTomato) and green (EGFP) labeled ZMEL1 cells were mixed PRO:PRO, PRO:INV, and INV:INV at indicated ratios. (top) Quantification of all clusters revealed that nearly all clusters mix, regardless of cell type. (bottom) Spatial sorting was significantly enriched in PRO:INV clusters compared to PRO:PRO and INV:INV controls $(p<0.001, p<0.001, and p=0.038$ for 1:4, 1:1, and 4:1, respectively, by one-way ANOVA on mean of each replicate versus respective PRO:PRO and INV:INV controls [greater of two p-values reported]). **j.** Cluster size after 2 days in ZMEL1-INV with CRISPR deletion of *cdh1* (sg_*cdh1*)

versus control (sg_scr) (p=0.0016, two-tailed paired t-test, N=5 independent experiments). **k.** Representative images of effect of sg *cdh1* versus sg scr on cluster size at 3 days (inset scale 50 µm). **l.** Representative composite images of mixing effects of sg_*cdh1* versus sg_scr. Control (sg_scr) ZMEL1-INV cells mixed with ZMEL1-PRO show clear spatial sorting, whereas sg_*cdh1* ZMEL1-INV cells mixed with ZMEL1-PRO demonstrate decreased sorting (inset scale 50 μ m). **m.** Western blot confirmed two different sg *cdh1*'s decreased Cdh1 protein expression in ZMEL1-INV to a level comparable to ZMEL1-PRO. sg_*cdh1* (1) was utilized for all phenotypic experiments. **n-o.** ZMEL1-INV orthotopic primary tumors with sg_*cdh1* do not seed (n) distant metastases and (o) caudal metastases in a significantly different percentage of zebrafish than with sg scr control ($p=0.56$ and $p=0.44$, respectively, at 7 dpt by logistic regression; N=3 independent experiments with sg_scr/sg_cdh1 16/15, 21/20, 19/19 fish per group, respectively; n=110 fish total).

1:0 4:1 1:1 1:4 0:1 0 0.5 1 Normalized Activity (RLU)

PRO:INV Ratio

Figure S3. PRO and INV cooperate in metastasis via co-extravasation (Related to Figure 3) a. Number of observed extravasation events of ZMEL1-PRO either alone or in the form of coextravasation with ZMEL1-INV following intravenous transplant $(p=0.18$ by two-tailed paired ttest, N=4 independent experiments with 14, 15, 22, and 22 fish each; n=73 fish total). **b.** Composite image of adult zebrafish with orthotopic transplants of 1:1 mixtures of ZMEL1-PRO and -INV seed polyclonal metastases (arrowheads), including to the kidney and caudal regions (left and right boxes, respectively). **c.** Number of fish co-transplanted with a 1:1 mixture of ZMEL1-PRO and - INV that have no caudal metastases (None), caudal metastases comprised of exclusively PRO or INV, or caudal metastases formed by co-metastasis (Co-Met) of both cell types (N=5 independent experiments with 17, 15, 16, 15, and 17 fish each; 80 fish total; p<0.001 by Mantel-Haenszel's test for null hypothesis of no interaction; as in Figure 3c for each independent experiment). **d.** ZMEL1- PRO and **e.** ZMEL1-INV showed similar levels of overall metastasis at 3 dpt in mixed tumors compared to when each was transplanted alone $(p=0.83$ and $p=0.13$, respectively, by logistic regression). **f.** Proportion of fish with caudal ZMEL1-PRO only, ZMEL1-INV only, or PRO/INV co-metastasis (co-met) at 3dpt (PRO vs. INV: p=0.0054; "PRO only" in PRO vs. 1:1 mix: p=0.033; "INV only" in INV vs. 1:1 mix: p=0.49; all by logistic regression). Alternate presentation of data in Figure 3d-e. **g-h.** (g) ZMEL1-PRO and (h) ZMEL1-INV showed similar levels of caudal metastasis at 7 dpt in mixed tumors compared to when each was transplanted alone (p=0.54 and p=0.63, respectively, by logistic regression). For **b-h**: N=5 independent experiments with PRO/MIX/INV 18/17/18, 13/15/14, 15/16/15, 12/15/15, and 15/17/16 fish per group, respectively; 231 fish total; plots show mean ± SD). **i-j.** Adult zebrafish were orthotopically transplanted with an equivalent final concentration of tdTomato-labeled ZMEL1-PRO mixed at a 1:4, 4:1, or 9:1 ratio with EGFP-labeled ZMEL1-PRO or ZMEL1-INV. tdTomato-labeled ZMEL1-PRO (i)

overall metastases and (j) caudal metastases were quantified 3dpt to measure the impact of cooperation with ZMEL1-INV. ZMEL1-PRO metastasized more when co-transplanted with ZMEL1-INV than with ZMEL1-PRO in Red:Green 1:4 transplants (OR [95% CI]: 2.78 [1.09, 7.10]; p=0.032 by logistic regression). A total of $N=3$ independent variable ratio mixing experiments were performed, each with at least 16 fish per group (n=108/113/113 fish per replicate; n=334 fish total). **k-l.** Proliferation (k) and Boyden chamber migration (l) were quantified in ZMEL1-PRO and -INV cells with or without conditioned media (CM) from ZMEL1- PRO and -INV cells (p-values by linear regression; N=3 independent experiments for proliferation; N=4 independent experiments for migration). **m.** Caspase-3/7 activity normalized to cell number for clusters of indicated ratio of ZMEL1-PRO and -INV cells at 2 days. P-value for trend of normalized caspase-3/7 activity with increasing INV composition by linear regression (adjusted R-squared 0.91). **n.** The interaction between INV (donor) and PRO (recipient) cells can be schematically represented as a donor-recipient interaction (Hauser et al., 2009) falling into a regime of cooperation.

Days Post Transplant

Figure S4. TFAP2 distinguishes PRO vs. INV state and modulates clustering and metastasis (Related to Figure 4)

a. Boxplots of *tfap2a-e* expression from RNA-seq of ZMEL1-PRO and -INV. **b.** HOMER de-novo motif analysis of genes differentially expressed between ZMEL1-PRO in 3D (clusters) vs. 2D (no clusters) (log₂ fold change cutoff \pm 1.5, p_{adj} < 0.05, \pm 500bp of transcription start site [TSS]). **c.** Cluster size in ZMEL1-PRO with CRISPR-Cas9 inactivation of *tfap2a* or *tfap2e* alone and in combination (p-values by linear regression; N=3 independent experiments). sgRNAs highlighted in purple (sg_scr) and orange (sg_tfap2a/e 1/3) were used for further experiments (Figures 4,5 and Figures S4,S5). **d-e.** Western blot confirmation of CRISPR inactivation of (d) *tfap2a* and (e) *tfap2e* with each sgRNA or combination of sgRNAs. **f-i.** Tracking of individual cells by time-lapse microscopy (N=3 independent experiments). **f.** ZMEL1-PRO with sg *tfap2a/e* has slowed growth versus sg_scr (p<0.001 by linear regression, model estimates \pm 95% CI shown). **g.** Representative displacements of 500 tracks per sgRNA. **h.** Model estimates ± 95% CI for alpha, the slope of the log-log plot of mean squared displacement vs. lag time (tau) for each ZMEL1-PRO sg_*tfap2a/e* and sg_scr (p<0.001 by linear regression). Larger alpha indicates more persistent motion. **i.** Loglog plot of mean squared displacement (MSD) vs. lag time (tau) over the range of 5≤tau<100 minutes with model fits overlaid (see Methods for details). The slope (α) provides quantification of the persistence of motility, where a cell moving randomly will have $\alpha=1$, and a cell moving along a straight line will have $\alpha=2$ (Gorelik and Gautreau, 2014). Black line with $\alpha=1$ is shown for comparison. **j-k.** ZMEL1-PRO orthotopic primary tumors with sg_*tfap2a/e* do not seed (j) distant metastases and (k) caudal metastases in a significantly different proportion of zebrafish than with sg scr control ($p=0.44$ and $p=0.90$, respectively, at 7 dpt by logistic regression; N=3 independent

experiments with sg_scr/sg_tfap2a/e 24/22, 22/22, 24/24 fish per group, respectively; n=138 fish total).

Figure S5. TFAP2 correlates with clustering in human melanoma and regulates genes associated with metastasis and cell-cell adhesion (Related to Figure 5)

a. Analysis of TFAP2A in the Dependency Map (DepMap, CRISPR (Avana) Public 19Q3) dataset reveals a dependence of melanoma proliferation on TFAP2A. **b-c.** High TFAP2A mRNA expression in primary tumors predicts worse (b) melanoma specific survival in patients in the Leeds Melanoma Cohort (HR [95% CI]: 1.6 [1.2, 2.1], p=0.001 upper vs. lower half by Cox proportional hazards and (c) progression free survival in patients in the AVAST-M Melanoma Cohort (multivariate Cox regression model). **d-g.** Primary tumors with high PRO or low INV expression are associated with worse outcomes in patients in (d-e) the Leeds Melanoma Cohort and (f-g) the AVAST-M Melanoma Cohort. **h.** Human melanoma samples from The Cancer Genome Atlas (TCGA) melanoma (SKCM, n=472) cohort are plotted as PRO and INV scores (Hoek et al., 2006) calculated from RNA-seq and colored according to TFAP2A mRNA expression. Pearson correlation coefficients between TFAP2A and PRO/INV scores are shown on axes. **i-j.** Expression of TFAP2A and MITF in human melanoma samples from (i) CCLE (n=56) and (j) TCGA melanoma (SKCM, n=472) cohort are plotted with Pearson correlation coefficient. **k.** Individual human melanoma cells are plotted as PRO and INV scores (Hoek et al., 2006) calculated from single-cell RNA-seq and colored according to TFAP2A mRNA expression (reanalyzed from Jerby-Arnon et al. (Jerby-Arnon et al., 2018)). Pearson correlation coefficients between TFAP2A and PRO/INV scores are shown on axes. **l-m.** (l) S100A1 and (m) S100B mRNA expression in The Cancer Genome Atlas (TCGA) melanoma (SKCM) cohort comparing primary tumors and metastases (p-values by Wilcoxon rank sum test with Bonferroni correction). **n.** Human melanoma cell lines ranked by cluster forming ability (left to right: low to high) demonstrate negative correlation between TFAP2A mRNA expression by RNA-seq and clustering

(Spearman correlation shown). **o.** Western blot analysis of TFAP2A expression in panels of (left) low-passage human melanoma cell lines and (right) human melanoma cell lines. **p.** Heatmap of top genes in Hoek INV and GO Adhesion gene sets that are differentially expressed between ZMEL1-PRO sg $t \frac{fap2a}{e}$ and sg scr (log₂ fold change cutoff \pm 0.5, p_{adj} < 0.05). As in Figure 5f, but with zebrafish gene names. **q.** Distribution of TFAP2A CUT&RUN peaks as annotated by ChIPSeeker. **r-s.** Overlap of TFAP2A CUT&RUN peaks with genes upregulated in ZMEL1-PRO following CRISPR/Cas9 with (r) sg_scr (p=0.7 by bootstrapping) and (s) sg_*tfap2a/e* (p<0.001 by bootstrapping).

aMelanoma Patient CTC Clusters \bullet $0₀$ \bullet . M3554 **M17721 M2759 M6266 M3554** M6266 \bullet_{\bullet} \bullet \bullet **M2759** $\frac{1}{2}$ t, M17721

 -1 0 1 Log Normalized TFAP2A / SOX9 **INV PRO**

 $\boldsymbol{\theta}$

Figure S6. PRO-INV heterotypic CTC clusters exist in the blood of melanoma patients (Related to Figure 6)

a. Nuclear quantification of TFAP2A and SOX9 in melanoma CTC clusters. n=32 clusters from four patients. Five additional patients were analyzed with no CTC clusters identified. Clusters were defined as two or more TFAP2A^{pos}; CD45^{neg} cells. DAPI staining was used to generate nuclear masks for quantification. Scale bar is 5μm.

-2.5

Figure S7. Longitudinal single-cell RNA-seq reveals stability of PRO but not INV state (Related to Figure 7)

a. Single-cell expression of *tfap2e* in ZMEL1-PRO and -INV cells. Individual culture (IND); coculture (CO); primary tumors (PRI); metastases (MET). **b-c.** CellPhoneDB results indicating ligand-receptor pairs that are significantly enriched for the indicated cell-cell interactions in (b) primary tumors and (c) metastases comprised of both ZMEL1-PRO and -INV. Ligand-receptor pairings are listed in order of cell pairings on x-axis.

Patient ID	Age Range	Sex	Mutation Status	sampling to death	Months from Total number of clusters isolated	Number of PRO clusters	Number of PRO-INV clusters	Number of INV clusters
M3554	61-65	\overline{F}	BRAF ^{L597Q}	$\mathbf{1}$	16	8	$\overline{4}$	4
M6266	61-65	M	NRAS ^{Q61K}	$\overline{0}$	5	$\mathbf{1}$	$\mathbf{1}$	3
M2759	61-65	$\boldsymbol{\mathrm{F}}$	GNAQ ^{Q209L}	$\overline{2}$	10	8	$\mathbf{1}$	$\mathbf{1}$
M17721	81-85	M	BRAF WT, NRAS WT	$\overline{3}$	$\mathbf{1}$	$\mathbf{1}$	$\boldsymbol{0}$	$\boldsymbol{0}$
M2290	66-70	M	NRAS mutation in exon 3	$\mathbf{1}$	$\boldsymbol{0}$	n/a	n/a	n/a
M6590	76-80	M	$\text{BRAF}^{\rm G466E}$	$\mathbf{1}$	$\boldsymbol{0}$	n/a	n/a	n/a
M9799	56-60	M	NRAS ^{Q61K}	6	$\boldsymbol{0}$	n/a	n/a	n/a
M7579	66-70	M	BRAF ^{V600K}	$\mathbf{1}$	$\boldsymbol{0}$	n/a	n/a	n/a
M10803	81-85	M	BRAF WT, NRAS WT	$\overline{2}$	$\boldsymbol{0}$	n/a	n/a	n/a

Table S7. Melanoma patient CTC cluster statistics (Related to Figure 6)