Multi-objective Optimization of the Cavitation Generation Unit Structure of an Advanced Rotational Hydrodynamic Cavitation Reactor

Xun Sun, Ze Yang, Yang Tao, Xuesong Wei^{*}, Grzegorz Boczkaj, Joon Yong Yoon, Xiaoxu Xuan^{*} and Songying Chen

Corresponding authors: Xuesong Wei, weixuesong@sdu.edu.cn

Xiaoxu Xuan, xiaoxuxuan@sdu.edu.cn

Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China

Content

Table S1 CCD results for the four design variables. 2
Table S2 ANOVA for the response surface regression of the total vapor volume (DF:
degree of freedom, Adj SS: adjusted sums of squares, Adj MS: Adjusted means
squares)3
Table S3 ANOVA for the response surface regression of the total torque,
corresponding to Table S24
Fig. S1 2D contour and 3D response surface plots for the total vapor volume5
Fig. S2 2D contour and 3D response surface plots for the total torque
Fig. S3 Correlation table of the design variables and objectives for (a) all points and
(b) Pareto Front7
Fig. S4 selected optimized solution from the Pareto front

No.	Point	Design variable				Objective	
		D (mm)	s (mm)	<i>h</i> (mm)	$oldsymbol{ heta}(^{\circ})$	V _{vapor} (× 10 ⁻⁸ m ³)	\overrightarrow{M}_{z} (N·m)
1	cube	9	1.5	1.5	6.25	3.802	1.149
2	cube	11	1.5	1.5	6.25	10.709	2.039
3	cube	9	2.5	1.5	6.25	0.702	0.968
4	cube	11	2.5	1.5	6.25	7.077	1.822
5	cube	9	1.5	2.5	6.25	3.046	0.848
6	cube	11	1.5	2.5	6.25	8.507	1.522
7	cube	9	2.5	2.5	6.25	0.601	0.644
8	cube	11	2.5	2.5	6.25	2.865	1.352
9	cube	9	1.5	1.5	18.75	6.344	1.336
10	cube	11	1.5	1.5	18.75	19.882	2.031
11	cube	9	2.5	1.5	18.75	2.263	1.188
12	cube	11	2.5	1.5	18.75	8.482	2.310
13	cube	9	1.5	2.5	18.75	4.586	0.852
14	cube	11	1.5	2.5	18.75	15.079	1.304
15	cube	9	2.5	2.5	18.75	1.859	0.777
16	cube	11	2.5	2.5	18.75	3.897	1.759
17	star	8	2	2	12.5	1.302	0.640
18	star	12	2	2	12.5	18.213	2.064
19	star	10	1	2	12.5	15.004	0.774
20	star	10	3	2	12.5	2.307	1.149
21	star	10	2	1	12.5	8.404	1.876
22	star	10	2	3	12.5	1.252	0.840
23	star	10	2	2	0	2.722	1.250
24	star	10	2	2	25	8.103	1.644
25	center	10	2	2	12.5	4.396	1.371

 Table S1 CCD results for the four design variables.

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	14	733.636	52.403	36.59	0.000
Linear	4	617.365	154.341	107.78	0.000
x_1	1	316.224	316.224	220.83	0.000
x_2	1	201.875	201.875	140.98	0.000
<i>X</i> 3	1	45.729	45.729	31.93	0.000
<i>X</i> 4	1	53.537	53.537	37.39	0.000
Square	4	59.915	14.979	10.46	0.000
$x_1 * x_1$	1	40.161	40.161	28.05	0.000
$x_2 * x_2$	1	23.659	23.659	16.52	0.001
$x_3 * x_3$	1	0.064	0.064	0.04	0.835
$x_4 * x_4$	1	0.280	0.280	0.20	0.664
2-Way Interaction	6	56.356	9.393	6.56	0.001
$x_1 * x_2$	1	23.772	23.772	16.60	0.001
$x_1 * x_3$	1	10.215	10.215	7.13	0.017
$x_1 * x_4$	1	7.952	7.952	5.55	0.032
$x_2 * x_3$	1	0.003	0.003	0.00	0.964
$x_2 * x_4$	1	13.269	13.269	9.27	0.008
$x_3 * x_4$	1	1.145	1.145	0.80	0.384
Error	16	22.912	1.432		
Lack-of-Fit	10	22.912	2.291	*	*
Pure Error	6	0.000	0.000		
Total	30	756.548			

Table S2 ANOVA for the response surface regression of the total vapor volume (DF:degree of freedom, Adj SS: adjusted sums of squares, Adj MS: Adjusted means squares).

S = 1.19665, $R^2 = 96.97\%$, Adjusted $R^2 = 94.32\%$, Predicted $R^2 = 82.56\%$.

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	14	5.6559	0.40399	34.95	0.000
Linear	4	5.14939	1.28735	111.37	0.000
x_1	1	3.54437	3.54437	306.62	0.000
x_2	1	0.00998	0.00998	0.86	0.367
<i>X</i> 3	1	1.42812	1.42812	123.55	0.000
<i>X</i> 4	1	0.16693	0.16693	14.44	0.002
Square	4	0.28667	0.07167	6.20	0.003
$x_1 * x_1$	1	0.00287	0.00287	0.25	0.625
$x_2 * x_2$	1	0.21918	0.21918	18.96	0.000
$x_3 * x_3$	1	0.00381	0.00381	0.33	0.574
X4 * X4	1	0.0327	0.0327	2.83	0.112
2-Way Interaction	6	0.21984	0.03664	3.17	0.030
$x_1 * x_2$	1	0.05711	0.05711	4.94	0.041
$x_1 * x_3$	1	0.03477	0.03477	3.01	0.102
$x_1 * x_4$	1	0.00098	0.00098	0.09	0.774
$x_2 * x_3$	1	0.00464	0.00464	0.40	0.535
$x_2 * x_4$	1	0.10264	0.10264	8.88	0.009
$x_3 * x_4$	1	0.01969	0.01969	1.70	0.210
Error	16	0.18495	0.01156		
Lack-of-Fit	10	0.18495	0.01849	*	*
Pure Error	6	0	0		
Total	30	5.84085			

Table S3 ANOVA for the response surface regression of the total torque, correspondingto Table S2.

S = 0.107515, $R^2 = 96.83\%$, Adjusted $R^2 = 94.06\%$, Predicted $R^2 = 81.76\%$.

Fig. S1 2D contour and 3D response surface plots for the total vapor volume.

Fig. S2 2D contour and 3D response surface plots for the total torque.

Fig. S3 Correlation table of the design variables and objectives for (a) all points and (b) Pareto Front.

Fig. S4 selected optimized solution from the Pareto front.