

Fig. S1. Effects of external addition of mannitol or NH_4Cl with an equivalent amount of carbon or nitrogen in 0.5 g/L WSHM on the growth of *S. fredii* CCBAU45436. The data are presented as the means \pm standard deviations from triplicate experiments.

Fig. S2. Effects of WSHM on the growth and carbon source utilization efficiency of *S. fredii* CCBAU45436. (A) Effects of WSHM on the growth. (B) Correlations between mannitol consumption and OD_{600} . Blue, red and black represent samples collected from YM broth or YM broth supplied with 0.5 g/L WSHM and all, respectively. The linear model between mannitol consumption and OD_{600} were shown.

Fig. S3. Distribution of genes among replicons; total: all genes of *S. fredii* CCBAU45436, dif: differentially expressed genes, up: up-regulated genes, down: down-regulated genes; (Fisher's exact test with FDR correction, **, padj < 0.01; ***, padj < 0.001, only significantly enriched gene cluster were marked).

Fig. S4. Comparisons of fold change values (log_2FC) of selected genes from the different functional categories measured by qRT-PCR and RNA-Seq. The R² indicates the square of Pearson's correlation coefficient r.

Fig. S5. Effects of WSHM on superoxide dismutase activity of *S. fredii* CCBAU45436 at 24 h and 48 h; (t-test, **, P < 0.01). The data are presented as the means ± standard deviations from triplicate experiments.

Fig. S6. Effects of WSHM on exopolysaccharides (EPS) production of *S. fredii* CCBAU45436 at 24 h; (t-test, *, P < 0.05). The data are presented as the means \pm standard deviations from triplicate experiments.

Fig. S7. STRING protein-protein interaction network for the significant differentially expressed genes, only the node with degree > 10 were shown. The size of the node is proportional to the degree, and nodes with degree \geq 50 are colored according to the UniPort Keywords of protein expect *rsh* gene was shown in red.

Fig. S8. Sequence matches and features of the *S. fredii* CCBAU45436 RSH protein against the Pfam database. HD: hydrolase domain; RelA-SpoT: predicted RelA-SpoT ppGpp synthase domain; TGS: Threonyl-tRNA synthetase, GTPase and SpoT; ACT: Aspartokinase, Chorismate mutase and TyrR.

Sample name	Raw reads	Clean reads	Q20(%)	Q30(%)	Total mapped	Uniquely mapped
Control1	10522212	10005078	08.30	04.01	18790049	18122679
Control1	19552512	19003078	90.39	94.91	98.87%	95.36%
Control?	1738/566	17185306	08.82	06.08	16947252	16269213
Control2	17564500	1/105590	90.02	90.08	98.61	94.67%
Control3	14250850	14006340	08.81	06.04	13922282	13394195
Controls	14239630	14090340	90.01	90.04	98.77%	95.02%
WSHM1	14057640	14770534	08.82	06.08	14585780	14225887
vv STIIVIT	14957040	14//9554	90.02	90.08	98.69%	96.25%
WSHM2	2025/278	20024488	00 02	06.06	19777881	19282765
W SHIVIZ	20234278	20034488	98.82	90.00	98.72%	96.25%
WGUM2	14022510	12002542	00 5	05 22	13733661	13406660
w SHIMS	14255518	10002042	90.0	93.22	98.93%	96.57%

Table S1. Data quality of RNA-Seq datasets and genomic alignment results of sequencing reads

replicons	total gene	DEG	% of dif	p- adjust	up- regulated	% of up	p- adjust	down- regulated	% of down	p-adjust
pSF45436a	452	33	2.90%	3.6E-09	19	2.65%	1.7E-06	14	3.33%	0.00405
pSF45436b	1888	252	22.18%	2.3E-06	181	25.28%	0.14	71	16.90%	1.5 E-07
cSF45436	4051	725	63.82%	0.00484	393	54.89%	0.00902	332	79.05%	6.7E-17
pSF45436d	203	104	9.15%	1.1E-29	103	14.39%	6.5E-48	1	0.24%	7.6E-05
pSF45436e	158	22	1.94%	0.38886	20	2.79%	0.36041	2	0.48%	0.00416
sum	6752	1136	100.00%		716	100.00%		420	100.00%	

Table S2. Distribution of genes among replicons, p-adjust: Fisher's exact test with FDR correction.The p-adjust of significantly enriched gene cluster were bold.

Table S3. Genes selected from different functional categories and gene-specific primers for	qRT-
PCR analysis	

Gene ID	Gene name	Primer (5'-3')	Functional categories	Gene production	
A D 205 D G 10220	1.00	GTGATAAGCCGAGAGGAAGGT			
AB395_R518320	165	CCACTGTCACCACCATTGTAG		165 rRNA gene (the reference)	
AP205 PS04425	uenA	AGGAGGTTCTCAATCAGCAT		Universal stress protein UspA and related nucleotide-	
AB595_K504425	uspA	ATCATCGCCTTCGTCACA		binding proteins	
A P 205 P 822460	deaD	TCGCTTACGGAGAATACA	atraca	Truncin like serine protosoos	
AB595_K552400	uegr	GTTCACGACAAGCCTTAG	response	Hypsin-like serine proteases	
A 205 2502005	or D	TCTGGTGCCGCAACTCATTC	response	Hydrogen perovide inducible genes estivator	
AB595_K502005	σλγκ	CCTGTCGGTCAGCGATTCC	genes	Hydrogen peroxide-inducible genes activator	
AP205 PS12640	alpP	AATACGAGCAGCACCACAAGG		ATD dependent abaparana CIAD	
AB595_K515040	сірь	CCGTGATGTAGCGATTGGATAGG		ATP-dependent chaperone CIpb	
A D 205 D 8 221 20	an a V	CCGCAACGATGTGTCCTA		Exopolysaccharide biosynthesis polyprenyl glycosyl	
AB595_K525120	exor	CTTGAAGACGATGACGAGGT		phosphotransferase	
A D 205 D 505910	n dh D	GCTCTCCAAGTGGCTGAA		pyruvate dehydrogenase complex E1 component	
AB395_K505810	рапв	CTCCATCGTCGCCTTGTC	carbon	subunit beta	
A D 205 D 81 (905	11.0	CTCTCGCCGCATCTTCAA	metabolism		
AB395_R516895	sahC	CACCAGGCAACCAGGATC		succinate denyalogenase, cytochrome 0550 subunt	
1 DO05 D000055	D	CCTCGCTGGTGGGTCTAC			
AB395_R808875	CCOP	CTTCGTCGCATCCGTCAAC		Cbb3-type cytochrome c oxidase subunit	
A D 205 D 604540	· 17	GGCGAGCAGGACTTCTATGT			
AB395_R804540	nırK	TTCCAGCGTATCGGCGTAG		Copper-containing nitrite reductase	
10005 0001015		AACTCGCTCTCCTTCATC	nitrogen		
AB395_R821215	urtD	GTCCATCATCGTCGTCTT	metabolism	urea ABC transporter ATP-binding protein UrtD	
1 DO05 D005010		CGGACGAGAATGCGGAAG			
AB395_R807010	glnB	TGCGGATTCGGATCACTT		nitrogen regulatory protein P-II	
A D205 D 005200	0	AGATTCGTGGTCGCTACAAG			
AB395_KS05290	rpoc	GGTTCTTCGGCAGGAGTT		DNA-directed KNA polymerase subunit beta	
AD205 D010775		AGCGTTCCAACAAGTTCATTC			
AB395_R819775	rpmI	CGTTCGGCAGGTAGTTCT		508 ribosomai protein L35	
1 DO05 D015555		GCAGGTACTTGTCCGCGATAAC	genetic		
AB395_R815575	rpsU	TGCGACGGCTTTTCATAGAAGTC	information .	308 ribosomal protein S21	
1 DO05 D005050		GCATTGATCCGGTGAAGG	processing		
AB395_RS05270	rplA	GAGATTCATCGCCACTTCG		50S ribosomal protein L1	
		TCGCTGACGCTGTTCTTC		class 1b ribonucleoside-diphosphate reductase subunit	
AB395_RS29160	nrdA	ATGGTCTTGATGCCCTTCTT		alpha	
		GAGGAGGAACTGAGCGAACTG	.1		
AB395_RS03645	rsh	GCGGAAGACGGAATAGGGTTT	others	bifunctional (p)ppGpp synthetase/hydrolase	

A D 205 D S 15060	modP	GTGCTGCTCATCCTGTTC	malubdata APC transportar parmaasa subunit	
AB393_K313900	тоав	AGCGGAAGGAAAAGACAAG	moryodate ABC transporter permease subunit	
AD205 DS12150	ton D	TACGCTTTACTGTCACATCCAAT	Devial comio proteio TenD	
AB393_K312130	юпь	GCTGCCTGGTCGAGAATT	Periplasific protein Tolib	
AD205 DS1(720		CTGAAGAAGAATCTCGTCGCCTAT		
AB395_K516720	SILB	GCCCATCATCACCACATCCT	manganese/iron ABC transporter ATP-binding protein	

Gene ID	Gene name	Log ₂ FC	P-adjust	Gene production
AB395_RS12225	mtlK	-0.23	0.4309881	Multiple polyol-specific dehydrogenase (EC 1.1.1)
AB395_RS15790	xylA	0.01	0.9895518	Xylose isomerase (EC 5.3.1.5)
AB395_RS16435	frk	-0.73	0.0093495	ROK family Glucokinase with ambiguous substrate specificity
AB395_RS00575	frk	-0.15	0.6709546	Fructokinase (EC 2.7.1.4)
AB395_RS25675	fbp	1.61	7.101E-08	Fructose-1,6-bisphosphatase2C type I (EC 3.1.3.11)
AB395_RS10390	pfp	0.80	0.0009494	Pyrophosphate-dependent fructose 6-phosphate-1-kinase (EC 2.7.1.90)
AB395_RS32620	pfp	4.66	5.244E-61	Tagatose-6-phosphate kinase (EC 2.7.1.144) / 1-phosphofructokinase (EC 2.7.1.56)
AB395_RS15055	fba	1.80	1.906E-14	Fructose-bisphosphate aldolase class I (EC 4.1.2.13)
AB395_RS24590	fba	-0.45	0.1057599	Fructose-bisphosphate aldolase class II (EC 4.1.2.13)
AB395_RS25690	fba	1.92	7.32E-11	Fructose-bisphosphate aldolase class II (EC 4.1.2.13)
AB395_RS32440	glk	3.39	4.334E-60	Glucokinase (EC 2.7.1.2)
AB395_RS32660	glk	2.82	9.941E-17	Glucokinase like protein
AB395_RS18785	glk	-0.55	0.0499549	Glucokinase (EC 2.7.1.2)
AB395_RS00585	pgi	-0.29	0.3361126	Glucose-6-phosphate isomerase (EC 5.3.1.9)
AB395_RS01690	zwf	-0.48	0.0752833	Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49)
AB395_RS01685	pgl	-0.35	0.2497178	6-phosphogluconolactonase (EC 3.1.1.31)2C eukaryotic type
AB395_RS01680	edd	0.07	0.8659079	Phosphogluconate dehydratase (EC 4.2.1.12)
AB395_RS15725	eda	-0.49	0.1408175	4-Hydroxy-2-oxoglutarate aldolase (EC 4.1.3.16) &2-dehydro-3- deoxyphosphogluconate aldolase (EC 4.1.2.14)
AB395_RS08835	gnd	-0.28	0.3675601	6-phosphogluconate dehydrogenase2C decarboxylating (EC 1.1.1.44)
AB395_RS25710	rpe	1.06	0.0051373	Ribulose-phosphate 3-epimerase (EC 5.1.3.1)
AB395_RS07520	rpe	-0.48	0.1355813	Ribulose-phosphate 3-epimerase (EC 5.1.3.1)
AB395_RS08395	rpi	-0.59	0.0296624	Ribose 5-phosphate isomerase A (EC 5.3.1.6)
AB395_RS23580	rpi	0.07	0.880628	Ribose 5-phosphate isomerase B (EC 5.3.1.6)
AB395_RS32855	xfp	4.27	6.022E-69	Xylulose-5-phosphate phosphoketolase (EC 4.1.2.9) & Fructose-6- phosphate phosphoketolase (EC 4.1.2.22)
AB395_RS25360	tkt	-0.13	0.7609231	Transketolase2C N-terminal section (EC 2.2.1.1)
AB395_RS25365	tkt	-0.08	0.8900902	Transketolase2C C-terminal section (EC 2.2.1.1)
AB395_RS15035	tkt	-0.43	0.0896349	Transketolase (EC 2.2.1.1)
AB395_RS25685	tkt	1.78	2.497E-12	Transketolase (EC 2.2.1.1)
AB395_RS16790	tal	0.18	0.5432929	Transaldolase (EC 2.2.1.2)
AB395_RS11385	tal	-0.26	0.6834022	Transaldolase (EC 2.2.1.2)
AB395_RS11300	prsA	-0.95	0.0001463	Ribose-phosphate pyrophosphokinase (EC 2.7.6.1)
AB395_RS32630	prsA	4.93	1.805E-79	Ribose-phosphate pyrophosphokinase (EC 2.7.6.1)
				NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (EC
AB395_RS15040	gap	0.12	0.720159	1.2.1.13) / NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12)
AB395_RS15050	pgk	-0.27	0.372946	Phosphoglycerate kinase (EC 2.7.2.3)

 Table S4. Description of genes in Fig. 4

AB395_RS18800	gpm	-0.36	0.2381711	Phosphoglycerate mutase (EC 5.4.2.1)	
AB395_RS02695	gpm	-1.15	3.781E-05	Phosphoglycerate mutase family	
AB395_RS05795	eno	-0.13	0.7015901	Enolase (EC 4.2.1.11)	
AB395_RS15210	pyk	-0.69	0.0061332	Pyruvate kinase (EC 2.7.1.40)	
AB395_RS32655	pps	3.58	9.417E-36	Phosphoenolpyruvate synthase (EC 2.7.9.2)	
AB395_RS02910	pps	-0.07	0.8134841	Pyruvatephosphate dikinase (EC 2.7.9.1)	
AB395_RS05805	pdh	0.87	0.000561	Pyruvate dehydrogenase E1 component alpha subunit (EC 1.2.4.1)	
AB395_RS05810	pdh	0.73	0.0032949	Pyruvate dehydrogenase E1 component beta subunit (EC 1.2.4.1)	
AB395_RS32330	pdh	2.02	3.244E-17	Pyruvate dehydrogenase E1 component alpha subunit (EC 1.2.4.1)	
AB395_RS32335	pdh	2.11	2.893E-17	Pyruvate dehydrogenase E1 component beta subunit (EC 1.2.4.1)	
AB395_RS18180	pckA	1.18	2.524E-08	Phosphoenolpyruvate carboxykinase [ATP] (EC 4.1.1.49)	
AB395_RS21690	gltA	0.57	0.0359065	Citrate synthase (si) (EC 2.3.3.1)	
AB395_RS06120	gltA	0.56	0.0318637	Citrate synthase (si) (EC 2.3.3.1)	
AB395_RS27600	acnA	-0.23	0.4264916	Aconitate hydratase (EC 4.2.1.3)	
AB395_RS17375	acnA	0.15	0.5658562	Aconitate hydratase (EC 4.2.1.3)	
AB395_RS08090	icd	-1.19	3.139E-07	Isocitrate dehydrogenase [NADP] (EC 1.1.1.42)	
AB395_RS16840	sucA	0.38	0.1176081	2-oxoglutarate dehydrogenase E1 component (EC 1.2.4.2)	
AB395_RS16835	sucB	0.23	0.435535	Dihydrolipoamide succinyltransferase component (E2) of 2- oxoglutarate dehydrogenase complex (EC 2.3.1.61)	
AB395_RS05830	lpd	0.76	0.0031442	Dihydrolipoamide dehydrogenase of pyruvate dehydrogenase complex (EC 1.8.1.4)	
AB395_RS15995	lpd	1.67	9.887E-14	Dihydrolipoamide dehydrogenase of branched-chain alpha-keto acid dehydrogenase (EC 1.8.1.4)	
AB395_RS16815	lpd	0.32	0.2140103	Dihydrolipoamide dehydrogenase of 2-oxoglutarate dehydrogenase (EC 1.8.1.4)	
AB395_RS05815	lpd	0.68	0.0091526	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex (EC 2.3.1.12)	
AB395_RS32340	lpd	1.60	7.382E-10	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex (EC 2.3.1.12)	
AB395_RS15525	pgm	1.03	2.422E-05	Phosphoglucomutase (EC 5.4.2.2)	
AB395_RS08840	ccoS	1.81	0.0010779	Type cbb3 cytochrome oxidase biogenesis protein CcoS involved in heme b insertion	
AB395_RS08845	ccoI	4.12	1.375E-60	Type cbb3 cytochrome oxidase biogenesis protein CcoI Copper- translocating P-type ATPase (EC 3.6.3.4)	
AB395_RS08850	ccoH	5.10	1.892E-67	Type cbb3 cytochrome oxidase biogenesis protein CcoH	
AB395_RS08855	ccoG	5.23	5.028E-79	Type cbb3 cytochrome oxidase biogenesis protein CcoG	
AB395_RS08875	ccoP	4.13	3.993E-58	Cytochrome c oxidase subunit CcoP (EC 1.9.3.1)	
AB395_RS08880	ccoQ	3.08	7.577E-10	Cytochrome c oxidase subunit CcoQ (EC 1.9.3.1)	
AB395_RS08885	ccoO	4.41	2.215E-45	Cytochrome c oxidase subunit CcoO (EC 1.9.3.1)	
AB395_RS08890	ccoN	5.06	9.709E-89	Cytochrome c oxidase subunit CcoN (EC 1.9.3.1)	
AB395_RS04840	nuoA	0.41	0.2492021	NADH ubiquinone oxidoreductase chain A (EC 1.6.5.3)	
AB395_RS04845	пиоВ	0.40	0.1284137	NADH-ubiquinone oxidoreductase chain B (EC 1.6.5.3)	
AB395_RS04850	nuoC	0.41	0.1074975	NADH-ubiquinone oxidoreductase chain C (EC 1.6.5.3)	
AB395_RS04855	nuoD	0.59	0.0240792	NADH-ubiquinone oxidoreductase chain D (EC 1.6.5.3)	

AB395_RS04865	nuoE	0.62	0.0088352	NADH-ubiquinone oxidoreductase chain E (EC 1.6.5.3)
AB395_RS04870	nuoF	0.41	0.1176949	NADH-ubiquinone oxidoreductase chain F (EC 1.6.5.3)
AB395_RS04885	nuoH	0.29	0.3228827	NADH-ubiquinone oxidoreductase chain H (EC 1.6.5.3)
AB395_RS04890	nuoI	0.19	0.5246981	NADH-ubiquinone oxidoreductase chain I (EC 1.6.5.3)
AB395_RS04895	nuoJ	0.26	0.3385803	NADH-ubiquinone oxidoreductase chain J (EC 1.6.5.3)
AB395_RS04900	nuoK	-0.04	0.9198044	NADH-ubiquinone oxidoreductase chain K (EC 1.6.5.3)
AB395_RS04905	nuoL	0.01	0.9899626	NADH-ubiquinone oxidoreductase chain L (EC 1.6.5.3)
AB395_RS04910	nuoM	-0.02	0.9673037	NADH-ubiquinone oxidoreductase chain M (EC 1.6.5.3)
AB395_RS04915	nuoN	0.03	0.9230476	NADH-ubiquinone oxidoreductase chain N (EC 1.6.5.3)
AB395_RS10830	nuoH	0.54	0.0223183	NADH-ubiquinone oxidoreductase chain H (EC 1.6.5.3)
AB395_RS10835	nuoI	1.27	5.217E-05	NADH-ubiquinone oxidoreductase chain I (EC 1.6.5.3)
AB395_RS10845	nuoG	0.94	0.00019	NADH-ubiquinone oxidoreductase chain G (EC 1.6.5.3)
AB395_RS10850	nuoF	0.97	0.0019513	NADH-ubiquinone oxidoreductase chain F (EC 1.6.5.3)
AB395_RS10855	nuoE	1.57	0.0027839	NADH-ubiquinone oxidoreductase chain E (EC 1.6.5.3)
AB395_RS10860	nuoD	1.24	2.233E-06	NADH-ubiquinone oxidoreductase chain D (EC 1.6.5.3)
AB395_RS10865	nuoC	1.89	1.602E-07	NADH-ubiquinone oxidoreductase chain C (EC 1.6.5.3)
AB395_RS10870	nuoB	2.04	9.417E-09	NADH-ubiquinone oxidoreductase chain B (EC 1.6.5.3)
AB395_RS10875	nuoA	1.76	4.578E-07	NADH ubiquinone oxidoreductase chain A (EC 1.6.5.3)
AB395_RS10880	nuoN	0.17	0.6633655	NADH-ubiquinone oxidoreductase chain N (EC 1.6.5.3)
AB395_RS10885	nuoM	0.20	0.6270663	NADH-ubiquinone oxidoreductase chain M (EC 1.6.5.3)
AB395_RS10900	mnhD	0.28	0.5006408	NADH-ubiquinone oxidoreductase chain L (EC 1.6.5.3)
AB395_RS10905	nuoK	0.64	0.4893503	NADH-ubiquinone oxidoreductase chain K (EC 1.6.5.3)
AB395_RS10910	nuoJ	0.74	0.0071658	NADH-ubiquinone oxidoreductase chain J (EC 1.6.5.3)
AB395_RS23060	exoP	1.21	3.337E-07	Succinoglycan biosynthesis transport protein exoP
AB395_RS23065	exoN	1.57	5.587E-12	UTP-glucose-1-phosphate uridylyltransferase (EC 2.7.7.9)
AB395_RS00880	galE	2.15	1.444E-34	UDP-glucose 4-epimerase (EC 5.1.3.2)
AB395_RS23070	exoO	1.22	6.976E-08	Succinoglycan biosynthesis protein ExoO
AB395_RS23075	exoM	1.26	9.182E-08	Succinoglycan biosynthesis protein ExoM
AB395_RS23080	exoA	1.29	5.612E-09	Succinoglycan biosynthesis protein ExoA
AB395_RS23085	exoL	1.54	1.493E-12	Succinoglycan biosynthesis protein ExoL
AB395_RS23090	exoK	2.05	1.407E-21	Endo-beta-1,3-1,4 glucanase (EC 3.2.1.73)
AB395_RS23105	exoI	0.59	0.027931	putative periplasmic protein
AB395_RS23110	exoU	1.44	1.128E-11	Succinoglycan biosynthesis protein ExoU
AB395_RS23115	exoX	1.22	0.0073245	Exopolysaccharide production repressor protein
AB395_RS23120	exoY	1.31	1.316E-09	Exopolysaccharide biosynthesis protein
AB395_RS24220	nrtC	2.46	5.981E-17	Nitrate ABC transporter ATP-binding protein
AB395_RS24225	nrtB	2.11	5.959E-10	Bicarbonate transport system permease protein
AB395_RS24230	nrtA	2.18	8.217E-12	Nitrate ABC transporter nitrate-binding protein
AB395_RS21200	urtA	2.21	2.89E-17	urea ABC transporter substrate-binding protein
AB395_RS21205	urtB	2.61	3.214E-25	urea ABC transporter permease subunit UrtB
AB395_RS21210	urtC	2.97	3.983E-39	urea ABC transporter permease subunit UrtC
AB395_RS21215	urtD	3.07	4.731E-31	urea ABC transporter ATP-binding protein UrtD
AB395_RS21220	urtE	3.42	4.016E-52	urea ABC transporter ATP-binding subunit UrtE

AB395_RS04560	napE	3.34	9.481E-27	Periplasmic nitrate reductase component NapE
AB395_RS04565	napF	2.24	2.215E-20	Ferredoxin-type protein NapF (periplasmic nitrate reductase)
AB395_RS04570	napD	1.80	0.0046529	Periplasmic nitrate reductase component NapD
AB395_RS04575	napA	2.02	4.6E-27	Periplasmic nitrate reductase precursor (EC 1.7.99.4)
AB395_RS04580	napB	1.88	6.78E-12	Nitrate reductase cytochrome c550-type subunit
AB395_RS04585	napC	1.53	9.234E-11	Cytochrome c-type protein NapC
AB395_RS26435	nasA	0.81	0.0197989	Assimilatory nitrate reductase large subunit (EC:1.7.99.4)
AB395_RS04535	nnrS	3.56	2.219E-32	NnrS protein involved in response to NO
AB395_RS04540	nirK	3.77	1.707E-59	Copper-containing nitrite reductase (EC 1.7.2.1)
AB395_RS04545	nirV	2.32	1.074E-18	Nitrite reductase accessory protein NirV
AB395_RS04550	nnrR	0.18	0.5852129	Nitric oxide -responding transcriptional regulator NnrR
AB395_RS26425	nirB	-0.54	0.4524857	Nitrite reductase [NAD(P)H] large subunit (EC 1.7.1.4)
AB395_RS26430	nirD	0.84	0.0165051	Nitrite reductase [NAD(P)H] small subunit (EC 1.7.1.4)
AB395_RS08065	glsA	-1.36	2.421E-05	Glutaminase (EC 3.5.1.2)
AB395_RS21835	glnA	1.39	4.45E-10	Glutamine synthetase type II (EC 6.3.1.2)
AB395_RS27410	glnA	-0.24	0.5860045	Glutamine synthetase type I (EC 6.3.1.2)
AB395_RS01700	glnA	0.49	0.0296624	glutamine synthetase family protein
AB395_RS07005	glnA	-0.11	0.7735058	Glutamine synthetase type I (EC 6.3.1.2)
AB395_RS10505	glnA	0.51	0.0701031	glutamine synthetase family protein
AB395_RS26035	gdhA	0.42	0.2775176	glutamate dehydrogenase
AB395_RS12345	ureG	1.06	8.612E-05	Urease accessory protein UreG
AB395_RS12350	ureF	-0.17	0.6804141	Urease accessory protein UreF
AB395_RS12355	ureE	0.29	0.3221612	Urease accessory protein UreE

	Relevant characteristics	Note
Strains		
E. coli DH5a	F-φ80 lac ZΔM15 Δ(lacZYA-arg F) U169 endA1 recA1 hsdR17(rk-,mk+) supE44 λ - thi -1 gyrA96 relA1 phoA	Biomed
S. fredii CCBAU45436	S. fredii CCBAU45436 wild type, NA ^r , TMP ^r	(1)
Δrsh	S. fredii CCBAU45436 rsh in-frame deletion, NA ^r , TMP ^r	This work
Plasmids		
pJQ200SK	suicide plasmid with sacB selectable marker, Gmr	(2)
pRK2013	Helper plasmid, IncP, Tra ⁺ , Mob ⁺ , ColE1, Km ^r	(3)
Primers for <i>rsh</i> deletion		
rsh-UF	ATCGAATTCCTGCAGCCCTCCGGTTTCGTGTCGTTAATC	
rsh-UR	AATTCCTTGACTCGTATTGGCGCATCATTC	
rsh-DF	CCAATACGAGTCAAGGAATTGCCGAGCATC	
rsh-DR	AGAACTAGTGGATCCCCCTTGATGGGCGCAAGATATGC	
rsh-WF	CATCGCGGAAATGTCGTATTC	
rsh-WR	CCGTCATCGCATCTTGAAAC	

Table S5. Strains, plasmids and primers used in this study

References

- Zhang YM, Li Y, Jr., Chen WF, Wang ET, Tian CF, Li QQ, Zhang YZ, Sui XH, Chen WX. 2011. Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl Environ Microbiol 77:6331-42.
- 2. Quandt J, Hynes MF. 1993. Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15-21.
- Figurski DH, Helinski DR. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648-52.