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28th Feb 20211st Editorial Decision

Thank you for submitting your work to Molecular Systems Biology. We have now heard back from the three reviewers who 
agreed to evaluate your manuscript. As you will see from the reports below, the reviewers acknowledge the potential interest of 
the study. However, they raise a series of concerns, which we would ask you to address in a major revision. 

Without reiterating all the points raised in the reviews below, some of the more substantial issues are the following: 

- Provide further experimental validations for several of the identified targets to support the conclusions, as suggested by
Reviewer #2.
- Reviewers raise concerns about constraints used in the modeling and the use of Recon1 instead of a more updated model,
which need to be carefully addressed.

All other issues raised by the reviewers need to be satisfactorily addressed as well. As you may already know, our editorial
policy allows in principle a single round of major revision, and it is therefore essential to provide responses to the reviewers'
comments that are as complete as possible. 

On a more editorial level, we would ask you to address the following issues: 

REFEREE REPORTS

 -------------------------------------------------------- 

Reviewer #1: 

Cheng and his colleagues performed genome-scale metabolic modeling observations for SARS-CoV-2 infected host cells to 
identify possible antiviral targets for COVID-19. Specifically, they built genome-scale metabolic models using 12 publicly 
available transcriptome data for SARS-CoV-2 infected host cells. These observations reveal new host metabolism 
reprogramming during SARS-CoV-2 infections and offered a few potential host factors related to SARS-CoV-2 infections, which 
were validated by published CRISPR-Cas9 screening data. Via analyzing RNA-sequencing data of remdesivir-treated Vero E6 
cell samples, they prioritized several metabolic targets in possible combination with remdesivir. Although in silico findings were 
not validated by experimental assays, this study presented a new in silico methodology for development of COVID-19 
therapeutic strategies from host metabolism perspectives. The manuscript is clearly written, the methods are described in 
sufficient detail and the conclusions are fairly supported by the data. Several specific comments need attention below, which 
may improve the manuscript further. 

1. The authors inspected 12 publicly available transcriptome datasets for SARS-CoV-2 infected host samples. It will be 
interesting the authors can discuss cell type-specific and tissue-specific genome-scale metabolic models for SARS-CoV-2



infections, which will provide cell type-specific drug targets for effective therapeutic development.
2. The authors identified several interacting metabolic pathways, such as Branched-chain amino acid (valine, leucine). Could the
authors discuss possibility of SARS-CoV-2 infection mediated metabolism is sex- or age-specific. For example, branched-chain
amino acid pathway is highly age-specific. It will help to better understand the age-specific morbidity in COVID-19 from genome-
scale metabolic modelings.
3. Children and older individuals have different responses to SARS-CoV-2 infectious. Individuals with SARS-CoV-2 infectious
have different outcomes, including symptomatic vs. asymptomatic, mild, moderate and severe outcomes. It will be interesting the
authors can discuss COVID-19 outcome-specific genome-scale metabolic models, which will help us understand disease
severities of COVID-19 from metabolism perspectives.
4. Several related literatures may be discussed further, such as doi: 10.1371/journal.pbio.3000970 and doi: 10.1016/S2589-
7500(20)30192-8.
5. Overall, this is a novel, computational study from SARS-Cov-2 host metabolism perspective. The authors may discuss future
works, about metabolic synthetic lethality and metabolic vulnerability studies, for emerging development of host-targeting
therapies for COVID-19.

Reviewer #2: 

The authors presented an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-
CoV-2 infection using genome-scale metabolic modeling (GEM) and revealed the reprogramming of host metabolism during
SARS-CoV-2 infection. They also applied the GEM based metabolic transformation algorithm to predict anti-SARS-CoV-2
targets that counteract the virus-induced metabolic changes and validated them using published experimental drug and genetic
screen data. Moreover, they generate and analyzed RNA-sequencing data of remdesivir treated Vero E6 cell samples and
predicted metabolic targets acting in combination with remdesivir. They provided top high-confidence candidate targets with
support from human patient data for evaluation in further studies. This is a very interesting study; however, it lacks experimental
evidence for the targets identified in the study. I strongly suggest the authors validate their top predictions by performing
additional experiments. 

Major Comments 
1. Flux balance analysis renders a considerable part of the result and contributes significantly to the main conclusion and
discovery in this study. However, there is some missing information about how the modeling is performed and what rationality is.
First of all, there is no information about constraints used in the modeling, which is a very important part of flux balance analysis
and could significantly affect the final results. It could be that the author used the default constraints from Recon1, but it then
raises another very serious concern if the rationale is to use the same constraints to model in vitro cell lines and in vivo human
cells. At the very beginning, it may be useful to compare the fluxes between cell lines and human tissues as the rate of the flux is
expected to be at a different scale.

2. Recon1 is used for the FBA in this study, and the author claimed this is because using more recent models will significantly
increase the computational cost. This is not acceptable since there are many different updated models since 2017. Recon 3 and
Human1 can be used. This is also an unfair statement, as the scale between Recon1 and the most recent GEM Recon 3 and
Human1 is not significant and the computational cost for running iMAT using these models will not be that different. In addition,
Recon1 has many mass imbalanced reactions which could affect the FBA results and lead to incorrect conclusions. So, I would
argue that the authors should use one of the most recent human GEM for the FBA analysis.

3. One of the very important contributions of this study is that the author proposed some promising targets that could be used
together with remdesivir for COVID19 treatment based on their in-house in vitro experimental data. This means their lab is
capable of performing COVID19 in vitro tests. However, I am surprised that they have not tested the effect of the targets (top
candidate(s)) they identified using siRNA or plasmid as that should be relatively simple compared to what they have already
done. The conclusion of this study will be significantly enhanced if the authors perform this experiment. The readers of the MSB
would also expect to see the validation experiments.

4. There are many parameters proposed by the authors arbitrarily selected and need sensitivity analysis. For example, the
authors selected 'top 400' DE genes with at least 'FDR <0.1' for all different COVID19 datasets, which seems a very sensitive
cutoff. Why 400? Will the result change significantly if you choose top 500? Also, the authors selected 'FDR<0.2' for metabolic
pathway meta-analysis, which is neither statistically sound nor consistent with the other cutoff used in this study.

5. The author claimed that they used an in-house R package named 'gembox' for the GEM based analysis. The authors should
provide the script for the analysis to enable proper assessment.

Reviewer #3: 

Summary 



Cheng et al utilizes 12 published SARS-CoV2 gene expression data sets to investigate virus-induced host metabolic changes,
using genome scale metabolic modeling. Based on these identified metabolic shifts, they then identified potential metabolic drug
targets using MTA, and compared these proposed metabolic targets to published drug and genetic screening data. Lastly, they
investigated potential coupled therapeutics through their remesdesvir-treated Vero E6 cell RNA-seq data. The goal of this paper
is to utilize genome scale metabolic modeling to identify potential host treatment avenues for SARS-CoV2 infection, as opposed
to the more common approach of identifying viral targets. This unique approach to viral-infection therapeutic development
creates a pipeline for drug target discovery that could be applied to other viral infections outside of SARS-CoV2. Additionally the
use of publically available data and subsequent data integration, poses useful for future metabolic modeling studies. However,
the way in which differential expression was calculated for these 12 unique datasets, and the heavy reliance on in vitro data,
when in vivo data is available, poses concerns in regards to the final selected metabolic targets. 

Major points 
- The use of 3 different algorithms for differential expression identification for the bulk RNA-seq datasets creates discontinuity in
differential expression definitions. This then biases later GSEA, as well as differential expression comparisons across datasets.
- The use of Recon1 instead of a more updated model due to computational limitations is understandable, however steps should
be taken to create a more accurate COVID-19 contextualized model, such as incorporating airway epithelial cell specific
transport reactions, in addition to specific inflammatory pathways that are integral to COVID-19 disease mechanism.
- Why are both in vitro and in vivo data utilized? How are the confounding factors of gene expression in a dish vs. a human
considered? Cell lines do allow for target validation, as seen from your remedesvir treated Vero E6 cells, however why is this in
vitro data integrated during the initial DE, GSEA, metabolic modeling portion of the analysis pipeline? Especially when utilizing a
whole-body based model such as Recon1, while integrating tissue specific data from multiple tissue types.

Minor points 
- There are several more recent transcriptomic data integration methods...why weren't other such approaches explored for this
analysis?
- The structure of Figure 4 is not consistent with other figures.



Reviewer #1: 

Cheng and his colleagues performed genome-scale metabolic modeling observations for SARS-

CoV-2 infected host cells to identify possible antiviral targets for COVID-19. Specifically, they 

built genome-scale metabolic models using 12 publicly available transcriptome data for SARS-

CoV-2 infected host cells. These observations reveal new host metabolism reprogramming 

during SARS-CoV-2 infections and offered a few potential host factors related to SARS-CoV-2 

infections, which were validated by published CRISPR-Cas9 screening data. Via analyzing 

RNA-sequencing data of remdesivir-treated Vero E6 cell samples, they prioritized several 

metabolic targets in possible combination with remdesivir. Although in silico findings were not 

validated by experimental assays, this study presented a new in silico methodology for 

development of COVID-19 therapeutic strategies from host metabolism perspectives. The 

manuscript is clearly written, the methods are described in sufficient detail and the conclusions 

are fairly supported by the data. Several specific comments need attention below, which may 

improve the manuscript further. 

We appreciate the reviewer’s positive comment on our study. We are pleased to note 

that we have now further performed siRNA assays to evaluate the antiviral efficacy of the 

knockdown of a set of predicted top targets, confirming many of them (following the request of 

Reviewer #2). These results are described in a new section in the main text titled “Validation of 

the predicted anti-SARS-CoV-2 targets with an in vitro siRNA assay” (Page 13), and a new 

Figure 4 describing these results. We appreciate the reviewer’s other comments and have 

carefully addressed them below. 

1. The authors inspected 12 publicly available transcriptome datasets for SARS-CoV-2 infected

host samples. It will be interesting the authors can discuss cell type-specific and tissue-specific

genome-scale metabolic models for SARS-CoV-2 infections, which will provide cell type-specific

drug targets for effective therapeutic development.

We agree. Indeed, although the in vitro cell data among 12 datasets we analyzed in this 

study covers a few different tissue types of origin (e.g. lung, kidney, colon), this could be further 

studied in detail using the various single-cell datasets. We focused on the metabolism of 

epithelial cells from the single-cell datasets, but we agree that the metabolic changes of specific 

cell types, e.g. immune cells, during SARS-CoV-2 infection may be investigated in future 

studies. We have discussed this point as one of the limitations of our study (Discussion section, 

Page 21): 

“This study has several limitations that should be more thoroughly addressed in future 

studies incorporating the GEM modeling approach. First, as we aimed to identify targets 

in airway epithelial cells, we did not fully characterize cell type and tissue-specific 

metabolism associated with SARS-CoV-2 infection. Notably, future studies should 

analyze single-cell datasets to construct cell type-specific GEMs to identify cell type-

specific antiviral targets and virus-induced alterations, e.g, immunometabolic changes 

(O'Carroll  et al. 2021).” 

24th Aug 20211st Authors' Response to Reviewers



2. The authors identified several interacting metabolic pathways, such as Branched-chain amino

acid (valine, leucine). Could the authors discuss possibility of SARS-CoV-2 infection mediated

metabolism is sex- or age-specific. For example, branched-chain amino acid pathway is highly

age-specific. It will help to better understand the age-specific morbidity in COVID-19 from

genome-scale metabolic modelings.

We appreciate this interesting comment from the reviewer. Indeed, COVID-19 infection 

rate and morbidity are highly variable in different sex or age groups and in people with baseline 

metabolic diseases such as diabetes. It is possible that the different metabolic states associated 

with aging underlie some of the observed age-specific differences of COVID-19 epidemiology, 

which requires further studies. As to branched-chain amino acid metabolism, we have found 

that this particular finding is not robust to the technical variations in the metabolic modeling 

methods. Specifically, when we followed the suggestion of another reviewer to use a newer 

Recon 3D human metabolic model instead of the Recon 1 model, this metabolic pathway no 

longer appears as a highly consistent differential pathway (please refer to our reply to the 

Comment #2 of Reviewer #2 for details if of interest). Therefore, we have now removed the 

results on branched-chain amino acid metabolism. Nevertheless, we have now included a 

discussion of the possibility of sex or age-specific metabolic response to SARS-CoV-2 infection, 

together with the discussion of disease severity-specific metabolic changes. Please see our 

reply to the next comment for the updated text. 

3. Children and older individuals have different responses to SARS-CoV-2 infectious. Individuals

with SARS-CoV-2 infectious have different outcomes, including symptomatic vs. asymptomatic,

mild, moderate and severe outcomes. It will be interesting the authors can discuss COVID-19

outcome-specific genome-scale metabolic models, which will help us understand disease

severities of COVID-19 from metabolism perspectives.

As mentioned above, we agree that the age-specific response to SARS-CoV-2 infection 

could have metabolic underpinnings that needs to be studied further. We also agree that the 

degree and patterns of metabolic disruption are likely different in patients with different disease 

severity, which may be correlative or causal, and this also requires careful future investigation. 

Addressing this and the previous comment, the relevant Discussion section now reads as 

follows (Page 21): 

“It’s known that people with different sexes and ages respond differently to SARS-CoV-2 

infection (Peckham et al. 2020; Canas et al. 2021), and that the infection can result in a 

wide spectrum of disease severity (Sandoval et al. 2021), which may be associated with 

metabolic underpinnings that can in turn be studied in the future with sex, age and 

clinical outcome-specific GEMs, given sufficient pertaining preclinical and clinical data.” 

4. Several related literatures may be discussed further, such as doi: 

10.1371/journal.pbio.3000970 and doi: 10.1016/S2589-7500(20)30192-8. 

Thanks. We have now cited these relevant studies in our manuscript (Page 21), as 

follows: 



“Our GEM-based pipeline thus complements other computational methods in predicting 

anti-SARS-CoV-2 targets and drugs, including those based on network analysis (Zhou et 

al. 2020) or artificial intelligence (Zhou et al. 2020).” 

5. Overall, this is a novel, computational study from SARS-Cov-2 host metabolism perspective.

The authors may discuss future works, about metabolic synthetic lethality and metabolic

vulnerability studies, for emerging development of host-targeting therapies for COVID-19.

We thank the reviewer for this insightful comment. Indeed a synthetic lethality-based 

approach has been proposed for antiviral infection (Mast et al. 2020). We included a brief 

discussion of this point in the Discussion section (Page 22): 

“While we predicted combinations of targets based on the principle of restoring cellular 

homeostasis, it is also feasible to predict synergistic target combinations under the GEM 

framework via modeling of synthetic lethality, which has also been proposed as a viable 

antiviral approach (Mast et al. 2020).” 

Reviewer #2:

The authors presented an integrated analysis of 12 published in vitro and human patient gene 

expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM) 

and revealed the reprogramming of host metabolism during SARS-CoV-2 infection. They also 

applied the GEM based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets 

that counteract the virus-induced metabolic changes and validated them using published 

experimental drug and genetic screen data. Moreover, they generate and analyzed RNA-

sequencing data of remdesivir treated Vero E6 cell samples and predicted metabolic targets 

acting in combination with remdesivir. They provided top high-confidence candidate targets with 

support from human patient data for evaluation in further studies. This is a very interesting 

study; however, it lacks experimental evidence for the targets identified in the study. I strongly 

suggest the authors validate their top predictions by performing additional experiments. 

We thank the reviewer for the interest in our study. We agree that experimental 

validation of the predicted targets can greatly boost the value of our study. Accordingly, we have 

further performed siRNA assays to evaluate the antiviral efficacy of the knockdown of a set of 

predicted top targets, which showed encouraging positive results (please see our reply to the 

Comment #3 below for details). We have also carefully addressed your other comments, as 

described below. 

Major Comments 

1. Flux balance analysis renders a considerable part of the result and contributes significantly to

the main conclusion and discovery in this study. However, there is some missing information

about how the modeling is performed and what rationality is. First of all, there is no information

about constraints used in the modeling, which is a very important part of flux balance analysis

and could significantly affect the final results. It could be that the author used the default



constraints from Recon1, but it then raises another very serious concern if the rationale is to use 

the same constraints to model in vitro cell lines and in vivo human cells. At the very beginning, it 

may be useful to compare the fluxes between cell lines and human tissues as the rate of the flux 

is expected to be at a different scale. 

We apologize for the confusion. We realized that our description of metabolic modeling 

methods was not entirely clear and have updated the relevant writing (see below). Actually, flux 

balance analysis (FBA) was not used in our study. Our metabolic modeling was based on the 

iMAT algorithm (Shlomi et al. 2008), which used mixed integer programming to find the optimal 

adjustment of reaction bounds such that reactions with high fluxes and low fluxes correspond to 

high and low gene expression, respectively, in a sample type and dataset-specific manner. 

Therefore, the optimal and yet different constraints for different in vitro/in vivo datasets were 

determined by iMAT to best fit the context-specific gene expression data. We did NOT apply 

FBA to the resulting constrained model, as maximal biomass production may not be appropriate 

especially for the in vivo patient nasopharyngeal swab and BALF samples, and tissue type-

specific objective functions for these samples are very difficult to define rigorously. Instead, the 

expression-based constrained model generated by iMAT was randomly sampled to obtain a 

distribution of flux values for each reaction. We then were able to determine reactions with 

differential fluxes by comparing the flux distributions of a reaction in control and virus-infected 

conditions following the procedure described in (Shlomi et al. 2008). Besides, we did not 

attempt to normalize the raw expression values across datasets (this is very difficult due to large 

platform differences and batch effects confounded by biological factors; therefore this approach 

does not allow the comparison of the base-level expressions across datasets). Instead, we 

aimed to identify the SARS-CoV-2-induced differential expressions and differential fluxes 

within each dataset, and then compared these differential results qualitatively across datasets, 

as our key question is about the SARS-CoV-2-induced changes rather than base-level 

metabolism. 

We have now revised the Results section and Materials and Methods section 

accordingly, aiming to clarify our approach:  

Results section, under the sub-section “Genome-scale metabolic modeling (GEM) identifies 

SARS-CoV-2-induced patterns of metabolic flux changes”, Page 7: 

“Briefly, iMAT uses mixed integer programming to optimally identify high and low-activity 

reactions that match the high and low gene expression patterns in a sample-specific 

manner, thus defining sample-specific model constraints to obtain contextualized models 

(Shlomi et al. 2008). … After obtaining the dataset and sample-specific constrained 

model with iMAT, the marginal distribution of flux values of each metabolic reaction was 

obtained by sampling. The flux distributions of the control and infected groups were 

compared and reactions with differential fluxes (DF) were identified (Methods; Table 

S4).” 

Materials and Methods section, under the sub-section “Computation of metabolic fluxes from 

gene expression data with genome-scale metabolic modeling”, Page 23: 



“Although not a single value representing a unique solution, we were able to determine 

reactions with differential fluxes by comparing the flux distributions of a reaction in 

control and virus-infected conditions (see next section). We did not apply flux balance 

analysis (FBA) on the iMAT-derived constrained models, as maximal biomass 

production may not be appropriate especially for the in vivo patient samples, and tissue 

type-specific objective functions for these samples are not trivial to define. 

2. Recon1 is used for the FBA in this study, and the author claimed this is because using more 

recent models will significantly increase the computational cost. This is not acceptable since 

there are many different updated models since 2017. Recon 3 and Human1 can be used. This 

is also an unfair statement, as the scale between Recon1 and the most recent GEM Recon 3 

and Human1 is not significant and the computational cost for running iMAT using these models 

will not be that different. In addition, Recon1 has many mass imbalanced reactions which could 

affect the FBA results and lead to incorrect conclusions. So, I would argue that the authors 

should use one of the most recent human GEM for the FBA analysis. 

We thank the reviewer for this comment and agree that it’s better to test our analysis and 

findings using a more up-to-date genome-scale metabolic model, which also allows us to 

evaluate the performance of the MTA/rMTA algorithm on a larger model (they mostly have not 

been tested on the more recent large-scale metabolic models with >10k reactions). We 

therefore redid all the metabolic modeling analysis in our study with the Recon 3D model (Brunk 

et al. 2018) and have updated our reported results throughout (results corresponding to the 

previous Figure 2, 3 and 4 have all been updated). Overall, we obtained similar results on 

SARS-CoV-2-induced metabolic changes as well as on antiviral target prediction using Recon 

3D compared to Recon 1, and our major conclusion remains unchanged. However, some of the 

results differ in the details, and a few results from some of the minor analyses were not 

reproduced with Recon 3D; we hence removed the non-robust results from our manuscript. We 

next provide more details below. 

First, encouragingly, we confirmed that with Recon 3D, the rMTA predictions still got well 

validated using the published resources of known anti-SARS-CoV-2 targets (although naturally 

the numerical results differ from our previous ones obtained with Recon 1). These validation 

results include: 1. Predictions from 9 out of the 12 datasets had significant enrichment 

(FDR<0.05) with the targets identified in CRISPR-Cas9 genetic screens (Wei et al. 2021 and 

Daniloski et al. 2021; Figure 3B); 2. Based on the CRISPR-Cas9 genetic screen data, rMTA 

predictions in 6 out of the 12 datasets achieved AUROC>0.6 and as high as 0.72 (Figure 3E); 3. 

The predictions from some datasets were enriched for various reported experimentally validated 

drug targets (compiled by Kuleshov et al. 2020; Figure 3C); 4. The predictions from some 

datasets are also enriched for host proteins identified to interact with SARS-CoV-2 proteins 

(from Gordon et al. 2020 and Stukalov et al. 2020; Figure 3D). Further, many of the metabolic 

pathways enriched by the updated predictions were also similar to those obtained previously 

with Recon 1, for example, extracellular transport reactions and inositol phosphate metabolism 

were both enriched (Figure 3G). However, the results on the specific enrichment of extracellular 

transport reactions by each metabolite species with Recon 3D showed a large difference 

compared to Recon 1, and these enrichment results were hence removed. Other numerical 



differences in the results exist, as one would expect. E.g. the rMTA prediction performance on 

some of the datasets changed -- the prediction based on the BALF dataset (Xiong et al. 2020) 

exhibited a better AUROC now with Recon 3D (0.62) vs with Recon 1 (0.49), although the best 

AUROC we obtained across all datasets decreased (0.81 with Recon1 to current 0.72 with 

Recon 3D; Figure 3E,F). These suggest that while predictions on individual dataset can be 

somewhat sensitive to the metabolic model being used, the rMTA algorithm overall exhibited a 

capacity to identify potentially biologically meaningful targets. We attach the updated Figure 3 

below for your convenience, and have updated the corresponding Results section (mostly 

modifying numerical results such as P values) under “Prediction of anti-SARS-CoV-2 targets 

that act via counteracting the virus-induced metabolic changes”. 



Figure 3. Genome-scale metabolic modeling (GEM)-based prediction of anti-SARS-

CoV-2 targets that act via reversing the virus-induced metabolic alterations. The 

robust metabolic transformation algorithm (rMTA, Valcárcel et al. 2019) was used to 

predict metabolic reactions whose knock-out can reverse the SARS-CoV-2-induced 

metabolic changes using each of the collected datasets (Methods). (A) Visualization of 

the overlap of the top 10% MTA-predicted target reactions between each pair of 

datasets analyzed using Fisher’s exact tests (Methods). The dot size corresponds to the 



effect size of the overlap as measured by odds ratio, and the color corresponds to the 

negative log10 adjusted one-sided P value (grey means below 0.05). (B) A summary 

visualization of the enrichment of the top 10% MTA-predicted targets from each dataset 

for the antiviral hits (i.e. those whose KO inhibits SARS-CoV-2 infection) identified in the 

two published CRISPR-Cas9 screens (Wei et al. 2021 and Daniloski et al. 2021; 

Methods). Y-axis represents the odds ratio of enrichment, the dot color corresponds to 

the negative log10 adjusted one-sided P value from Fisher’s exact tests, and dot size 

corresponds to the number of enriched target reactions. The datasets are ordered by P 

values, the first 8 datasets have FDR<0.1. (C) cases of significant enrichment (FDR<0.1) 

of top 10% MTA-predicted targets from each dataset for the experimentally validated 

anti-SARS-CoV-2 drug sets from previous studies (compiled by Kuleshov et al. 2020). 

“Union” means the union of all drug sets. Axes and the meanings of dot color and size 

are similar to (B) but the axes are flipped and the adjusted P values are not log-

transformed. (D) significant cases of significant enrichment (FDR<0.1) of top 10% MTA-

predicted targets from each dataset for the host proteins involved in host-SARS-CoV-2 

protein-protein interactions (combined from Stukalov et al. 2020 and Gordon et al. 2020). 

Axes and the meanings of dot color and size are similar to (C). (E) A summary of the 

area under ROC curve (AUROC) value of the MTA prediction using each dataset, based 

on positive and negative sets (i.e. genes whose KO inhibits or promotes the viral 

infection, respectively) from the two published CRISPR-Cas9 screen data (Wei et al. 

2021 and Daniloski et al. 2021; Methods). The error bars (vertical lines through the dots) 

represent 95% confidence intervals. (F) Example ROC curves from two of the best-

performing datasets, one in vitro (Vero) and one in vivo (BALF). The curves are colored 

by color gradients corresponding to the threshold of top MTA predictions. (G) Summary 

of the metabolic pathways significantly enriched (FDR<0.1) by the final list of consensus 

candidate targets identified across datasets (Methods). The axes and the meanings of 

dot color and size are similar to (B) except for that the axes are flipped.  

Second, the metabolic pathways found to be enriched with metabolic reactions with 

consistently differential fluxes following SARS-CoV-2 infection are also similar to those originally 

reported with Recon 1, including various metabolite transport reactions, pentose phosphate 

metabolism, pyrimidine synthesis, fatty acid synthesis, etc. (Figure 2B), although the TCA cycle 

no longer reaches statistical significance and is now removed. For clarity of visualization, we 

simplified the pathway diagrams based on the Recon 1 network as the network of Recon 3D 

contains many more edges. The highlighted flux alteration patterns also remain largely the 

same for pyrimidine synthesis, inositol phosphate metabolism, and fatty acid synthesis 

pathways (previous Figure 2D,F,H). In contrast, we did not reproduce the Recon1 findings on 

the differential fluxes in the metabolite transport across the cell membrane (previous Figure 2C) 

and hence removed this analysis. The updated Figure 2 is attached below for your convenience, 

and we have also updated the corresponding Results section (mostly numerical results such as 

P values) under “Genome-scale metabolic modeling (GEM) identifies SARS-CoV-2-induced 

patterns of metabolic flux changes”. 



 

Figure 2. Genome-scale metabolic modeling (GEM)-based analysis of SARS-CoV-

2-induced metabolic alterations across datasets. GEM was used to compute the 

metabolic fluxes from the gene expression profiles, and reactions with differential fluxes 

(DF) between the SARS-CoV-2-infected and control groups were identified for each 

dataset (Methods). (A) Visualization of the overlap of the top DF reactions between each 

pair of datasets analyzed using Fisher’s exact tests (Methods). The dot size corresponds 

to the effect size of the overlap as measured by odds ratio, and the color corresponds to 

the negative log10 adjusted one-sided P value (grey means below 0.05). (B) A summary 

visualization of the metabolic pathway enrichment result for the top consistent DF 

reactions across the datasets, with more importance given to the various in vivo patient 

datasets (Methods). Y-axis represents the odds ratio of enrichment, the dot color 

corresponds to the adjusted P value from Fisher’s exact tests, and dot size corresponds 

to the number of enriched reactions within each pathway. Half-dots plotted on the top 

border line correspond to infinity odds ratio values. The pathways on the X-axis are 

ordered by P value and only those with FDR<0.1 are shown. (C-E) Visualization of the 

relatively consistent DF patterns in selected enriched pathways. The DF results are 

based on metabolic modeling using the human GEM Recon 3D (Brunk et al. 2018), but 

for clear visualization, the metabolic network graphs are based on the human GEM 

Recon 1 (Duarte et al. 2007) to reduce the number of metabolites and reactions 

displayed (Methods). Metabolites are represented by nodes, reactions are represented 



by directed (hyper) edges, with edge direction corresponding to the consensus reaction 

direction and edge color corresponding to the consensus DF direction across datasets 

(Methods). Red and blue colors correspond to increased and decreased fluxes, 

respectively; grey color corresponds to reactions not showing consistent DF changes 

across datasets, some of such reactions are not shown to increase clarity. (C) 

Pyrimidine synthesis. (D) Inositol phosphate metabolism. (G) Glycine, serine, and 

threonine metabolism. (E) Fatty acid synthesis. Metabolites are labeled by their names 

in (C) or IDs in (D,E), with suffixes denoting their cellular compartments: [c] cytosol; [m] 

mitochondria. The mapping between the IDs and metabolite names in (D,E) is given in 

Table S5D. 

Third, we also updated the prediction of combinatory targets with remdesivir using 

Recon 3D (previous Figure 4, now reported in Figure 5). Again, the results are overall similar to 

those obtained from Recon 1 with only minor differences. As reported with Recon1, remdesivir 

did not fully reverse the metabolic changes induced by SARS-CoV-2 (Figure 5C), the pathways 

enriched by differential flux reactions comparing the virus+remdesivir group vs the control group 

(Figure 5D) and the pathways enriched by the rMTA-predicted targets for combination with 

remdesivir (Figure 5E) remained similar. Figure 5 is attached below for your convenience, and 

have updated the corresponding Results section (mostly numerical results such as P values) 

under “Prediction of metabolic targets for anti-SARS-CoV-2 in combination with remdesivir”. 



 

Figure 5. Analysis of the gene expression and metabolic flux profile of remdesivir 

treatment and prediction of metabolic targets for anti-SARS-CoV-2 in combination 

with remdesivir. (A) PCA plot of the gene expression profiles for the Vero E6 samples 

from all experimental groups: control (no virus or remdesivir treatment), virus (SARS-

CoV-2-infected), virus+remdesivir (SARS-CoV-2-infected treated by remdesivir), 

remdesivir (remdesivir treatment alone without virus). There are 3 replicates in each 

group. (B) A visualization of selected differentially expressed pathways comparing the 

virus+remdesivir group to the control group using gene set enrichment analysis (GSEA). 



Y-axis represents normalized enrichment score (NES), positive value means higher

expression in the virus+remdesivir group compared to control, vice versa. Pathways on

the X-axis are ordered by their NES values, all pathways displayed have adjusted

P<0.05; pathways with names in red are those that are not significantly different

(adjusted P>0.2) when comparing the virus group to the control group using GSEA, i.e.

changes in these pathways may arise from remdesivir-specific effects. The dot color

corresponds to the negative log10 adjusted GSEA P value, and dot size corresponds to

the number of enriched genes (i.e. “leading edge” genes in GSEA). (C) PCA plot of the

average metabolic flux profile computed using the iMAT algorithm (Shlomi et al. 2008;

Methods) representative of each of the experimental groups, the labels are the same as

(A). (D) A visualization of metabolic pathway enrichment results of the differential

metabolic fluxes in the virus+remdesivir group vs the control group, using Fisher’s exact

tests (Methods). Y-axis represents the odds ratio of enrichment, the horizontal dashed

line corresponds to odds ratio of 1. The dot color corresponds to the negative log10

adjusted one-sided P value from Fisher’s exact tests, and dot size corresponds to the

number of enriched target reactions. The datasets are ordered by P values, all pathways

displayed have FDR<0.1. (E) The robust metabolic transformation algorithm (rMTA,

Valcárcel et al. 2019) was used to predict metabolic reactions whose knock-out can

further transform the metabolic state of the remdesivir-treated SARS-CoV-2-infected

cells back to the normal control state, using the Vero E6 cell samples (Methods). The

significant metabolic pathways (FDR<0.1) enriched by the top 10% MTA-predicted

targets are shown. Axes and the meanings of dot color and size are similar to (D).

We would like to note that in comparison to Recon 1, the new modeling runs with Recon 

3D take about 100x more CPU-hours, even though Recon 3D only contains about 3x more 

reactions and 2x more metabolites than Recon 1. This arises since the iMAT and rMTA 

algorithms used in our study solve a large number of mixed integer programming (MIP) and 

quadratic programming (QP) problems, which are extremely computation extensive with non-

linear time complexity. Given this, we recommend using a high-performance computing cluster 

with parallelization for readers interested in applying our pipeline. The MIP and QP may also 

have numerical instability issues with large models like Recon 3D. Thus, as described above, 

we did not rely solely on the results of either Recon 3D or Recon 1 but combined the results of 

both to identify the most robust findings. 

3. One of the very important contributions of this study is that the author proposed some

promising targets that could be used together with remdesivir for COVID19 treatment based on

their in-house in vitro experimental data. This means their lab is capable of performing

COVID19 in vitro tests. However, I am surprised that they have not tested the effect of the

targets (top candidate(s)) they identified using siRNA or plasmid as that should be relatively

simple compared to what they have already done. The conclusion of this study will be

significantly enhanced if the authors perform this experiment. The readers of the MSB would

also expect to see the validation experiments.



We thank the reviewer and agree that experimental validation of the predicted targets 

can greatly boost the value of our study. We have therefore further performed siRNA assays to 

evaluate the antiviral efficacy of the knockdown of a set of predicted top targets. Briefly, we 

transfected Caco-2 cells with siRNAs targeting each of our top predicted targets, we infected 

these cells with SARS-CoV-2, and using  immunofluorescence staining for SARS-CoV-2 N 

protein we evaluated the antiviral efficacy of the predicted targets. Knocking down the top 

targets showed significant reduction in SARS-CoV-2 replication compared to negative controls 

(non-targeting scrambled siRNAs), while not showing any significant cytotoxicity (i.e. no 

reduction in cell number as determined by DAPI staining). We have added a new section titled 

“Validation of the predicted anti-SARS-CoV-2 targets with an in vitro siRNA assay” (Page 14), 

and a new Figure 4 describing these results. These are also attached below for your 

convenience. 

“Validation of the predicted anti-SARS-CoV-2 targets with an in vitro siRNA assay 

We next seek to experimentally validate the consensus predictions using an in vitro 

siRNA-based target knock-down assay. We have previously conducted a genome-wide 

siRNA screen to identify host factors that are essential for SARS-CoV-2 replication 

(Methods). To further prioritize targets for validation, we applied our computational 

predictions to this dataset and selected a small subset of 39 genes among the 81 

consensus predicted targets (Methods; target list given in Table EV7C). siRNAs 

targeting each of these 39 genes were individually transfected into Caco-2 cells (n=4), 

which were then infected with SARS-CoV-2. Viral replication at 48 hours post-infection 

was assayed with immunofluorescence labeling of the viral nucleoprotein (N) protein, 

and siRNA-mediated toxicity was evaluated with DAPI staining (illustrated in Figure 4A; 

Methods). Overall, compared to negative control non-targeting siRNAs (scrambled), we 

observed that siRNAs targeting the 39 consensus targets significantly reduced viral 

replication (Wilcoxon rank-sum test P=1.7e-9, Figure 4B; raw data in Table EV7D; 

Methods). Inspected individually, knocking down 34 of the 39 targets significantly 

reduced SARS-CoV-2 replication (adjusted P<0.05, Table EV7E). Notably, we also 

evaluated 4 randomly selected metabolic genes that were not predicted to revert SARS-

CoV-2-induced metabolic changes using our analyses (negative controls), which showed 

much weaker viral inhibition effects (blue dots in Figure 4B). ACE2 and TMPRSS2, two 

genes known to be essential for SARS-CoV-2 cellular entry (Hoffmann et al. 2020), were 

included as positive controls for comparison (red dots in Figure 4B). Overall, knock-

down of the predicted consensus targets did not significantly reduce cell number 

(P=0.73, Figure 4C), indicating that their impact on viral replication is likely not due to 

siRNA-mediated cytotoxic effects. Representative fluorescence microscopy images for 

the siRNA targeting the top three predicted targets (together with the scrambled non-

targeting control and ACE2 as positive control) are shown in Figure 4D. These results 

experimentally validate the efficacy of our predicted targets in vitro. 



Figure 4. Validation of the predicted anti-SARS-CoV-2 targets with an 

immunofluorescence-based in vitro siRNA assay. (A) A schematic illustration of the 

siRNA assay in Caco-2 cells infected with SARS-CoV-2 to validate the antiviral efficacies 

of the consensus predicted metabolic targets. Caco-2 cells were transfected with siRNAs 



for 48 h prior to infection with SARS-CoV-2 (MOI=0.1). Four replicates were performed 

for each target. At 48 h post-infection, cells were subjected to staining with SARS-CoV-2 

nucleoprotein (N) antibody and DAPI, and then imaged to determine the percentage of 

infected cells after each target knockdown (Methods). (B) Quantification of SARS-CoV-2 

infection. After the siRNA knockdown of each target, viral infection was quantified as 

mean log2 fold-change (log2FC) of the percentage of SARS-CoV-2+ cells relative to the 

mean of scrambled non-targeting siRNAs (“SCRAMBLED”, green dots; accordingly the 

mean log2FC value of scrambled non-targeting siRNAs was normalized to zero). 

Predicted positive targets (“TARGETING”, grey dots), predicted negative targets (“NEG”, 

blue dots) and positive controls (“POS”, red dots, including ACE2 and TMPRSS2) are all 

shown. Wilcoxon rank-sum test P value comparing the predicted positive targets to 

scrambled non-targeting siRNAs is given. (C) Quantification of cell number after each 

target knockdown, calculated as the mean fraction of DAPI+ cells relative to the 

scrambled non-targeting siRNAs (i.e. the latter was normalized to 1). Colors of dots and 

P value are interpreted in the same way as in (B). (D) Representative fluorescence 

images from the siRNA assay showing SARS-CoV-2 infection (green channel, top row), 

cell number (blue channel, middle row) and merged (bottom row). Results for scrambled 

non-targeting siRNA as negative control (left column), knockdown of three predicted top 

metabolic targets (PIKFYVE, SLC16A10, and PIP5K1C, middle columns), and 

knockdown of positive control (ACE2, right column) are shown. Scale bar=10 μm. 

 

4. There are many parameters proposed by the authors arbitrarily selected and need sensitivity 

analysis. For example, the authors selected 'top 400' DE genes with at least 'FDR <0.1' for all 

different COVID19 datasets, which seems a very sensitive cutoff. Why 400? Will the result 

change significantly if you choose top 500? Also, the authors selected 'FDR<0.2' for metabolic 

pathway meta-analysis, which is neither statistically sound nor consistent with the other cutoff 

used in this study. 

We agree that in these two particular cases,  the cutoffs used were arbitrary or not 

stringent enough. We have now switched to using FDR<0.1 for both cases, which is consistent 

with all the other analysis in our study and we believe is a more generally acceptable threshold. 

More details are provided below. 

In the case of DE genes, the previous cutoff of n=400 was only used in Figure 1B to 

measure the extent of overlap between each pair of datasets. We previously decided to use a 

constant number so that the odds ratio calculation had a more uniform denominator, and 400 is 

just below the number of FDR<0.1 DE genes in the dataset with the fewest DE genes (whereas 

other datasets can have thousands of DE genes at FDR<0.1). Now, following your comment, 

we have updated Figure 1B with the fixed FDR<0.1 cutoff (attached below). The range of odds 

ratio and P values changed as expected, but the clustering of datasets largely remains the 

same, e.g. the various single-cell datasets clustered together; 293T, A549 and Vero clustered 

together; and Calu-3, NHBE and the Swab.Lieberman datasets clustered together. Further 

robustness analysis with additional DE cutoffs also produced similar results (now provided in 



Appendix Figure S1). The description of numerical results (such as P values) in the section 

“Integrated analysis of multiple gene expression datasets identifies coherent immune and 

metabolic changes in SARS-CoV-2 infection” (Page 4) has been updated accordingly. 

Updated Figure 1B: 

Figure 1. (B) Visualization of the overlap of the top significant DE genes (FDR<0.1) 

between each pair of datasets analyzed using Fisher’s exact tests (Methods). The dot 

size corresponds to the effect size of the overlap as measured by odds ratio, and the 

color corresponds to the negative log10 adjusted one-sided P value (grey means below 

0.05).  

We also changed the cutoff to FDR<0.1 in the case of the metabolic pathway meta-

analysis, and the corresponding Figure 1E has been updated (also attached below; the previous 

version is also attached). The overall pattern of metabolic changes remains similar regardless of 

the cutoff used. 

Updated Figure 1E: 



 

 

Figure 1. (E) Heatmap summarizing the landscape of metabolic pathway alterations 

(based on gene expression) during SARS-CoV-2 across datasets. The heatmap color 

corresponds to the GSEA NES values (explained above) for KEGG metabolic pathways 

grouped into major categories. Only the metabolic pathways with FDR<0.1 enrichment in 

at least one dataset are included in the heatmap. The dataset labels used in this figure 

correspond to those given in Table 1. 

5. The author claimed that they used an in-house R package named 'gembox' for the GEM 

based analysis. The authors should provide the script for the analysis to enable proper 

assessment. 

Thanks. We have now made this package available to the general public on GitHub. We 

have added the relevant information to Data and Code Availability statement, Page 29: 

Our in-house R package named gembox used for all the GEM analysis in this study can 

be found on GitHub: https://github.com/ruppinlab/gembox. 

 

 

 

Reviewer #3: 

Summary 

Cheng et al utilizes 12 published SARS-CoV2 gene expression data sets to investigate virus-

induced host metabolic changes, using genome scale metabolic modeling. Based on these 

identified metabolic shifts, they then identified potential metabolic drug targets using MTA, and 

compared these proposed metabolic targets to published drug and genetic screening data. 



Lastly, they investigated potential coupled therapeutics through their remesdesvir-treated Vero 

E6 cell RNA-seq data. The goal of this paper is to utilize genome scale metabolic modeling to 

identify potential host treatment avenues for SARS-CoV2 infection, as opposed to the more 

common approach of identifying viral targets. This unique approach to viral-infection therapeutic 

development creates a pipeline for drug target discovery that could be applied to other viral 

infections outside of SARS-CoV2. Additionally the use of publically available data and 

subsequent data integration, poses useful for future metabolic modeling studies. However, the 

way in which differential expression was calculated for these 12 unique datasets, and the heavy 

reliance on in vitro data, when in vivo data is available, poses concerns in regards to the final 

selected metabolic targets. 

We appreciate the reviewer’s positive comments on the value of our study. We 

apologize if it was not sufficiently explicated previously, but indeed, we have collected and 

analyzed 12 datasets of SARS-CoV-2 infection, 6 of which are in vivo datasets of samples from 

human patients. The other 6 in vitro datasets include samples from primary human bronchial 

epithelial cells as well as immortalized or cancer cell lines. We think this is a good balance, as 

including  in vitro datasets could help bridge pre-clinical and future clinical drug development -- 

for example, following the request of Reviewer #2, we have now performed an siRNA assay in 

vitro in Caco-2 cells and successfully validated our consensus list of predicted targets (see reply 

to Reviewer #2 Comment #3 for details), which we hope can form a solid foundation for further 

investigation and downstream drug development. Having said that, we should indeed 

emphasize that our final list of selected targets focuses on the top predictions that are also 

supported by the analysis of the in vivo datasets, which showed good validation results. To 

summarize, we identify in vitro arising candidates that are supported also by the in vivo data 

analysis and hence more likely to work in patients. Please kindly refer to our reply to the 

Comment #3 for more details. 

Major points 

1. The use of 3 different algorithms for differential expression identification for the bulk RNA-seq

datasets creates discontinuity in differential expression definitions. This then biases later GSEA,

as well as differential expression comparisons across datasets.

We thank the reviewer for this comment. Indeed, different differential expression (DE) 

algorithms normalize the expression data in very different ways and use different statistical 

models. Naturally, these differences will lead to numerically different results. We therefore 

focused on verifying the robustness of our major conclusion to the choice of DE method. The 

major conclusion from our DE analysis is that a large number of metabolic pathways are 

consistently altered by SARS-CoV-2 infection, representing a major domain of cellular molecular 

changes besides immune response (i.e. Figure 1D). We repeated the DE analysis using the 

limma-voom method (Law et al. 2014) for all the bulk RNA-seq datasets, then repeated the 

pathway enrichment analysis. We found that despite the expected numerical differences, the 

consistently enriched DE pathways across datasets did not change much -- like before, we still 

see that the most consistent positively enriched (upregulated) pathways include various immune 

response-related pathways, and the most consistent negatively enriched (downregulated)  



pathways represent many different metabolic pathways, and the particular individual enriched 

pathways were also highly similar. Therefore the previously reported pertaining findings remain 

robust to the choice of DE methods. The new result with limma-voom is now included as 

Appendix Figure S2, which is also attached below for your convenience. For comparison, we 

also attach the Figure 1D below. We have added a sentence to the corresponding Results 

section “Integrated analysis of multiple gene expression datasets identifies coherent immune 

and metabolic changes in SARS-CoV-2 infection” (Page 5) as follows: “The major findings 

above are robust to the DE algorithms used (Appendix Figure S2).” 

Appendix Figure 2, results based on limma-voom for all bulk RNA-seq datasets: 

Appendix Figure S2. Pathway enrichment analysis of SARS-CoV-2-induced 

differential changes with the alternative differential expression (DE) algorithm 

limma-voom. A summary visualization of the GSEA result for the top consistently 

altered pathways during SARS-CoV-2 infection across the datasets, with more 

importance given to the various in vivo patient datasets (Methods). Unlike Figure 1D in 

the main text where the bulk RNA-seq dataset DE results were obtained using mostly 

DESeq2 mixed with other algorithms, here limma-voom was used for the DE analysis of 

all bulk RNA-seq datasets. The dot color corresponds to the negative log10 adjusted P 

values from GSEA, with two sets of colors (red-orange and blue-purple) distinguishing 

up-regulation from down-regulation (positive or negative normalized enrichment scores, 

i.e. NES); dot size corresponds to the absolute value of NES measuring the strength of

enrichment. The left and right-hand side blocks represent the pathways that tend to be

consistently up-regulated and down-regulated in infected vs control samples,

respectively; within each block, the pathways are ordered by negative sum of log P

values across datasets (i.e. Fisher’s method).

Figure 1D, results based on mostly DESeq2 for bulk RNA-seq datasets: 



Figure 1. (D) A summary visualization of the GSEA result for the top consistently altered 

pathways during SARS-CoV-2 infection across the datasets, with more importance given 

to the various in vivo patient datasets (Methods). The dot color corresponds to the 

negative log10 adjusted P values from GSEA, with two sets of colors (red-orange and 

blue-purple) distinguishing up-regulation from down-regulation (positive or negative 

normalized enrichment scores, i.e. NES); dot size corresponds to the absolute value of 

NES measuring the strength of enrichment. The left and right-hand side blocks represent 

the pathways that tend to be consistently up-regulated and down-regulated in infected vs 

control samples, respectively; within each block, the pathways are ordered by negative 

sum of log P values across datasets (i.e. Fisher’s method). 

We note that between DESeq2 (our previous DE algorithm used for most of the 

datasets) and limma-voom though, we prefer the former as it more directly models the 

distribution of the discrete read counts rather than utilizing a transformation to force the 

expression values to conform to distributions proper for a Gaussian-based model, and has 

shown good performance in some benchmark studies (e.g. Costa-Silva et al. 2017). Therefore 

in our main text, we still retained the use of DESeq2 as much as possible. The description of 

numerical results in the section “Integrated analysis of multiple gene expression datasets 

identifies coherent immune and metabolic changes in SARS-CoV-2 infection” (Page 5) have 

been very minorly updated due to DE method change to DESeq2 for the Weingarten-Gabby et 

al. (293T) dataset. 

Reference: 

Costa-Silva J, Domingues D, Lopes FM. RNA-Seq differential expression analysis: An extended 

review and a software tool. PLoS One. 2017;12(12):e0190152. 



2. The use of Recon1 instead of a more updated model due to computational limitations is 

understandable, however steps should be taken to create a more accurate COVID-19 

contextualized model, such as incorporating airway epithelial cell specific transport reactions, in 

addition to specific inflammatory pathways that are integral to COVID-19 disease mechanism. 

We would like to clarify that Recon 1 was used only as the basis for further model 

building in our study, which (exactly following the spirit of your suggestion) was further refined to 

obtain contextualized models in a sample type or dataset-specific manner based on the sample-

specific gene expression profiles using the iMAT algorithm. iMAT uses mixed integer 

programming to find the optimal adjustment of reaction bounds such that reactions with high 

fluxes and low fluxes correspond to high and low gene expression, respectively, in a sample 

type and dataset-specific manner. In this way, SARS-CoV-2-infection contextualized metabolic 

flux descriptions were obtained. Recon 1 is a general human model that includes the union of 

metabolic reactions and metabolites existing in different types of human cells, which serves as a 

good basis for model contextualization with iMAT. As for inflammatory pathways, they are not 

considered metabolic pathways and do not conform to the metabolic steady state assumption, 

therefore they are not within the domain of genome-scale metabolic modeling and are not 

included in any of the available genome-scale metabolic models. To further clarify without 

repeating the description of iMAT (a very well known and highly cited algorithm in the GEM 

field), we have added the sentence below in the Results section, under the sub-section 

“Genome-scale metabolic modeling (GEM) identifies SARS-CoV-2-induced patterns of 

metabolic flux changes”, Page 7: 

Briefly, iMAT uses mixed integer programming to optimally identify high and low-activity 

reactions that match the high and low gene expression patterns in a sample-specific 

manner, thus defining sample-specific model constraints to obtain contextualized models 

(Shlomi et al. 2008). 

3. Why are both in vitro and in vivo data utilized? How are the confounding factors of gene 

expression in a dish vs. a human considered? Cell lines do allow for target validation, as seen 

from your remedesvir treated Vero E6 cells, however why is this in vitro data integrated during 

the initial DE, GSEA, metabolic modeling portion of the analysis pipeline? Especially when 

utilizing a whole-body based model such as Recon1, while integrating tissue specific data from 

multiple tissue types. 

 As mentioned above, the datasets we analyzed represent a balanced collection of 6 in 

vivo and 6 in vitro datasets. Each of the datasets were first analyzed individually and 

independently from each other, the results (DE, GSEA, and metabolic modeling) were then 

compared across the datasets, and further we aimed to identify and robust findings that are 

consistent across both in vivo and in vitro datasets. Specifically for the metabolic modeling, as 

explained in our reply to the previous comment, for each dataset, we actually obtained a 

contextualized model specific to that dataset, so that the metabolic information across multiple 

tissue types were not mixed together in a single modeling – as the referee has acutely observed 

that indeed would not make sense (and was not what we did). Indeed, the in vivo datasets are 



in principle more clinically relevant, but we think that the in vitro datasets also have their 

importance and value. We include the in vitro datasets for the following reasons: 

1. They facilitate the comparison between in vitro model systems and in vivo patient

samples, and provide hints on the “goodness-of-fit” of the in vitro models to the biology

of the viral infection in human patients.

2. By selecting the consensus targets that were predicted based on both in vitro and in vivo

datasets, we aim to increase the robustness of the predictions. This strategy also

facilitates the use of in vitro assays for testing and validating the predicted targets, hence

bridging pre-clinical and future clinical drug development -- for example, following the

request of Reviewer #2, we have now performed an siRNA assay in vitro in Caco-2 cells

and successfully validated our consensus list of predicted targets (see reply to Reviewer

#2 Comment #3 for details), which we hope can form a solid foundation for further

investigation and downstream drug development.

3. As can be seen, there is quite a great abundance of in vitro datasets on SARS-CoV-2

infection. We believe that it would be beneficial to take advantage of the information

present in these datasets to glean more biological insights. It would not be very

reasonable and a waste of resources to completely ignore all the available in vitro

datasets.

We have added these points above to the Discussion section (Page 19): 

We tried to cover datasets on both popular in vitro models of SARS-CoV-2 infection as 

well as human patients (nasopharyngeal swab and BALF samples), aiming to increase 

the robustness and clinical relevance of our findings. This strategy may also facilitate the 

testing of our predicted targets and bridge pre-clinical and potential future clinical drug 

development 

Minor points 

- There are several more recent transcriptomic data integration methods...why weren't other

such approaches explored for this analysis?

Indeed, there are a few different methods for meta-analysis of gene expression 

microarray or bulk RNA-seq datasets (e.g. Rau et al. 2014, Waldron et al. 2016, reviewed in 

Toro-Domínguez et al. 2021). In recent years, there has also been much progress in the 

integration of multiple single-cell RNA-seq datasets (reviewed in Argelaguet et al. 2021). 

However, the datasets we analyzed in this study represent a very complex collection of bulk 

RNA-seq, single-cell RNA-seq, as well as proteomics datasets. The so-called “multi-omic 

integration” is still a maturing field with many existing challenges, although many methods have 

been developed (e.g. surveyed in Pierre-Jean et al. 2020), we find a lack of methods and 

software specifically designed to integrate our collected types of datasets that are well-

benchmarked for our particular aim of analysis. The existing methods are also not compatible 

with our downstream metabolic modeling analysis. We therefore resorted to the simpler yet 



reasonable approach of summarizing and synthesizing results across datasets based on the P 

values, which is more straightforward and grounded in classical meta-analysis ideas. We have 

extended the discussion on this point in the Discussion section (Page 20), which is also 

attached below for your convenience: 

In terms of methodology, our complex collection of data from a wide range of platforms 

with large technical variations (bulk RNA-seq, scRNA-seq, MS-based proteomics) poses 

a challenge to a formal effect size-based meta-analysis. Despite the progress in multi-

omic data integration (Pierre-Jean et al. 2020), to the best of our knowledge there is 

currently no method specifically for integrating the data types we used in this study that 

are also compatible with our downstream metabolic modeling. Therefore, we instead 

relied mostly on P values, and made subjective decisions that give higher importance to 

the various patient datasets when defining consistent findings, aiming to obtain results of 

higher clinical relevance. 

 

References: 

Rau A, Marot G, Jaffrézic F. Differential meta-analysis of RNA-seq data from multiple studies. 

BMC Bioinformatics. 2014;15:91. 

Waldron L, Riester M. Meta-Analysis in Gene Expression Studies. Methods Mol Biol. 

2016;1418:161-176. 
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- The structure of Figure 4 is not consistent with other figures. 

 Unlike the previous figure on single-target prediction, Figure 4 (now Figure 5 in the 

updated manuscript) contains results on the prediction of metabolic antiviral targets in 

combination with remdesivir and thus has a different format.  



27th Sep 20211st Revision - Editorial Decision

Thank you for sending us your revised manuscript. We have now heard back from the three reviewers who were asked to 
evaluate your study. As you will see the reviewers are satisfied with the modifications made and think that the study is now 
suitable for publication. 

Before we can formally accept your manuscript, we would ask you to address the following editorial-level issues: 

REFEREE REPORTS

---------------------------------------------------------------------------- 

Reviewer #1: 

The reviewer really appreciated the extensive work from the authors to address my previous concern. Now, the authors have 
address my previous concern. 

Reviewer #2: 

I suggest the publication of the paper in its current form. The authors did an excellent work during the revision. 

Reviewer #3: 

The authors did a nice job with this revision. Analysis is comprehensive, figures are clear and illustrative. Well done.

29th Sep 20212nd Authors' Response to Reviewers

The authors have made all requested editorial  changes. 



30th Sep 2021ACCEPTED

Thank you again for sending us your revised manuscript. We are now satisfied with the modifications made and I am pleased to 
inform you that your paper has been accepted for publication. 



USEFUL LINKS FOR COMPLETING THIS FORM

http://www.antibodypedia.com
http://1degreebio.org
http://www.equator-network.org/reporting-guidelines/improving-bioscience-research-reporting-the-arrive-guidelines-for-reporting-animal-research/

http://grants.nih.gov/grants/olaw/olaw.htm
http://www.mrc.ac.uk/Ourresearch/Ethicsresearchguidance/Useofanimals/index.htm
http://ClinicalTrials.gov
http://www.consort-statement.org
http://www.consort-statement.org/checklists/view/32-consort/66-title

è
http://www.equator-network.org/reporting-guidelines/reporting-recommendations-for-tumour-marker-prognostic-studies-remark/

è
http://datadryad.org

è
http://figshare.com

è
http://www.ncbi.nlm.nih.gov/gap

è
http://www.ebi.ac.uk/ega

http://biomodels.net/

http://biomodels.net/miriam/
è http://jjj.biochem.sun.ac.za
è https://osp.od.nih.gov/biosafety-biosecurity-and-emerging-biotechnology/
è http://www.selectagents.gov/
è

è
è

è
è

� common tests, such as t-test (please specify whether paired vs. unpaired), simple χ2 tests, Wilcoxon and Mann-Whitney 
tests, can be unambiguously identified by name only, but more complex techniques should be described in the methods 
section;

� are tests one-sided or two-sided?
� are there adjustments for multiple comparisons?
� exact statistical test results, e.g., P values = x but not P values < x;
� definition of ‘center values’ as median or average;
� definition of error bars as s.d. or s.e.m. 

1.a. How was the sample size chosen to ensure adequate power to detect a pre-specified effect size?

1.b. For animal studies, include a statement about sample size estimate even if no statistical methods were used.

2. Describe inclusion/exclusion criteria if samples or animals were excluded from the analysis. Were the criteria pre-
established?

3. Were any steps taken to minimize the effects of subjective bias when allocating animals/samples to treatment (e.g. 
randomization procedure)? If yes, please describe. 

For animal studies, include a statement about randomization even if no randomization was used.

4.a. Were any steps taken to minimize the effects of subjective bias during group allocation or/and when assessing results 
(e.g. blinding of the investigator)? If yes please describe.

4.b. For animal studies, include a statement about blinding even if no blinding was done

5. For every figure, are statistical tests justified as appropriate?

Do the data meet the assumptions of the tests (e.g., normal distribution)? Describe any methods used to assess it.

Is there an estimate of variation within each group of data? Yes. See specific results and figures for details.

NA (animals not involved)

NA

NA

Yes. See Methods and Materials for details and Discussions.

We used non-parametric tests w/o distribution assumptions throughout the text. Differential 
analysis (DE) were performed using specialized DE algorithms suitable for the nature of RNA-seq 
data

Please fill out these boxes ê (Do not worry if you cannot see all your text once you press return)

We used n=3 for RNA-seq experiments and at least n=4 for siRNA assays. These numbers have 
been used in different previous studies, and we have shown that the downstream statistical tests 
have sufficient power.

NA (animals not involved)

NA (animals not involved)

NA (animals not involved)

definitions of statistical methods and measures:

Any descriptions too long for the figure legend should be included in the methods section and/or with the source data.

 

In the pink boxes below, please ensure that the answers to the following questions are reported in the manuscript itself. 
Every question should be answered. If the question is not relevant to your research, please write NA (non applicable).  
We encourage you to include a specific subsection in the methods section for statistics, reagents, animal models and human 
subjects.  

B- Statistics and general methods

an explicit mention of the biological and chemical entity(ies) that are being measured.
an explicit mention of the biological and chemical entity(ies) that are altered/varied/perturbed in a controlled manner.

the exact sample size (n) for each experimental group/condition, given as a number, not a range;
a description of the sample collection allowing the reader to understand whether the samples represent technical or 
biological replicates (including how many animals, litters, cultures, etc.).
a statement of how many times the experiment shown was independently replicated in the laboratory.

Source Data should be included to report the data underlying graphs. Please follow the guidelines set out in the author ship 
guidelines on Data Presentation.

2. Captions

Each figure caption should contain the following information, for each panel where they are relevant:

a specification of the experimental system investigated (eg cell line, species name).
the assay(s) and method(s) used to carry out the reported observations and measurements 

The data shown in figures should satisfy the following conditions:
the data were obtained and processed according to the field’s best practice and are presented to reflect the results of the 
experiments in an accurate and unbiased manner.
figure panels include only data points, measurements or observations that can be compared to each other in a scientifically 
meaningful way.
graphs include clearly labeled error bars for independent experiments and sample sizes. Unless justified, error bars should 
not be shown for technical replicates.
if n< 5, the individual data points from each experiment should be plotted and any statistical test employed should be 
justified

Manuscript Number: MSB-2021-10260

Reporting Checklist For Life Sciences Articles (Rev. June 2017)

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. These guidelines are 
consistent with the Principles and Guidelines for Reporting Preclinical Research issued by the NIH in 2014. Please follow the journal’s 
authorship guidelines in preparing your manuscript.  

A- Figures 
1. Data

EMBO PRESS 

YOU MUST COMPLETE ALL CELLS WITH A PINK BACKGROUND ê
PLEASE NOTE THAT THIS CHECKLIST WILL BE PUBLISHED ALONGSIDE YOUR PAPER

Corresponding Author Name: Sumit K. Chanda, Eytan Ruppin
Journal Submitted to: Molecular Systems Biology



Is the variance similar between the groups that are being statistically compared?

6. To show that antibodies were profiled for use in the system under study (assay and species), provide a citation, catalog 
number and/or clone number, supplementary information or reference to an antibody validation profile. e.g., 
Antibodypedia (see link list at top right), 1DegreeBio (see link list at top right).

7. Identify the source of cell lines and report if they were recently authenticated (e.g., by STR profiling) and tested for 
mycoplasma contamination.

* for all hyperlinks, please see the table at the top right of the document

8. Report species, strain, gender, age of animals and genetic modification status where applicable. Please detail housing 
and husbandry conditions and the source of animals.

9. For experiments involving live vertebrates, include a statement of compliance with ethical regulations and identify the 
committee(s) approving the experiments.

10. We recommend consulting the ARRIVE guidelines (see link list at top right) (PLoS Biol. 8(6), e1000412, 2010) to ensure 
that other relevant aspects of animal studies are adequately reported. See author guidelines, under ‘Reporting 
Guidelines’. See also: NIH (see link list at top right) and MRC (see link list at top right) recommendations.  Please confirm 

11. Identify the committee(s) approving the study protocol.

12. Include a statement confirming that informed consent was obtained from all subjects and that the experiments 
conformed to the principles set out in the WMA Declaration of Helsinki and the Department of Health and Human 
Services Belmont Report.

13. For publication of patient photos, include a statement confirming that consent to publish was obtained.

14. Report any restrictions on the availability (and/or on the use) of human data or samples.

15. Report the clinical trial registration number (at ClinicalTrials.gov or equivalent), where applicable.

16. For phase II and III randomized controlled trials, please refer to the CONSORT flow diagram (see link list at top right) 
and submit the CONSORT checklist (see link list at top right) with your submission. See author guidelines, under ‘Reporting 
Guidelines’. Please confirm you have submitted this list.

17. For tumor marker prognostic studies, we recommend that you follow the REMARK reporting guidelines (see link list at 
top right). See author guidelines, under ‘Reporting Guidelines’. Please confirm you have followed these guidelines.

18: Provide a “Data Availability” section at the end of the Materials & Methods, listing the accession codes for data 
generated in this study and deposited in a public database (e.g. RNA-Seq data: Gene Expression Omnibus GSE39462, 
Proteomics data: PRIDE PXD000208 etc.) Please refer to our author guidelines for ‘Data Deposition’.

Data deposition in a public repository is mandatory for: 
a. Protein, DNA and RNA sequences 
b. Macromolecular structures 
c. Crystallographic data for small molecules 
d. Functional genomics data 19. Deposition is strongly recommended for any datasets that are central and integral to the study; please consider the 
journal’s data policy. If no structured public repository exists for a given data type, we encourage the provision of datasets 
in the manuscript as a Supplementary Document (see author guidelines under ‘Expanded View’ or in unstructured 
repositories such as Dryad (see link list at top right) or Figshare (see link list at top right).20. Access to human clinical and genomic datasets should be provided with as few restrictions as possible while respecting 
ethical obligations to the patients and relevant medical and legal issues. If practically possible and compatible with the 
individual consent agreement used in the study, such data should be deposited in one of the major public access-
controlled repositories such as dbGAP (see link list at top right) or EGA (see link list at top right).21. Computational models that are central and integral to a study should be shared without restrictions and provided in a 
machine-readable form.  The relevant accession numbers or links should be provided. When possible, standardized format 
(SBML, CellML) should be used instead of scripts (e.g. MATLAB). Authors are strongly encouraged to follow the MIRIAM 
guidelines (see link list at top right) and deposit their model in a public database such as Biomodels (see link list at top 
right) or JWS Online (see link list at top right). If computer source code is provided with the paper, it should be deposited 
in a public repository or included in supplementary information.

22. Could your study fall under dual use research restrictions? Please check biosecurity documents (see link list at top 
right) and list of select agents and toxins (APHIS/CDC) (see link list at top right). According to our biosecurity guidelines, 
provide a statement only if it could.

NA (no human genomic data is involved)

Yes

G- Dual use research of concern

NA

NA

NA

F- Data Accessibility

Yes

Yes

NA (human subjects not involved)

NA

NA

NA

NA

D- Animal Models

NA (animals not involved)

NA

NA

E- Human Subjects

Not necessarily so. The statistical tests we used do not require such assumptions.

C- Reagents

Yes

Yes


	Genome-scale metabolic modeling reveals SARS-CoV-2-induced metabolic changes and antiviral targets
	Review Timeline:
	Transaction Report:

	Merged Decision Summary PDF Section 1
	Merged Decision Summary PDF Section 2
	Merged Decision Summary PDF Section 3
	Merged Decision Summary PDF Section 4
	Merged Decision Summary PDF Section 5
	Merged Decision Summary PDF Section 6
	Merged Decision Summary PDF Section 7
	Merged Decision Summary PDF Section 8
	Merged Decision Summary PDF Section 9



