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S1. Extraction of the stimulus centroid

Given that our stimulus (a bird) was inherently asymmetric in its visual features (i.e., as 

compared to a circle), we used the centroid of the bird as the point that indicates its position. This 

was used to compute the actual response time relative to the target position. The centroid was 

obtained using the regionprops function in MATLAB that takes into account pixel intensities, 

and the result was centroid that was shifted 0.2° to the right from the image center. 

S2. Eye movement analyses

The eye traces were classified into three types of eye movements: saccades, smooth 

pursuits, and fixations (Fig. 1B, left). To detect saccades, first, eye velocity traces were obtained 

through differentiation of eye position over time. Samples with velocity greater than 30°/s were 

categorized as saccades (a minimum of two consecutive samples that met this criterion was 

required). In addition, we only counted saccades whose amplitude was greater than 0.5°. Saccade 

amplitude was defined by the distance between the maximum and minimum position values 

across samples within a saccade period (Komogortsev & Karpov, 2013). Saccades were removed 

from the eye traces for smooth pursuit detection (Fig. 1B, right). Two samples before and after 

the detected saccades were also discarded. The excluded velocity samples were linearly 

interpolated. Velocity traces were then filtered using a low-pass, second-order Butterworth filter 

with cutoff frequency of 40 Hz. 

We additionally implemented two exclusion criteria. First, to include the trials where 

participants closely tracked the object, we calculated the root-mean-square error (RMSE) 

between the eye and stimulus. Second, to ensure that saccade samples were correctly removed 

using our procedure, we obtained the SD in saccade-removed velocity traces. Then, we removed 

Page 34 of 41



35

the top 2.5% of the trials (remaining after the removal of trials with eye blinks) with the highest 

values in each of the two measures (Smyrnis et al., 2007). Note that some trials met both of the 

criteria, thus resulting in discarding ~3.5% of the trials on average for each participant. Results 

do not change when including these trials. 

To detect smooth pursuit eye movements, we first detected the pursuit onset by using a 

piecewise linear regression that estimated two line segments and a break point from the velocity 

trace (Spering, Dias, Sanchez, Schütz, & Javitt, 2013; Spering, Schütz, Braun, & Gegenfurtner, 

2011). The break point indicated the pursuit onset. Visual inspection of the raw position data 

suggested that not all eye movements started at the dynamic circle that indicated the initial 

stimulus position. For instance, on some trials, participants first fixated at the assigned target 

location and then caught up with the moving stimulus. To account for this, we used a sliding 

window (300 ms each) from the beginning of the eye recording until the stimulus disappeared 

behind the occluder. This allowed us to avoid using an arbitrary window for detecting pursuit 

onset in a less controlled set up like ours. We performed the piecewise linear regression in each 

of these windows, and the average of the obtained break points was used as a pursuit onset. We 

only counted the break points where the difference between the slopes of the two estimated line 

segments was greater than 25% of the stimulus velocity. Despite the use of a less traditional 

method, mean pursuit onsets observed in our study are similar to those reported in previous 

studies (e.g., Spering et al., 2013). 

We also employed a position dispersion criterion for detecting smooth pursuits versus 

fixations (Komogortsev & Karpov, 2013) using a similar sliding window analysis over the entire 

trace. Within each 100 ms window, we calculated the dispersion by taking the sum of absolute 

differences between the maximum and minimum position in both horizontal and vertical eye 

positions. If a sample was not marked as a saccade and the dispersion was greater than 1°, then it 

was counted as a pursuit. A trial was classified as a ‘pursuit trial’ if a pursuit onset was detected 

from the piecewise linear regression and the pursuit lasted more than five samples as determined 

by dispersion. If the dispersion was smaller than 1°, then the sample was counted as a fixation.
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S3. Assessment of the quality of eye movement data

To evaluate the quality of eye movement data, we calculated the position root-mean 

square error (RMSE) for the analyzed trials, which quantifies the difference between the eye and 

object position. The mean position RMSE for the analyzed trials was 5.87° for ASD and 4.72° 

for TD (t(34) = 1.44, p = .16). The mean position RMSE during the closed-loop was 4.23° for 

ASD and 4.11° for TD (t(34) = .15 p = .88). The values are within the range of those reported in 

previous studies when considering the stimulus speeds (Takarae, Minshew, Luna, Krisky, & 

Sweeney, 2004) and the age range of our participants (Katsanis, Iacono, & Harris, 1998; Smyrnis 

et al., 2007; Takarae et al., 2004). In other words, our paradigm and measurements yielded data 

that are of sufficient quality and comparable to prior work.

Table S1. BIC values for the models in the analyses of closed pursuit gain predicting prediction 
performance

Predictors

Closed-loop gain Closed-loop gain, visible duration

ASD: Bias -99.2 -96.86

ASD: Variability -131.95 -120.15

TD: Bias -124.37 -113.06

TD: Variability -141.84 -129.78

S4. An ideal observer model of prediction bias

We constructed an ideal observer model to determine what optimal behavior looks like 

given our experimental settings. It was assumed that the ideal observer had complete knowledge 

of the occluded duration distribution, and the sensory noise linearly increased as the occluded 

duration increased. In other words, the ideal observer has full knowledge of stimulus statistics 

and its “perception” was limited by realistic sensory noise. The relation between the measured 

duration ( ) and the physical duration ( ) was formalized as,𝑡𝑚 𝑡

 , 𝑡𝑚 = 𝑡 + 𝜀
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where  followed a Gaussian distribution with zero mean and  standard deviation.  𝜀 𝑘𝑡 𝑘

represented Weber fraction. Given an occluded duration ( ), we sampled 500,000 noisy 𝑡

measurements ( ) and numerically computed the mean of posterior distribution for each 𝑡𝑚

measurement to compute the expected response of the ideal observer. 

Figure S1 shows the mean bias curves of the ideal observer for four different Weber 

fractions (k = 0.01, 0.05, 0.1, 0.15). The size of bias increases as the Weber fraction increases. 

Notably, the bias curves for Weber fractions 1 and 1.5 closely resemble the empirical data we 

observed in block 4 (Fig. 2B). The Weber fraction of duration estimation reported in the 

literature is around one (Jazayeri & Shadlen, 2010). 

The initial increase of the bias is due to the Weber’s law. When the occluded duration is 

very short, the sensory noise is small, and the ideal observer does not strongly depend on the 

prior knowledge. As the occluded duration increases, the sensory noise increases following the 

Weber’s law, and consequently, the ideal observer depends more on the prior knowledge, which 

increases the size of central tendency bias.

Figure S1. Prediction performance of the ideal observer model across varying occluded 
durations for four different Weber fractions. The size of bias increases as the Weber fraction 
increases. Overall pattern of the prediction bias of the ideal observer (k=0.1 and k=0.15) closely 
resembles the observed pattern of the prediction bias (Fig. 2A).
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S5. The influence of impulsivity or subjective difficulty on early bias in ASD 

We tested whether the differences in prediction bias between ASD and TD might have 

been due to other additional factors. First, we ruled out the possibility that this early bias in ASD 

was simply a result of impatience or impulsivity. Specifically, we examined the relationship 

between the early bias (as indexed by the bias in the longest duration time bin) and the raw 

impulsivity score from a clinical, parent-report measure. We did not find such a relationship 

(r(17) = .22, p = .37). Second, we also tested whether overall subjective difficulty or motivation 

may have differed in ASD across blocks, as well as between the first and last 50 trials within a 

block. We used prediction variability as an index for this test based on the reasoning that general 

difficulty or motivation would be related to non-random error. The results showed that prediction 

variability was not significantly different across blocks (F(1.58, 69.32) = 1.45, p = .24) nor 

between the first and last 50 trials in each block (F(1, 44) = .06, p = .81). These variables did not 

show significant interactions with group (all p’s > .20).  

S6. Group differences in pursuit gain without the outlier participant

Even after removing the outlier participant who showed the largest occluded pursuit gain, 

we found better smooth pursuit quality during occluded period in ASD. There was a significant 

interaction between pursuit period and group (F(2, 66) = 11.37, p < .001). Post hoc t-tests 

showed significantly smaller open gain (t(33) = -2.61, p = .03) and larger occluded gain (t(26.61) 

= 2.1, p = .045) in ASD than in TD. There was no group difference in closed gain (t(33) = .25, p 

= .81). 

S7. Relationship between occluded pursuit gain and prediction performance 

We did not observe a significant difference in the average occluded pursuit gain across 

visible durations (F(1, 34) =.77, p = .39). However, the linear mixed effects model analyses, 

testing whether occluded pursuit gain predicted prediction bias or variability in each group, 

revealed a pattern in ASD that is consistent with those using the closed-loop pursuit gain (shown 

in Figs. 4B & C in the main text). Better pursuit during occluded period was related to reduced 

prediction variability in TD, although the effect did not reach significance (βgain = -.14, SE = .07, 
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t(26.64) = -1.96, p =. 06). In ASD, occluded pursuit gain significantly predicted prediction bias, 

with better pursuit during the occluded period with greater early bias (βgain = -.10, SE = .05, 

t(17.12) = -2.29, p = .04). There was no significant relationship between occluded gain and 

prediction bias in TD (βgain = .07, SE = .08, t(26.12) = .88, p = .39), and between occluded gain 

and variability in ASD (βgain = .02, SE = .04, t(19.67) = .54, p = .59). The BIC values in all 

models were lower compared to those with the visible duration as a predictor (see Table S2 

below). The exception was the one testing the relationship between occluded gain and prediction 

bias in ASD, which had a higher BIC value than the model with the visible duration as a 

predictor. Nevertheless, the occluded pursuit gain significantly predicted prediction bias in ASD 

even in this model (βgain = -.11, SE = .04, t(17.78) = -2.56, p = .02; βVisDur = .04, SE = .01, 

t(17.25) = 3.93, p = .001). 

Table S2. BIC values for the models in the analyses of occluded pursuit gain predicting 
prediction performance

Predictors

Occluded-period gain Occluded-period gain, 
visible duration

ASD: Bias -100.31 -100.99

ASD: Variability -130.94 -119.39

TD: Bias -127.18 -115.77

TD: Variability -132.48 -126.28

S8. Performance across different types of eye movement trials

Because several of the key analyses reported in this paper were performed only using the 

“pursuit trials” (i.e., trials where participants showed a smooth pursuit behavior), it is important 

to ensure that this trial selection did not bias the stimulus characteristics and/or obscure 

potentially important group differences in prediction performance. Thus, we examined the 

differences in stimulus characteristics as well as the prediction performance in three differently 

categorized trial types: pursuit trials, no-pursuit trials, and unused trials that were eliminated due 

to missing samples (e.g., eye blinks; see Eye movement analysis section of the Methods). 
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First, we found stimulus differences that were consistent with how trial types were 

derived. The classified trials varied in the visible (F(2, 68) = 110.95, p < .001) and occluded 

durations (F(2, 68) = 162.63, p < .001). Specifically, the unused trials had significantly longer 

visible (mean = .94 s, SD = .057) and occluded (mean = .87 s, SD = .097) durations compared to 

pursuit (all p’s < .03) and no-pursuit trials (all p’s < .001). This simply reflects the intuitive 

observation that participants were more likely to make eye blinks when the overall trial duration 

was longer. No-pursuit trials had significantly shorter visible (mean = .8 s, SD = .052) and 

occluded (mean = .55 s, SD = .084) durations than the pursuit trials (all p’s < .001). The mean 

visible and occluded durations for the pursuit trials were .92 s (SD = .034) and .74 s (SD = .056), 

respectively. This is consistent with our observation that the pursuit quality is worse for shorter 

visible duration and may even suggest that pursuit might have been difficult to execute when 

stimulus duration was too short. 

Second, we tested if the prediction performance varied across trial types. For prediction 

bias, there was a significant main effect of trial type (F(2, 68) = 7.05, p = .002). However, this 

was mainly due to the difference between no-pursuit and unused trials (p = .006), with an earlier 

bias in no-pursuit trials (no-pursuit: mean = .95, SD = .046; unused: mean = .97, SD = .041). The 

prediction bias in pursuit trials—which were the focus of our main analyses—was not 

statistically different from the other two trial types (all p’s > .06; mean = .96, SD = .031). There 

was also a main effect of trial type on prediction variability (F(1.64, 55.75) = 33.9, p < .001), 

where the variability was largest for no-pursuit trials (mean = .2, SD = .053) compared to the 

other two trial types (all p’s < .001; pursuit: mean = .17, SD = .041; unused: mean = .17, SD 

= .047). These results potentially suggest that participants benefited from smooth pursuit. 

However, given that the overall trial duration was shorter for no-pursuit trials, this suggestion 

warrants further study with more explicit control of eye movements and comparable stimulus 

conditions (Makin & Poliakoff, 2011). 

Most importantly, for our main interest, none of the analyses reported above were linked 

to group differences. We found no significant group differences in (all p’s > .12) nor interactions 

with group (all p’s > .10). This indicates that the differences in eye movements and resulting trial 

type classification similarly affected both ASD and TD. 
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